Search results for: self-regulated learning theory
8250 Benefits of Collegial Teaming to Improve Knowledge-Worker Productivity
Authors: Prakash Singh, Piet Maphodisa Kgohlo
Abstract:
Knowledge-worker productivity is one of the biggest leadership challenges facing all organizations in the twenty-first century. It cannot be denied that knowledge-worker productivity affects all organizations. The work and the workforce are both undergoing greater changes currently than at any time, since the beginning of the industrial revolution two centuries ago. Employees welcome collegial teaming (CT) as an innovative way to develop their work-integrated learning competencies. Human resource development policies must evoke the symbiotic relationship between CT and work-integrated learning, seeing that employees need to be endowed with the competence to move from one skill to another, as each one becomes obsolete, and to simultaneously develop their cognitive and emotional intelligence. The outcome of this relationship must culminate in the development of highly productive knowledge-workers. While this study focuses on teachers, the conceptual framework and the findings of this research can be beneficial for any organization, public or private sector, business or non-business. Therefore, in this quantitative study, the benefits of CT are considered in developing human resources to sustain knowledge-worker productivity. The ANOVA p-values reveal that the majority of teachers agree that CT can empower them to overcome the challenges of managing curriculum change. CT can equip them with continuous and sustained learning, growth and improvement, necessary for knowledge-worker productivity. This study, therefore, confirms that CT benefits all workers, immaterial of their age, gender or experience. Hence, this exploratory research provides a new perspective of CT in addressing knowledge-worker productivity when organizational change alters the vision of the organization.Keywords: collegial teaming, human resource development, knowledge-worker productivity, work-integrated learning
Procedia PDF Downloads 2778249 A Novel Geometrical Approach toward the Mechanical Properties of Particle Reinforced Composites
Authors: Hamed Khezrzadeh
Abstract:
Many investigations on the micromechanical structure of materials indicate that there exist fractal patterns at the micro scale in some of the main construction and industrial materials. A recently presented micro-fractal theory brings together the well-known periodic homogenization and the fractal geometry to construct an appropriate model for determination of the mechanical properties of particle reinforced composite materials. The proposed multi-step homogenization scheme considers the mechanical properties of different constituent phases in the composite together with the interaction between these phases throughout a step-by-step homogenization technique. In the proposed model the interaction of different phases is also investigated. By using this method the effect of fibers grading on the mechanical properties also could be studied. The theory outcomes are compared to the experimental data for different types of particle-reinforced composites which very good agreement with the experimental data is observed.Keywords: fractal geometry, homogenization, micromehcanics, particulate composites
Procedia PDF Downloads 2938248 Driven Force of Integrated Reporting in Thailand
Authors: Nuttha Kirdsinsap, Watchaneeporn Setthasakko
Abstract:
This paper aims to gain opinions and perspectives of Certified Public Accountants (CPA) in Thailand regarding the driven force of Integrated Reporting. It employs in-depth interviews with CPA from different big 4 audits firms in Thailand, including PWC, Ernst and Young, Deloitte, and KPMG. It is found that the driven force of Integrated Reporting made CPA in Thailand awaken to the big change that is coming in the future, and it is said to be another big learning and integrating period between certified public accountants and other professionals (for example, engineers, environmentalists and lawyers), which, certified public accountants in Thailand will have to push themselves so hard to catch up.Keywords: integrated reporting, learning, knowledge, certified public accountants, Thailand
Procedia PDF Downloads 2708247 Students' Perception of Virtual Learning Environment (VLE) Skills in Setting up the Simulator Welding Technology
Authors: Mohd Afif Md Nasir, Faizal Amin Nur Yunus, Jamaluddin Hashim, Abd Samad Hassan Basari, A. Halim Sahelan
Abstract:
The aim of this study is to identify the suitability of Virtual Learning Environment (VLE) in welding simulator application towards Computer-Based Training (CBT) in developing skills upon new students at the Advanced Technology Training Center (ADTEC), Batu Pahat, Johor, Malaysia and GIATMARA, Batu Pahat, Johor, Malaysia. The purpose of the study is to create a computer-based skills development approach in welding technology among new students in ADTEC and GIATMARA, as well as cultivating the elements of general skills among them. This study is also important in elevating the number of individual knowledge workers (K-workers) working in manufacturing industry in order to achieve a national vision which is to be an industrial nation in the year of 2020. The design of the study is a survey type of research which uses questionnaires as the instruments and 136 students from ADTEC and GIATMARA were interviewed. Descriptive analysis is used to identify the frequency and mean values. The findings of the study shows that the welding technology skills have developed in the students as a result of the application of VLE simulator at a high level and the respondents agreed that the skills could be embedded through the application of the VLE simulator. In summary, the VLE simulator is suitable in welding skills development training in terms of exposing new students with the relevant characteristics of welding skills and at the same time spurring the students’ interest towards learning more about the skills.Keywords: computer-based training (CBT), knowledge workers (K-workers), virtual learning environment, welding simulator, welding technology
Procedia PDF Downloads 3488246 English Learning Speech Assistant Speak Application in Artificial Intelligence
Authors: Albatool Al Abdulwahid, Bayan Shakally, Mariam Mohamed, Wed Almokri
Abstract:
