Search results for: membrane resistance
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4210

Search results for: membrane resistance

1180 The Influence of Structural Disorder and Phonon on Metal-To-Insulator Transition of VO₂

Authors: Sang-Wook Han, In-Hui Hwang, Zhenlan Jin, Chang-In Park

Abstract:

We used temperature-dependent X-Ray absorption fine structure (XAFS) measurements to examine the local structural properties around vanadium atoms at the V K edge from VO₂ films. A direct comparison of simultaneously-measured resistance and XAFS from the VO₂ films showed that the thermally-driven structural phase transition (SPT) occurred prior to the metal-insulator transition (MIT) during heating, whereas these changed simultaneously during cooling. XAFS revealed a significant increase in the Debye-Waller factors of the V-O and V-V pairs in the {111} direction of the R-phase VO₂ due to the phonons of the V-V arrays along the direction in a metallic phase. A substantial amount of structural disorder existing on the V-V pairs along the c-axis in both M₁ and R phases indicates the structural instability of V-V arrays in the axis. The anomalous structural disorder observed on all atomic sites at the SPT prevents the migration of the V 3d¹ electrons, resulting in a Mott insulator in the M₂-phase VO₂. The anomalous structural disorder, particularly, at vanadium sites, effectively affects the migration of metallic electrons, resulting in the Mott insulating properties in M₂ phase and a non-congruence of the SPT, MIT, and local density of state. The thermally-induced phonons in the {111} direction assist the delocalization of the V 3d¹ electrons in the R phase VO₂ and the electrons likely migrate via the V-V array in the {111} direction as well as the V-V dimerization along the c-axis. This study clarifies that the tetragonal symmetry is essentially important for the metallic phase in VO₂.

Keywords: metal-insulator transition, XAFS, VO₂, structural-phase transition

Procedia PDF Downloads 271
1179 Failing to Protect Bare Life During the COVID-19 Pandemic: Forced Migrants as Carriers of the Virus

Authors: Claudia Donoso

Abstract:

This study compares the restriction of mobility of migrants and asylum seekers during the COVID-19 pandemic in the United States and Ecuador. Based on the discourse analysis of anti-migrant rhetoric in press articles, migrant stories in the press, reports, and border control practices, the study examines the Ecuadorian government’s response to the migration flow of Venezuelans and the United States enforcement practices against Latin American asylum seekers. By exploring Giorgio Agamben’s concept of bare life, the article argues that this failure to protect mobility rights is due to the United States and Ecuador’s views of forced migrants as bare life and carriers of the virus, justifying xenophobia, resistance to humanitarian international law, and exceptionalism. By drawing on a feminist intersectional approach, the study adds to recent research on the securitization of forced migration and challenge the race/ethnicity, immigration status, class, and nationality-based discrimination of the measures undertaken during the pandemic. The article illustrates how the treatment of forced migrants as bare life was aggravated by their intersectional inequalities. It concludes by providing recommendations that could be enforced by the US and Ecuadorian governments to protect the right to freedom of mobility.

Keywords: bare life, intersectionality, mobility rights, COVID-19, Ecuador, United States

Procedia PDF Downloads 78
1178 Isolation, Identification and Antimicrobial Susceptibility of Mycobacterium tuberculosis among Pulmonary Tuberculosis Patients

Authors: Naima Nur, Safa Islam, Saeema Islam, Faridul Alam

Abstract:

Background: Drug-resistant pulmonary tuberculosis (DR-PTB), particularly multidrug-resistant tuberculosis (MDR-TB) and pre-extensive drug-resistant (pre-XDR), is a major challenge in effectively controlling TB, especially in developing. This study aimed to identify the strains of M. tuberculosis complex (MTC) and drug resistance patterns among the pulmonary tuberculosis patients. Methods: The study used a cross-sectional design, and 815 patients were recruited randomly in three study periods. In the first-period, 210 treated PTB patients, who were completed their treatment, received their diagnoses using light microscopy, fluorescence microscopy and cultured on Lowenstein-Jensen (L-J) slant, and then strains were identified as MTC by biochemical tests, and then sensitivity test in National Institute of Diseases of the Chest and Hospital. In the second-period, 220 re-treated PTB patients, who were completed their treatment, received their diagnoses using culture on L-J slant, line probe assay (LPA), and GeneXpert in the same hospital. In the last-period, during treatment, 385 MDR-PTB patients received their diagnoses using culture on L-J slant and LPA in the same hospital. Results: Among sixty-two (29.5%) PTB patients, 13% were sensitive to all first-line anti-TB drugs, 26% were MDR-TB patients, and 14.2% were pre-XDR-TB among 14 MDR-TB patients. After three years, 31% were MDR-TB among 220 re-treated PTB patients. After five years, 16.4% was pre-XDR-TB among 385 MDR-TB patients. Compared to females, male patients were significantly higher at all times. Conclusion: The current study demonstrated that in three study periods, the proportions of DR-TB, MDR-TB, and pre-XDR patients were an alarming issue and increasing daily.

