Evaluation of NH3-Slip from Diesel Vehicles Equipped with Selective Catalytic Reduction Systems by Neural Networks Approach

Authors : Mona Lisa M. Oliveira, Nara A. Policarpo, Ana Luiza B. P. Barros, Carla A. Silva

Abstract : Selective catalytic reduction systems for nitrogen oxides reduction by ammonia has been the chosen technology by most of diesel vehicle (i.e. bus and truck) manufacturers in Brazil, as also in Europe. Furthermore, at some conditions, overstoichiometric ammonia availability is also needed that increases the NH₃ slips even more. Ammonia (NH₃) by this vehicle exhaust aftertreatment system provides a maximum efficiency of NOx removal if a significant amount of NH₃ is stored on its catalyst surface. In the other words, the practice shows that slightly less than 100% of the NOx conversion is usually targeted, so that the aqueous urea solution hydrolyzes to NH₃ via other species formation, under relatively low temperatures. This paper presents a model based on neural networks integrated with a road vehicle simulator that allows to estimate NH₃-slip emission factors for different driving conditions and patterns. The proposed model generates high NH₃slips which are not also limited in Brazil, but more efforts needed to be made to elucidate the contribution of vehicle-emitted NH₃ to the urban atmosphere. **Keywords :** ammonia slip, neural-network, vehicles emissions, SCR-NOx

Conference Title : ICREE 2018 : International Conference on Renewable Energy and Environment **Conference Location :** Lisbon, Portugal

Conference Dates : April 16-17, 2018

1

ISNI:000000091950263