Artificial intelligence has infiltrated every part of our life and every field we can think of. With technical developments, artificial intelligence applications are becoming more prevalent. We chose ELSA speak because it is a magnificent example of Artificial intelligent applications, ELSA speak is a smartphone application that is free to download on both IOS and Android smartphones. ELSA speak utilizes artificial intelligence to help non-native English speakers pronounce words and phrases similar to a native speaker, as well as enhance their English skills. It employs speech-recognition technology that aids the application to excel the pronunciation of its users. This remarkable feature distinguishes ELSA from other voice recognition algorithms and increase the efficiency of the application. This study focused on evaluating ELSA speak application, by testing the degree of effectiveness based on survey questions. The results of the questionnaire were variable. The generality of the participants strongly agreed that ELSA has helped them enhance their pronunciation skills. However, a few participants were unconfident about the application’s ability to assist them in their learning journey.Keywords: ELSA speak application, artificial intelligence, speech-recognition technology, language learning, english pronunciation
Procedia PDF Downloads 1068245 Model Observability – A Monitoring Solution for Machine Learning Models
Authors: Amreth Chandrasehar
Abstract:
Machine Learning (ML) Models are developed and run in production to solve various use cases that help organizations to be more efficient and help drive the business. But this comes at a massive development cost and lost business opportunities. According to the Gartner report, 85% of data science projects fail, and one of the factors impacting this is not paying attention to Model Observability. Model Observability helps the developers and operators to pinpoint the model performance issues data drift and help identify root cause of issues. This paper focuses on providing insights into incorporating model observability in model development and operationalizing it in production.Keywords: model observability, monitoring, drift detection, ML observability platform
Procedia PDF Downloads 1128244 Analysis of Production Forecasting in Unconventional Gas Resources Development Using Machine Learning and Data-Driven Approach
Authors: Dongkwon Han, Sangho Kim, Sunil Kwon
Abstract:
Unconventional gas resources have dramatically changed the future energy landscape. Unlike conventional gas resources, the key challenges in unconventional gas have been the requirement that applies to advanced approaches for production forecasting due to uncertainty and complexity of fluid flow. In this study, artificial neural network (ANN) model which integrates machine learning and data-driven approach was developed to predict productivity in shale gas. The database of 129 wells of Eagle Ford shale basin used for testing and training of the ANN model. The Input data related to hydraulic fracturing, well completion and productivity of shale gas were selected and the output data is a cumulative production. The performance of the ANN using all data sets, clustering and variables importance (VI) models were compared in the mean absolute percentage error (MAPE). ANN model using all data sets, clustering, and VI were obtained as 44.22%, 10.08% (cluster 1), 5.26% (cluster 2), 6.35%(cluster 3), and 32.23% (ANN VI), 23.19% (SVM VI), respectively. The results showed that the pre-trained ANN model provides more accurate results than the ANN model using all data sets.Keywords: unconventional gas, artificial neural network, machine learning, clustering, variables importance
Procedia PDF Downloads 1968243 Automatic Classification of Lung Diseases from CT Images
Authors: Abobaker Mohammed Qasem Farhan, Shangming Yang, Mohammed Al-Nehari
Abstract:
Pneumonia is a kind of lung disease that creates congestion in the chest. Such pneumonic conditions lead to loss of life of the severity of high congestion. Pneumonic lung disease is caused by viral pneumonia, bacterial pneumonia, or Covidi-19 induced pneumonia. The early prediction and classification of such lung diseases help to reduce the mortality rate. We propose the automatic Computer-Aided Diagnosis (CAD) system in this paper using the deep learning approach. The proposed CAD system takes input from raw computerized tomography (CT) scans of the patient's chest and automatically predicts disease classification. We designed the Hybrid Deep Learning Algorithm (HDLA) to improve accuracy and reduce processing requirements. The raw CT scans have pre-processed first to enhance their quality for further analysis. We then applied a hybrid model that consists of automatic feature extraction and classification. We propose the robust 2D Convolutional Neural Network (CNN) model to extract the automatic features from the pre-processed CT image. This CNN model assures feature learning with extremely effective 1D feature extraction for each input CT image. The outcome of the 2D CNN model is then normalized using the Min-Max technique. The second step of the proposed hybrid model is related to training and classification using different classifiers. The simulation outcomes using the publically available dataset prove the robustness and efficiency of the proposed model compared to state-of-art algorithms.Keywords: CT scan, Covid-19, deep learning, image processing, lung disease classification
Procedia PDF Downloads 1558242 Pro-Environmental Behavioral Intention of Mountain Hikers to the Theory of Planned Behavior
Authors: Mohammad Ehsani, Iman Zarei, Soudabeh Moazemigoudarzi
Abstract:
The aim of this study is to determine Pro-Environmental Behavioral Intention of Mountain Hikers to the Theory of Planned Behavior. According to many researchers nature-based recreation activities play a significant role in the tourism industry and have provided myriad opportunities for the protection of natural areas. It is essential to investigate individuals' behavior during such activities to avoid further damage to precious and dwindling natural resources. This study develops a robust model that provides a comprehensive understanding of the formation of pro-environmental behavioral intentions among climbers of Mount Damavand National Park in Iran. To this end, we combined the theory of planned behavior (TPB), value-belief-norm theory (VBN), and a hierarchical model of leisure constraints to predict individuals’ pro-environmental hiking behavior during outdoor recreation. It was used structural equation modeling to test the theoretical framework. A sample of 787 climbers was analyzed. Among the theory of planned behavior variables, perceived behavioral control showed the strongest association with behavioral intention (β = .57). This relationship indicates that if people feel they can have fewer negative impacts on national resources while hiking, it will result in more environmentally acceptable behavior. Subjective norms had a moderate positive