Keywords: multi-drug resistant, drug-resistant, pre-extensive drug resistant, pulmonary tuberculosis

Procedia PDF Downloads 55
1177 Introducing a Video-Based E-Learning Module to Improve Disaster Preparedness at a Tertiary Hospital in Oman

Authors: Ahmed Al Khamisi

Abstract:

The Disaster Preparedness Standard (DPS) is one of the elements that is evaluated by the Accreditation Canada International (ACI). ACI emphasizes to train and educate all staff, including service providers and senior leaders, on emergency and disaster preparedness upon the orientation and annually thereafter. Lack of awareness and deficit of knowledge among the healthcare providers about DPS have been noticed in a tertiary hospital where ACI standards were implemented. Therefore, this paper aims to introduce a video-based e-learning (VB-EL) module that explains the hospital’s disaster plan in a simple language which will be easily accessible to all healthcare providers through the hospital’s website. The healthcare disaster preparedness coordinator in the targeted hospital will be responsible to ensure that VB-EL is ready by 25 April 2019. This module will be developed based on the Kirkpatrick evaluation method. In fact, VB-EL combines different data forms such as images, motion, sounds, text in a complementary fashion which will suit diverse learning styles and individual learning pace of healthcare providers. Moreover, the module can be adjusted easily than other tools to control the information that healthcare providers receive. It will enable healthcare providers to stop, rewind, fast-forward, and replay content as many times as needed. Some anticipated limitations in the development of this module include challenges of preparing VB-EL content and resistance from healthcare providers.

Keywords: Accreditation Canada International, Disaster Preparedness Standard, Kirkpatrick evaluation method, video-based e-learning

Procedia PDF Downloads 147
1176 Cord Blood Hematopoietic Stem Cell Expansion Ability of Mesenchymal Stem Cells Isolated From Different Sources

Authors: Ana M. Lara, Manuela Llano, Felipe Gaitán, Rosa H. Bustos, Ana Maria Perdomo-Arciniegas, Ximena Bonilla

Abstract:

Umbilical cord blood is used as a source of progenitor and stem cells for the regeneration of the hematopoietic and immune system to treat patients with different hematological or non-hematological diseases. This stem cell source represents an advantage over the use of bone marrow or mobilized peripheral blood because it has a lower incidence rate of graft-versus-host disease, probably due to fewer immunological compatibility restrictions. However, its low cellular dose limits its use in pediatric patients. This work proposes the standardization of a cell expansion technique to compensate for the dose of infused cells through the ex-vivo manipulation of hematopoietic progenitor cells from umbilical cord blood before transplantation. The expansion model is carried out through co-cultures with mesenchymal stem cells (MSC) from bone marrow (BM) and less explored fetal tissues such as Wharton's jelly (WJ) and umbilical cord blood (UCB). Initially, a master cell bank of primary mesenchymal stem cells isolated from different sources was established and characterized following International Society of Cell Therapies (ISCT) indications. Additionally, we assessed the effect of a short 25 Gy cycle of gamma irradiation on cell cycle arrest of mesenchymal cells over the support capacity for the expansion of hematopoietic stem cells from umbilical cord blood was evaluated. The results show that co-cultures with MSC from WJ and UCB allow the cellular dose of HSPC to be maximized between 5 and 16 times having a similar support capacity as BM. In addition, was evaluated the hematopoietic stem progenitor cell's HSPC functionality through the evaluation of migration capacity, their differentiation capacity during culture time by flow cytometry to evaluate the expression of membrane markers associated with lineage-committed progenitors, their clonogenic potential, and the evaluation of secretome profile in the expansion process was evaluated. So far, the treatment with gamma irradiation maintains the hematopoietic support capacity of mesenchymal stem cells from the three sources studied compared to treatments without irradiation, favoring the use of fetal tissues that are generally waste to obtain mesenchymal cell lines for ex-vivo expansion systems. With the results obtained, a standardized protocol that will contribute to the development of ex-vivo expansion with MSC on a larger scale will be achieved, enabling its clinical use and expanding its application in adults.

Keywords: ex-vivo expansion, hematopoietic stem cells, hematopoietic stem cell transplantation, mesenchymal stem cells, umbilical cord blood

Procedia PDF Downloads 115
1175 Combined Aplication of Indigenous Pseudomonas fluorescens and the AM Fungi as the Potential Biocontrol Agents of Banana Fusarium wilt

Authors: Eri Sulyanti, Trimurti Habazar, Eti Farda Husen, Abdi Dharma, Nasril Nasir

Abstract:

In this study, combination of some biocontrol agents with different mechanisms was an alternative to improve the effectiveness of the biological control agents. Single and combined applications of indigenous Pseudomonas fluorescens and Arbuscular Mychorrhizae Fungi (AM Fungi) isolates were tested to induce the resistance on susceptible Cavendish banana against F.oxysporum f. sp. cubense race 4 under greenhouse conditions. These isolates originally isolated from healthy banana rhizosphere at endemic Fusarium wilt areas in the centre of production banana in West Sumatra. These researches were conducted with Randomized Block Design with 16 treatments and 10 replications. The treatments were three indigenous isolates of Pseudomonas fluorescens (Par1-Cv, Par4-Rj1, Par2-Jt1) and 3 isolates of AM Fungi (Gl1BuA4, Gl2BuA6, and Gl1KeP3. The biocontrol agents were applied as single agents and combination two of them. This study demonstrated that the application of combination biocontrol organisms Pseudomonas fluorescens and AM Fungi provided were more effective than single application. The combination of Par1-Cv and Gl1BuA4 isolates was the most effective to control Fusarium wilt and followed by the combination of Par1-Cv and Gl2BuA6 and Par2-Jt1 and Gl1P3.

Keywords: pseudomonad fluorescens (Pf), arbuscular mychorrhizae fungi (AM Fungi) indigenous isolates, fusarium oxysporum f. sp. cubense, soil rhizosphere

Procedia PDF Downloads 307
1174 Production of Amorphous Boron Powder via Chemical Vapor Deposition (CVD)

Authors: Meltem Bolluk, Ismail Duman

Abstract:

Boron exhibits the properties of high melting temperature (2273K to 2573 K), high hardness (Mohs: 9,5), low density (2,340 g/cm3), high chemical resistance, high strength, and semiconductivity (band gap:1,6-2,1 eV). These superior properties enable to use it in several high-tech areas from electronics to nuclear industry and especially in high temperature metallurgy. Amorphous boron and crystalline boron have different application areas. Amorphous boron powder (directly amorphous and/or α-rhombohedral) is preferred in rocket firing, airbag inflating and in fabrication of superconducting MgB2 wires. The conventional ways to produce elemental boron with a purity of 85 pct to 95 prc are metallothermic reduction, fused salt electrolysis and mechanochemical synthesis; but the only way to produce high-purity boron powders is Chemical Vapour Deposition (Hot Surface CVD). In this study; amorphous boron powders with a minimum purity of 99,9 prc were synthesized in quartz tubes using BCl3-H2 gas mixture by CVD. Process conditions based on temperature and gas flow rate were determined. Thermodynamical interpretation of BCl3-H2 system for different temperatures and molar rates were performed using Fact Sage software. The characterization of powders was examined by using Xray diffraction (XRD), Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM), Stereo Microscope (SM), Helium gas pycnometer analysis. The purities of final products were determined by titration after lime fusion.