impact on behavioral intention, indicating the importance of other people on the individual's behavior. Attitude had a small positive effect on intention. Ecological worldview positively influenced attitude and personal belief. Personal belief (awareness of consequences and ascribed responsibility) showed a positive association with TPB variables. Although the data showed a high average score in awareness of consequences (mean = 4.219 out of 5), evidence from Damavand Mount shows that there are many environmental issues that need addressing (e.g., vast amounts of garbage). National park managers need to make sure that their solutions result in awareness about proenvironmental behavior (PEB). Findings showed that negative relationship between constraints and all TPB predictors. Providing proper restrooms and parking spaces in campgrounds, strategies controlling limiting capacity and solutions for removing waste from high altitudes are helpful to decrease the negative impact of structural constraints. In order to address intrapersonal constraints, managers should provide opportunities to interest individuals in environmental activities, such as environmental celebrations or making documentaries about environmental issues. Moreover, promoting a culture of environmental protection in the Damavand Mount area would reduce interpersonal constraints. Overall, the proposed model improved the explanatory power of the TPB by predicting 64.7% of intention compared to the original TPB that accounted for 63.8% of the variance in intention.Keywords: theory of planned behavior, pro-environmental behavior, national park, constraints
Procedia PDF Downloads 948241 LanE-change Path Planning of Autonomous Driving Using Model-Based Optimization, Deep Reinforcement Learning and 5G Vehicle-to-Vehicle Communications
Authors: William Li
Abstract:
Lane-change path planning is a crucial and yet complex task in autonomous driving. The traditional path planning approach based on a system of carefully-crafted rules to cover various driving scenarios becomes unwieldy as more and more rules are added to deal with exceptions and corner cases. This paper proposes to divide the entire path planning to two stages. In the first stage the ego vehicle travels longitudinally in the source lane to reach a safe state. In the second stage the ego vehicle makes lateral lane-change maneuver to the target lane. The paper derives the safe state conditions based on lateral lane-change maneuver calculation to ensure collision free in the second stage. To determine the acceleration sequence that minimizes the time to reach a safe state in the first stage, the paper proposes three schemes, namely, kinetic model based optimization, deep reinforcement learning, and 5G vehicle-to-vehicle (V2V) communications. The paper investigates these schemes via simulation. The model-based optimization is sensitive to the model assumptions. The deep reinforcement learning is more flexible in handling scenarios beyond the model assumed by the optimization. The 5G V2V eliminates uncertainty in predicting future behaviors of surrounding vehicles by sharing driving intents and enabling cooperative driving.Keywords: lane change, path planning, autonomous driving, deep reinforcement learning, 5G, V2V communications, connected vehicles
Procedia PDF Downloads 2528240 The Impact of Acoustic Performance on Neurodiverse Students in K-12 Learning Spaces
Authors: Michael Lekan-Kehinde, Abimbola Asojo, Bonnie Sanborn
Abstract:
Good acoustic performance has been identified as one of the critical Indoor Environmental Quality (IEQ) factors for student learning and development by the National Research Council. Childhood presents the opportunity for children to develop lifelong skills that will support them throughout their adult lives. Acoustic performance of a space has been identified as a factor that can impact language acquisition, concentration, information retention, and general comfort within the environment. Increasingly, students learn by communication between both teachers and fellow students, making speaking and listening crucial. Neurodiversity - while initially coined to describe individuals with autism spectrum disorder (ASD) - widely describes anyone with a different brain process. As the understanding from cognitive and neurosciences increases, the number of people identified as neurodiversity is nearly 30% of the population. This research looks at guidelines and standard for spaces with good acoustical quality and relates it with the experiences of students with autism spectrum disorder (ASD), their parents, teachers, and educators through a mixed methods approach, including selected case studies interviews, and mixed surveys. The information obtained from these sources is used to determine if selected materials, especially properties relating to sound absorption and reverberation reduction, are equally useful in small, medium sized, and large learning spaces and methodologically approaching. The results describe the potential impact of acoustics on Neurodiverse students, considering factors that determine the complexity of sound in relation to the auditory processing capabilities of ASD students. In conclusion, this research extends the knowledge of how materials selection influences the better development of acoustical environments for autism students.Keywords: acoustics, autism spectrum disorder (ASD), children, education, learning, learning spaces, materials, neurodiversity, sound
Procedia PDF Downloads 1078239 A Machine Learning Approach for Efficient Resource Management in Construction Projects
Authors: Soheila Sadeghi
Abstract:
Construction projects are complex and often subject to significant cost overruns due to the multifaceted nature of the activities involved. Accurate cost estimation is crucial for effective budget planning and resource allocation. Traditional methods for predicting overruns often rely on expert judgment or analysis of historical data, which can be time-consuming, subjective, and may fail to consider important factors. However, with the increasing availability of data from construction projects, machine learning techniques can be leveraged to improve the accuracy of overrun predictions. This study applied machine learning algorithms to enhance the prediction of cost overruns in a case study of a construction project. The methodology involved the development and evaluation of two machine learning models: Random Forest and Neural Networks. Random Forest can handle high-dimensional data, capture complex relationships, and provide feature importance estimates. Neural Networks, particularly Deep Neural Networks (DNNs), are capable of automatically learning and modeling complex, non-linear relationships between input features and the target variable. These models can adapt to new data, reduce human bias, and uncover hidden patterns in the dataset. The findings of this study demonstrate that both Random Forest and Neural Networks can significantly improve the accuracy of cost overrun predictions compared to traditional methods. The Random Forest model also identified key cost drivers and risk factors, such as changes in the scope of work and delays in material delivery, which can inform better project risk management. However, the study acknowledges several limitations. First, the findings are based on a single construction project, which may limit the generalizability of the results to other projects or contexts. Second, the dataset, although comprehensive, may not capture all relevant factors influencing cost overruns, such as external economic conditions or political factors. Third, the study focuses primarily on cost overruns, while schedule overruns are not explicitly addressed. Future research should explore the application of machine learning techniques to a broader range of projects, incorporate additional data sources, and investigate the prediction of both cost and schedule overruns simultaneously.Keywords: resource allocation, machine learning, optimization, data-driven decision-making, project management
Procedia PDF Downloads 408238 The Enquiry of Food Culture Products, Practices and Perspectives: An Action Research on Teaching and Learning Food Culture from International Food Documentary Films
Authors: Tsuiping Chen
Abstract:
It has always been an international consensus that food forms a big part of any culture since the old times. However, this idea has not been globally concretized until the announcement of including food or cuisine as intangible cultural heritage by UNESCO in 2010. This announcement strengthens the value of food culture, which is getting more and more notice by every country. Although Taiwan is not one of the members of the United Nations, we cannot detach ourselves from this important global trend, especially when we have a lot of culinary students expected to join the world culinary job market. These students should have been well educated with the knowledge of world food culture to make them have the sensibility and perspectives for the occurring global food issues before joining the culinary jobs. Under the premise of the above concern, the researcher and also the instructor took on action research with one class of students in the 'Food Culture' course watching, discussing, and analyzing 12 culinary documentary films selected from one decade’s (2007-2016) of Berlin Culinary Cinema in one semester of class hours. In addition, after class, the students separated themselves into six groups and joined 12 times of one-hour-long focus group discussion on the 12 films conducted by the researcher. Furthermore, during the semester, the students submitted their reflection reports on each film to the university e-portfolio system. All the focus discussions and reflection reports were recorded and collected for further analysis by the researcher and one invited film researcher. Glaser and Strauss’ Grounded Theory (1967) constant comparison method was employed to analyze the collected data. Finally, the findings' results were audited by all participants of the research. All the participants and the researchers created 200 items of food culture products, 74 items of food culture practices, and 50 items of food culture perspectives from the action research journey through watching culinary documentaries. The journey did broaden students’ points of view on world food culture and enhance their capability on perspective construction for food culture. Four aspects of significant findings were demonstrated. First, learning food culture through watching Berlin culinary films helps students link themselves to the happening global food issues such as food security, food poverty, and food sovereignty, which direct them to rethink how people should grow, share and consume food. Second, watching different categories of documentary food films enhances students’ strong sense of responsibility for ensuring healthy lives and promoting well-being for all people in every corner of the world. Third, watching these documentary films encourages students to think if the culinary education they have accepted in this island is inclusive and the importance of quality education, which can promote lifelong learning. Last but not least, the journey of the culinary documentary film watching in the 'Food Culture' course inspires students to take pride in their profession. It is hoped the model of teaching food culture with culinary documentary films will inspire more food culture educators, researchers, and the culinary curriculum designers.Keywords: food culture, action research, culinary documentary films, food culture products, practices, perspectives
Procedia PDF Downloads 1118237 An Appraisal of the Design, Content, Approaches and Materials of the K-12 Grade 8 English Curriculum by Language Teachers, Supervisors and Teacher-Trainers
Authors: G. Infante Dennis, S. Balinas Elvira, C. Valencia Yolanda, Cunanan
Abstract:
This paper examined the feed-backs, concerns, and insights of the teachers, supervisors, and teacher-trainers on the nature and qualities of the K-12 grade 8 design, content, approaches, and materials. Specifically, it sought to achieve the following objectives: 1) to describe the critical nature and qualities of the design, content, teaching-learning-and-evaluation approaches, and the materials to be utilized in the implementation of the grade 8 curriculum; 2) to extract the possible challenges relevant to the implementation of the design, content, teaching-learning-and-evaluation approaches, and the materials of the grade 8 curriculum in terms of the linguistic and technical competence of the teachers, readiness to implement, willingness to implement, and capability to make relevant adaptations; 3) to present essential demands on the successful and meaningful implementation of the grade 8 curriculum in terms of teacher-related factors, school-related factors, and student-related concerns.Keywords: curriculum reforms, K-12, teacher-training, language teaching, learning
Procedia PDF Downloads 2548236 Selecting Skyline Mash-Ups under Uncertainty
Authors: Aymen Gammoudi, Hamza Labbaci, Nizar Messai, Yacine Sam
Abstract:
Web Service Composition (Mash-up) has been considered as a new approach used to offer the user a set of Web Services responding to his request. These approaches can return a set of similar Mash-ups in a given context that makes users unable to select the perfect one. Recent approaches focus on computing the skyline over a set of Quality of Service (QoS) attributes. However, these approaches are not sufficient in a dynamic web service environment where the delivered QoS by a Web service is inherently uncertain. In this paper, we treat the problem of computing the skyline over a set of similar Mash-ups under certain dimension values. We generate dimensions for each Mash-up using aggregation operations applied to the QoS attributes. We then tackle the problem of computing the skyline under uncertain dimensions. We present each dimension value of mash-up using a frame of discernment and introduce the d-dominance using the Evidence Theory. Finally, we propose our experimental results that show both the effectiveness of the introduced skyline extensions and the efficiency of the proposed approaches.Keywords: web services, uncertain QoS, mash-ups, uncertain dimensions, skyline, evidence theory, d-dominance
Procedia PDF Downloads 2348235 Transcending or Going beyond the Concept of Race
Authors: Ovett Nwosimiri
Abstract:
Historically the concept of race has played a significant part in the existence of African philosophy. Race, as part of the historical events, has been used as a reason for colonization. In recent years, there has been a numerous work on the concept of race. Some philosophers have devoted their time to the discourse of race and to understand the ascription of the race. These philosophers have dedicated their time and energy to the concept of race. Philosophers, like Joshua Glasgow, W. E. B. Du Bois, Lucius Outlaw, Kwame Anthony Appiah, Naomi Zack, Emmanuel C. Eze and many others took up the task to explain the concept of race, and also to explain in their view whether the concept of race should be conserved or eliminated. According to the eliminativists, the concept of race should be eliminated. According to the conservationists, the concept of race should be conserved. The aim of this paper is to look at the possibility of transcending the concept of race. In order to do this, the paper will briefly explain Joshua Glasgow’ idea theory of ‘racial reconstructionism’, and it will propose a theory of ‘racial transcendentalism’ as a way of transcending the concept of race. The paper will argue that we should see the concept of race as a concept that has a future beyond the mere meaning and ideas that call for its elimination or conservation.Keywords: conservationists, eliminativists, race, transcending
Procedia PDF Downloads 3538234 Physical Properties of Uranium Dinitride UN2 by Using Density Functional Theory (DFT and DFT+U)
Authors: T. Zergoug, S. E. H. Abaidia, A. Nedjar, M. Y. Mokeddem
Abstract:
Physical properties of uranium di-nitride (UN2) were investigated in detail using first principles calculations based on density functional theory. To treat the strong correlation effects caused by 5f Uranium valence electrons, on-site Coulomb interaction correction via the Hubbard-like term, U (DFT+U) was employed. The UN2 structural, mechanical and thermodynamic properties were calculated within DFT and Various U of DFT+U approach. The Perdew–Burke–Ernzerhof (PBE.5.2) version of the generalized gradient approximation (GGA) is used to describe the exchange-correlation with the projector-augmented wave (PAW) pseudo potentials. A comparative study shows that results are improved by using the Hubbard formalism for a certain U value correction like the structural parameter. For some physical properties the variation versus Hubbard U is strong like Young modulus but for others it is weakly noticeable such as the density of state (DOS) or bulk modulus. We noticed also that up from U=7.5 eV, elastic results become not conform to the cubic cell elastic criteria since the C44 values turn out to be negative.Keywords: uranium diNitride, UN2, DFT+U, elastic properties
Procedia PDF Downloads 4498233 Cr Induced Magnetization in Zinc-Blende ZnO-Based Diluted Magnetic Semiconductors
Authors: Bakhtiar Ul Haq, R. Ahmed, A. Shaari, Mazmira Binti Mohamed, Nisar Ali
Abstract:
The capability of exploiting the electronic charge and spin properties simultaneously in a single material has made diluted magnetic semiconductors (DMS) remarkable in the field of spintronics. We report the designing of DMS based on zinc-blend ZnO doped with Cr impurity. The full potential linearized augmented plane wave plus local orbital FP-L(APW+lo) method in density functional theory (DFT) has been adapted to carry out these investigations. For treatment of exchange and correlation energy, generalized gradient approximations have been used. Introducing Cr atoms in the matrix of ZnO has induced strong magnetic moment with ferromagnetic ordering at stable ground state. Cr:ZnO was found to favor the short range magnetic interaction that reflect the tendency of Cr clustering. The electronic structure of ZnO is strongly influenced in the presence of Cr impurity atoms where impurity bands appear in the band gap.Keywords: ZnO, density functional theory, diluted agnetic semiconductors, ferromagnetic materials, FP-L(APW+lo)
Procedia PDF Downloads 4268232 The Impact of Student-Led Entrepreneurship Education through Skill Acquisition in Federal Polytechnic, Bida, Niger State, Nigeria
Authors: Ibrahim Abubakar Mikugi
Abstract:
Nigerian graduates could only be self-employed and marketable if they acquire relevant skills and knowledge for successful establishment in various occupation and gainful employment. Research has shown that entrepreneurship education will be successful through developing individual entrepreneurial attitudes, raising awareness of career options by integrating and inculcating a positive attitude in the mind of students through skill acquisition. This paper examined the student- led entrepreneurship education through skill acquisition with specific emphasis on analysis of David Kolb experiential learning cycle. This Model allows individual to review their experience through reflection and converting ideas into action by doing. The methodology used was theoretical approach through journal, internet and Textbooks. Challenges to entrepreneurship education through skill acquisition were outlined. The paper concludes that entrepreneurship education is recognised by both policy makers and academics; entrepreneurship is more than mere encouraging business start-ups. Recommendations were given which include the need for authorities to have a clear vision towards entrepreneurship education and skill acquisition. Authorities should also emphasise a periodic and appropriate evaluation of entrepreneurship and to also integrate into schools academic curriculum to encourage practical learning by doing.Keywords: entrepreneurship, entrepreneurship education, active learning, Cefe methodology