Keywords: amorphous boron, CVD, powder production, powder characterization

Procedia PDF Downloads 217
1173 TNF-Alpha and MDA Levels in Hearts of Cholesterol-Fed Rats Supplemented with Extra Virgin Olive Oil or Sunflower Oil, in Either Commercial or Modified Forms

Authors: Ageliki I. Katsarou, Andriana C. Kaliora, Antonia Chiou, Apostolos Papalois, Nick Kalogeropoulos, Nikolaos K. Andrikopoulos

Abstract:

Oxidative stress is a major mechanism underlying CVDs while inflammation, an intertwined process with oxidative stress, is also linked to CVDs. Extra virgin olive oil (EVOO) is widely known to play a pivotal role in CVD prevention and CVD reduction. However, in most studies, olive oil constituents are evaluated individually and not as part of the native food, hence potential synergistic effects as drivers of EVOO beneficial properties may be underestimated. In this study, EVOO lipidic and polar phenolics fractions were evaluated for their effect on inflammatory (TNF-alpha) and oxidation (malondialdehyde/MDA) markers, in cholesterol-fed rats. Thereat, oils with discernible lipidic profile and polar phenolic content were used. Wistar rats were fed on either a high-cholesterol diet (HCD) or a HCD supplemented with oils, either commercially available, i.e. EVOO, sunflower oil (SO), or modified as to their polar phenol content, i.e. phenolics deprived-EVOO (EVOOd), SO enriched with the EVOO phenolics (SOe). After 9 weeks of dietary intervention, heart and blood samples were collected. HCD induced dylipidemia shown by increase in serum total cholesterol, low-density lipoprotein cholesterol (LDL-c) and triacylglycerols. Heart tissue has been affected by dyslipidemia; oxidation was indicated by increase in MDA in cholesterol-fed rats and inflammation by increase in TNF-alpha. In both cases, this augmentation was attenuated in EVOO and SOe diets. With respect to oxidation, SO enrichment with the EVOO phenolics brought its lipid peroxidation levels as low as in EVOO-fed rats. This suggests that phenolic compounds may act as antioxidant agents in rat heart. A possible mechanism underlying this activity may be the protective effect of phenolics in mitochondrial membrane against oxidative damage. This was further supported by EVOO/EVOOd comparison with the former presenting lower heart MDA content. As for heart inflammation, phenolics naturally present in EVOO as well as phenolics chemically added in SO, exhibited quenching abilities in heart TNF-alpha levels of cholesterol-fed rats. TNF-alpha may have played a causative role in oxidative stress induction while the opposite may have also happened, hence setting up a vicious cycle. Overall, diet supplementation with EVOO or SOe attenuated hypercholesterolemia-induced increase in MDA and TNF-alpha in Wistar rat hearts. This is attributed to phenolic compounds either naturally existing in olive oil or as fortificants in seed oil.

Keywords: extra virgin olive oil, hypercholesterolemic rats, MDA, polar phenolics, TNF-alpha

Procedia PDF Downloads 499
1172 Quantitative Assessment of Different Formulations of Antimalarials in Sentinel Sites of India

Authors: Taruna Katyal Arora, Geeta Kumari, Hari Shankar, Neelima Mishra

Abstract:

Substandard and counterfeit antimalarials is a major problem in malaria endemic areas. The availability of counterfeit/ substandard medicines is not only decreasing the efficacy in patients, but it is also one of the contributing factors for developing antimalarial drug resistance. Owing to this, a pilot study was conducted to survey quality of drugs collected from different malaria endemic areas of India. Artesunate+Sulphadoxine-Pyrimethamine (AS+SP), Artemether-Lumefantrine (AL), Chloroquine (CQ) tablets were randomly picked from public health facilities in selected states of India. The quality of antimalarial drugs from these areas was assessed by using Global Pharma Health Fund Minilab test kit. This includes physical/visual inspection and disintegration test. Thin-layer chromatography (TLC) was carried out for semi-quantitative assessment of active pharmaceutical ingredients. A total of 45 brands, out of which 21 were for CQ, 14 for AL and 10 for AS+SP were tested from Uttar Pradesh (U.P.), Mizoram, Meghalaya and Gujrat states. One out of 45 samples showed variable disintegration and retension factor. The variable disintegration and retention factor which would have been due to substandard quality or other factors including storage. However, HPLC analysis confirms standard active pharmaceutical ingredient, but may be due to humid temperature and moisture in storage may account for the observed result.

Keywords: antimalarial medicines, counterfeit, substandard, TLC

Procedia PDF Downloads 320
1171 Evaluation of Botanical Plant Powders against Zabrotes subfasciatus (Boheman) (Coleoptera: Bruchidae) in Stored Local Common Bean Varieties

Authors: Fikadu Kifle Hailegeorgis

Abstract:

Common bean is one of the most important sources of protein in Ethiopia and other developing countries. However, the Mexican bean weevil, Zabrotes subfasciatus (Boheman), is a major factor in the storage of common beans that causes losses. Studies were conducted to evaluate the efficacy of botanical powders of Jatropha curcas (L.), Neem/Azadrachta indica, and Parthenium hysterophorus (L) on local common bean varieties against Z subfasciatus at Melkassa Agriculture Research Center. Twenty local common bean varieties were evaluated twice against Z. Subfasciatus in a completely randomized design in three replications at the rate of 0.2g/250g of seed for each experiment. Malathion and untreated were used as standard checks. The result indicated that RAZ White and Round Yellow showed high resistance variety in experiments while Batu and Black showed high susceptible variety in experiments. Jatropha seed powder was the most effective against Z. subfasciatus. Parthenium seed powders and neem leaf powders also indicate promising results. Common beans treated with botanicals significantly (p<0.05) had a higher germination percentage than that of the untreated seed. In general, the results obtained indicated that using bean varieties (RAZ white and Round yellow) and botanicals (Jatropha) seed powder gave the best control of Z. subfasciatus.

Keywords: botanicals, malathion, resistant varieties, Z. subfasciatus

Procedia PDF Downloads 60
1170 Combating Malaria: A Drug Discovery Approach Using Thiazole Derivatives Against Prolific Parasite Enzyme PfPKG

Authors: Hari Bezwada, Michelle Cheon, Ryan Divan, Hannah Escritor, Michelle Kagramian, Isha Korgaonkar, Maya MacAdams, Udgita Pamidigantam, Richard Pilny, Eleanor Race, Angadh Singh, Nathan Zhang, LeeAnn Nguyen, Fina Liotta

Abstract:

Malaria is a deadly disease caused by the Plasmodium parasite, which continues to develop resistance to current antimalarial drugs. In this research project, the effectiveness of numerous thiazole derivatives was explored in inhibiting the PfPKG, a crucial part of the Plasmodium life cycle. This study involved the synthesis of six thiazole-derived amides to inhibit the PfPKG pathway. Nuclear Magnetic Resonance (NMR) spectroscopy and Infrared (IR) spectroscopy were used to characterize these compounds. Furthermore, AutoDocking software was used to predict binding affinities of these thiazole-derived amides in silico. In silico, compound 6 exhibited the highest predicted binding affinity to PfPKG, while compound 5 had the lowest affinity. Compounds 1-4 displayed varying degrees of predicted binding affinity. In-vitro, it was found that compound 4 had the best percent inhibition, while compound 5 had the worst percent inhibition. Overall, all six compounds had weak inhibition (approximately 30-39% at 10 μM), but these results provide a foundation for future drug discovery experiments.

Keywords: Medicinal Chemistry, Malaria, drug discovery, PfPKG, Thiazole, Plasmodium

Procedia PDF Downloads 98
1169 The Impact of Multiple Stressors on the Functioning and Resilience of Model Freshwater Ecosystems

Authors: Sajida Saqira, Anthony Chariton, Grant C. Hose

Abstract:

The Anthropocene has seen dramatic environmental changes which are affecting every ecosystem on earth. Freshwater ecosystems are particularly vulnerable as they are at risk from the many activities that go on and contaminants that are released in catchments. They are thus subject to many stressors simultaneously. Freshwater ecosystems respond to stress at all levels of biological organization, from subcellular to community structure and ecosystem functioning. The aim of this study was to examine the resistance and resilience of freshwater ecosystems to multiple stressors. Here we explored the individual and combined effects of copper as a chemical stressor and common carp (Cyprinus carpio) as a biological stressor on the health, functioning, and recovery of outdoor experimental pond ecosystems in a long-term, controlled, factorial experiment. Primary productivity, decomposition, and water and sediment quality were analysed at regular intervals for one year to understand the health and functioning of the ecosystems. Changes to benthic biota were quantified using DNA-based and traditional microscopy-based counts of invertebrates. Carp were added to the ponds to copper contaminated sediments (with controls) to explore the combined effects of copper and carp and removed after six months to explore the resilience and recovery of the system. The outcomes of this study will advance our understanding of the impacts of multiple stressors on freshwater ecosystems, and the resilience of these systems to copper and C. carpio, which are both globally significant stressors in freshwater systems.