Procedia PDF Downloads 5218231 Testing the Capital Structure Behavior of Malaysian Firms: Shariah vs. Non-Shariah Compliant
Authors: Asyraf Abdul Halim, Mohd Edil Abd Sukor, Obiyathulla Ismath Bacha
Abstract:
This paper attempts to investigate the capital structure behavior of Shariah compliant firms of various levels as well those firms who are consistently Shariah non-compliant in Malaysia. The paper utilizes a unique dataset of firms of the heterogeneous level of Shariah-compliancy status over a 20 year period from the year 1997 to 2016. The paper focuses on the effects of dynamic forces behind capital structure variation such as the optimal capital structure behavior based on the trade-off, pecking order, market timing and firmly fixed effect models of capital structure. This study documents significant evidence in support of the trade-off theory with a high speed of adjustment (SOA) as well as for the time-invariant firm fixed effects across all Shariah compliance group.Keywords: capital structure, market timing, trade-off theory, equity risk premium, Shariah-compliant firms
Procedia PDF Downloads 3128230 Building a Scalable Telemetry Based Multiclass Predictive Maintenance Model in R
Authors: Jaya Mathew
Abstract:
Many organizations are faced with the challenge of how to analyze and build Machine Learning models using their sensitive telemetry data. In this paper, we discuss how users can leverage the power of R without having to move their big data around as well as a cloud based solution for organizations willing to host their data in the cloud. By using ScaleR technology to benefit from parallelization and remote computing or R Services on premise or in the cloud, users can leverage the power of R at scale without having to move their data around.Keywords: predictive maintenance, machine learning, big data, cloud based, on premise solution, R
Procedia PDF Downloads 3798229 Interaction Between Task Complexity and Collaborative Learning on Virtual Patient Design: The Effects on Students’ Performance, Cognitive Load, and Task Time
Authors: Fatemeh Jannesarvatan, Ghazaal Parastooei, Jimmy frerejan, Saedeh Mokhtari, Peter Van Rosmalen
Abstract:
Medical and dental education increasingly emphasizes the acquisition, integration, and coordination of complex knowledge, skills, and attitudes that can be applied in practical situations. Instructional design approaches have focused on using real-life tasks in order to facilitate complex learning in both real and simulated environments. The Four component instructional design (4C/ID) model has become a useful guideline for designing instructional materials that improve learning transfer, especially in health profession education. The objective of this study was to apply the 4C/ID model in the creation of virtual patients (VPs) that dental students can use to practice their clinical management and clinical reasoning skills. The study first explored the context and concept of complication factors and common errors for novices and how they can affect the design of a virtual patient program. The study then selected key dental information and considered the content needs of dental students. The design of virtual patients was based on the 4C/ID model's fundamental principles, which included: Designing learning tasks that reflect real patient scenarios and applying different levels of task complexity to challenge students to apply their knowledge and skills in different contexts. Creating varied learning materials that support students during the VP program and are closely integrated with the learning tasks and students' curricula. Cognitive feedback was provided at different levels of the program. Providing procedural information where students followed a step-by-step process from history taking to writing a comprehensive treatment plan. Four virtual patients were designed using the 4C/ID model's principles, and an experimental design was used to test the effectiveness of the principles in achieving the intended educational outcomes. The 4C/ID model provides an effective framework for designing engaging and successful virtual patients that support the transfer of knowledge and skills for dental students. However, there are some challenges and pitfalls that instructional designers should take into account when developing these educational tools.Keywords: 4C/ID model, virtual patients, education, dental, instructional design
Procedia PDF Downloads 808228 The Mediating Role of Masculine Gender Role Stress on the Relationship between the EFL learners’ Self-Disclosure and English Class Anxiety
Authors: Muhammed Kök & Adem Kantar
Abstract:
Learning a foreign language can be affected by various factors such as age, aptitude, motivation, L2 disposition, etc. Among these factors, masculine gender roles stress (MGRS) that male learners possess is the least touched area that has been examined so far.MGRS can be defined as the traditional male role stress when the male learners feel the masculinity threat against their traditionally adopted masculinity norms. Traditional masculine norms include toughness, accuracy, completeness, and faultlessness. From this perspective, these norms are diametrically opposed to the language learning process since learning a language, by its nature, involves stages such as making mistakes and errors, not recalling words, pronouncing sounds incorrectly, creating wrong sentences, etc. Considering the potential impact of MGRS on the language learning process, the main purpose of this study is to investigate the mediating role of MGRS on the relationship between the EFL learners’ self-disclosure and English class anxiety. Data were collected from Turkish EFL learners (N=282) who study different majors in various state universities across Turkey. Data were analyzed by means of the Bootstraping method using the SPSS Process Macro plugin. The findings show that the indirect effect of self-disclosure level on the English Class Anxiety via MGRS was significant. We conclude that one of the reasons why Turkish EFL learners have English class anxiety might be the pressure that they feel because of their traditional gender role stress.Keywords: masculine, gender role stress, english class anxiety, self-disclosure, masculinity norms
Procedia PDF Downloads 988227 A Study on the Impact of Artificial Intelligence on Human Society and the Necessity for Setting up the Boundaries on AI Intrusion
Authors: Swarna Pundir, Prabuddha Hans
Abstract:
As AI has already stepped into the daily life of human society, one cannot be ignorant about the data it collects and used it to provide a quality of services depending up on the individuals’ choices. It also helps in giving option for making decision Vs choice selection with a calculation based on the history of our search criteria. Over the past decade or so, the way Artificial Intelligence (AI) has impacted society is undoubtedly large.AI has changed the way we shop, the way we entertain and challenge ourselves, the way information is handled, and has automated some sections of our life. We have answered as to what AI is, but not why one may see it as useful. AI is useful because it is capable of learning and predicting outcomes, using Machine Learning (ML) and Deep Learning (DL) with the help of Artificial Neural Networks (ANN). AI can also be a system that can act like humans. One of the major impacts be Joblessness through automation via AI which is seen mostly in manufacturing sectors, especially in the routine manual and blue-collar occupations and those without a college degree. It raises some serious concerns about AI in regards of less employment, ethics in making moral decisions, Individuals privacy, human judgement’s, natural emotions, biased decisions, discrimination. So, the question is if an error occurs who will be responsible, or it will be just waved off as a “Machine Error”, with no one taking the responsibility of any wrongdoing, it is essential to form some rules for using the AI where both machines and humans are involved. Procedia PDF Downloads 988226 An Investigative Study into Good Governance in the Non-Profit Sector in South Africa: A Systems Approach Perspective
Authors: Frederick M. Dumisani Xaba, Nokuthula G. Khanyile
Abstract:
There is a growing demand for greater accountability, transparency and ethical conduct based on sound governance principles in the developing world. Funders, donors and sponsors are increasingly demanding more transparency, better value for money and adherence to good governance standards. The drive towards improved governance measures is largely influenced by the need to ‘plug the leaks’, deal with malfeasance, engender greater levels of accountability and good governance and to ultimately attract further funding or investment. This is the case with the Non-Profit Organizations (NPOs) in South Africa in general, and in the province of KwaZulu-Natal in particular. The paper draws from the good governance theory, stakeholder theory and systems thinking to critically examine the requirements for good governance for the NPO sector from a theoretical and legislative point and to systematically looks at the contours of governance currently among the NPOs. The paper did this through the rigorous examination of the vignettes of cases of governance among selected NPOs based in KwaZulu-Natal. The study used qualitative and quantitative research methodologies through document analysis, literature review, semi-structured interviews, focus groups and statistical analysis from the various primary and secondary sources. It found some good cases of good governance but also found frightening levels of poor governance. There was an exponential growth of NPOs registered during the period under review, equally so there was an increase in cases of non-compliance to good governance practices. NPOs operate in an increasingly complex environment. There is contestation for influence and access to resources. Stakeholder management is poorly conceptualized and executed. Recognizing that the NPO sector operates in an environment characterized by complexity, constant changes, unpredictability, contestation, diversity and divergent views of different stakeholders, there is a need to apply legislative and systems thinking approaches to strengthen governance to withstand this turbulence through a capacity development model that recognizes these contextual and environmental challenges.Keywords: good governance, non-profit organizations, stakeholder theory, systems theory
Procedia PDF Downloads 1228225 One-Class Classification Approach Using Fukunaga-Koontz Transform and Selective Multiple Kernel Learning
Authors: Abdullah Bal
Abstract:
This paper presents a one-class classification (OCC) technique based on Fukunaga-Koontz Transform (FKT) for binary classification problems. The FKT is originally a powerful tool to feature selection and ordering for two-class problems. To utilize the standard FKT for data domain description problem (i.e., one-class classification), in this paper, a set of non-class samples which exist outside of positive class (target class) describing boundary formed with limited training data has been constructed synthetically. The tunnel-like decision boundary around upper and lower border of target class samples has been designed using statistical properties of feature vectors belonging to the training data. To capture higher order of statistics of data and increase discrimination ability, the proposed method, termed one-class FKT (OC-FKT), has been extended to its nonlinear version via kernel machines and referred as OC-KFKT for short. Multiple kernel learning (MKL) is a favorable family of machine learning such that tries to find an optimal combination of a set of sub-kernels to achieve a better result. However, the discriminative ability of some of the base kernels may be low and the OC-KFKT designed by this type of kernels leads to unsatisfactory classification performance. To address this problem, the quality of sub-kernels should be evaluated, and the weak kernels must be discarded before the final decision making process. MKL/OC-FKT and selective MKL/OC-FKT frameworks have been designed stimulated by ensemble learning (EL) to weight and then select the sub-classifiers using the discriminability and diversities measured by eigenvalue ratios. The eigenvalue ratios have been assessed based on their regions on the FKT subspaces. The comparative experiments, performed on various low and high dimensional data, against state-of-the-art algorithms confirm the effectiveness of our techniques, especially in case of small sample size (SSS) conditions.Keywords: ensemble methods, fukunaga-koontz transform, kernel-based methods, multiple kernel learning, one-class classification
Procedia PDF Downloads 218224 AI-Based Techniques for Online Social Media Network Sentiment Analysis: A Methodical Review
Authors: A. M. John-Otumu, M. M. Rahman, O. C. Nwokonkwo, M. C. Onuoha
Abstract:
Online social media networks have long served as a primary arena for group conversations, gossip, text-based information sharing and distribution. The use of natural language processing techniques for text classification and unbiased decision-making has not been far-fetched. Proper classification of this textual information in a given context has also been very difficult. As a result, we decided to conduct a systematic review of previous literature on sentiment classification and AI-based techniques that have been used in order to gain a better understanding of the process of designing and developing a robust and more accurate sentiment classifier that can correctly classify social media textual information of a given context between hate speech and inverted compliments with a high level of accuracy by assessing different artificial intelligence techniques. We evaluated over 250 articles from digital sources like ScienceDirect, ACM, Google Scholar, and IEEE Xplore and whittled down the number of research to 31. Findings revealed that Deep learning approaches such as CNN, RNN, BERT, and LSTM outperformed various machine learning techniques in terms of performance accuracy. A large dataset is also necessary for developing a robust sentiment classifier and can be obtained from places like Twitter, movie reviews, Kaggle, SST, and SemEval Task4. Hybrid Deep Learning techniques like CNN+LSTM, CNN+GRU, CNN+BERT outperformed single Deep Learning techniques and machine learning techniques. Python programming language outperformed Java programming language in terms of sentiment analyzer development due to its simplicity and AI-based library functionalities. Based on some of the important findings from this study, we made a recommendation for future research.Keywords: artificial intelligence, natural language processing, sentiment analysis, social network, text
Procedia PDF Downloads 1158223 Deep Learning Based Fall Detection Using Simplified Human Posture
Authors: Kripesh Adhikari, Hamid Bouchachia, Hammadi Nait-Charif
Abstract:
Falls are one of the major causes of injury and death among elderly people aged 65 and above. A support system to identify such kind of abnormal activities have become extremely important with the increase in ageing population. Pose estimation is a challenging task and to add more to this, it is even more challenging when pose estimations are performed on challenging poses that may occur during fall. Location of the body provides a clue where the person is at the time of fall. This paper presents a vision-based tracking strategy where available joints are grouped into three different feature points depending upon the section they are located in the body. The three feature points derived from different joints combinations represents the upper region or head region, mid-region or torso and lower region or leg region. Tracking is always challenging when a motion is involved. Hence the idea is to locate the regions in the body in every frame and consider it as the tracking strategy. Grouping these joints can be beneficial to achieve a stable region for tracking. The location of the body parts provides a crucial information to distinguish normal activities from falls.Keywords: fall detection, machine learning, deep learning, pose estimation, tracking
Procedia PDF Downloads 1898222 The Pursuit of Marital Sustainability Inspiring by Successful Matrimony of Two Distinguishable Indonesian Ethnics as a Learning Process
Authors: Mutiara Amalina Khairisa, Purnama Arafah, Rahayu Listiana Ramli
Abstract:
In recent years, so many cases of divorce increasingly occur. Betrayal in form of infidelity, less communication one another, economically problems, selfishness of two sides, intervening parents from both sides which frequently occurs in Asia, especially in Indonesia, the differences of both principles and beliefs, “Sense of Romantism” depletion, role confict, a large difference in the purpose of marriage,and sex satisfaction are expected as the primary factors of the causes of divorce. Every couple of marriage wants to reach happy life in their family but severe problems brought about by either of those main factors come as a reasonable cause of failure marriage. The purpose of this study is to find out how marital adjustment and supporting factors in ensuring the success of that previous marital adjusment are inseparable two things assumed as a framework can affect the success in marriage becoming a resolution to reduce the desires to divorce. Those two inseparable things are able to become an aspect of learning from the success of the different ethnics marriage to keep holding on wholeness.Keywords: marital adjustment, marital sustainability, learning process, successful ethnicity differences marriage, basical cultural values
Procedia PDF Downloads 4328221 Estimating Algae Concentration Based on Deep Learning from Satellite Observation in Korea
Authors: Heewon Jeong, Seongpyo Kim, Joon Ha Kim
Abstract:
Over the last few tens of years, the coastal regions of Korea have experienced red tide algal blooms, which are harmful and toxic to both humans and marine organisms due to their potential threat. It was accelerated owing to eutrophication by human activities, certain oceanic processes, and climate change. Previous studies have tried to monitoring and predicting the algae concentration of the ocean with the bio-optical algorithms applied to color images of the satellite. However, the accurate estimation of algal blooms remains problems to challenges because of the complexity of coastal waters. Therefore, this study suggests a new method to identify the concentration of red tide algal bloom from images of geostationary ocean color imager (GOCI) which are representing the water environment of the sea in Korea. The method employed GOCI images, which took the water leaving radiances centered at 443nm, 490nm and 660nm respectively, as well as observed weather data (i.e., humidity, temperature and atmospheric pressure) for the database to apply optical characteristics of algae and train deep learning algorithm. Convolution neural network (CNN) was used to extract the significant features from the images. And then artificial neural network (ANN) was used to estimate the concentration of algae from the extracted features. For training of the deep learning model, backpropagation learning strategy is developed. The established methods were tested and compared with the performances of GOCI data processing system (GDPS), which is based on standard image processing algorithms and optical algorithms. The model had better performance to estimate algae concentration than the GDPS which is impossible to estimate greater than 5mg/m³. Thus, deep learning model trained successfully to assess algae concentration in spite of the complexity of water environment. Furthermore, the results of this system and methodology can be used to improve the performances of remote sensing. Acknowledgement: This work was supported by the 'Climate Technology Development and Application' research project (#K07731) through a grant provided by GIST in 2017.Keywords: deep learning, algae concentration, remote sensing, satellite
Procedia PDF Downloads 183