Keywords: carp, copper, ecosystem health, freshwater ecosystem, multiple stressors

Procedia PDF Downloads 122
1168 Foliar Feeding of Methyl Jasmonate Induces Resistance in Normal and Salinity Stressed Tomato Plants, at Different Stages

Authors: Abdul Manan, Choudhary Muhammad Ayyub, Rashid Ahmad, Muhammad Adnan Bukhari

Abstract:

A project was designed to investigate the effect of foliar application of methyl jasmonate (MeJA) on physiological, biochemical and ionic attributes of salinity stressed and normal tomato plants at different stages. Salinity stress at every stage markedly reduced the net photosynthetic rate, stomatal conductance, transpiration rate, water relations parameters, protein contents, total free aminoacids and potassium (K+) contents. While, antioxidant enzymes (peroxidase (POX) and catalase (CAT)), sodium (Na+) contents and proline contents were increased substantially. Foliar application of MeJA ameliorated the drastic effects of salinity regime by recovery of physiological and biochemical attributes by enhanced production of antioxidant enzymes and osmoprotectants. The efficacy of MeJA at very initial stage (15 days after sowing (15 DAS)).proved effective for attenuating the deleterious effects of salinity stress than other stages (15 days after transplanting (15 DAT) and 30 days after transplanting (30 DAT)). To the best of our knowledge, different times of foliar feeding of MeJA was observed first time for amelioration of salinity stress in tomato plants that would be of pivotal significance for scientist to better understand the dynamics of physiological and biochemical processes in tomato.

Keywords: methyl jasmonate, osmoregulation, salinity stress, stress tolerance, tomato

Procedia PDF Downloads 309
1167 Dissipation Capacity of Steel Building with Fiction Pendulum Base-Isolation System

Authors: A. Ras, I. Nait Zerrad, N. Benmouna, N. Boumechra

Abstract:

Use of base isolators in the seismic design of structures has attracted considerable attention in recent years. The major concern in the design of these structures is to have enough lateral stability to resist wind and seismic forces. There are different systems providing such isolation, among them there are friction- pendulum base isolation systems (FPS) which are rather widely applied nowadays involving to both affordable cost and high fundamental periods. These devices are characterised by a stiff resistance against wind loads and to be flexible to the seismic tremors, which make them suitable for different situations. In this paper, a 3D numerical investigation is done considering the seismic response of a twelve-storey steel building retrofitted with a FPS. Fast nonlinear time history analysis (FNA) of Boumerdes earthquake (Algeria, May 2003) is considered for analysis and carried out using SAP2000 software. Comparisons between fixed base, bearing base isolated and braced structures are shown in a tabulated and graphical format. The results of the various alternatives studies to compare the structural response without and with this device of dissipation energy thus obtained were discussed and the conclusions showed the interesting potential of the FPS isolator. This system may to improve the dissipative capacities of the structure without increasing its rigidity in a significant way which contributes to optimize the quantity of steel necessary for its general stability.

Keywords: energy dissipation, friction-pendulum system, nonlinear analysis, steel structure

Procedia PDF Downloads 202
1166 Acoustic Radiation Pressure Detaches Myoblast from Culture Substrate by Assistance of Serum-Free Medium

Authors: Yuta Kurashina, Chikahiro Imashiro, Kiyoshi Ohnuma, Kenjiro Takemura

Abstract:

Research objectives and goals: To realize clinical applications of regenerative medicine, a mass cell culture is highly required. In a conventional cell culture, trypsinization was employed for cell detachment. However, trypsinization causes proliferation decrease due to injury of cell membrane. In order to detach cells using an enzyme-free method, therefore, this study proposes a novel cell detachment method capable of detaching adherent cells using acoustic radiation pressure exposed to the dish by the assistance of serum-free medium with ITS liquid medium supplement. Methods used In order to generate acoustic radiation pressure, a piezoelectric ceramic plate was glued on a glass plate to configure an ultrasonic transducer. The glass plate and a chamber wall compose a chamber in which a culture dish is placed in glycerol. Glycerol transmits acoustic radiation pressure to adhered cells on the culture dish. To excite a resonance vibration of transducer, AC signal with 29-31 kHz (swept) and 150, 300, and 450 V was input to the transducer for 5 min. As a pretreatment to reduce cell adhesivity, serum-free medium with ITS liquid medium supplement was spread to the culture dish before exposed to acoustic radiation pressure. To evaluate the proposed cell detachment method, C2C12 myoblast cells (8.0 × 104 cells) were cultured on a ø35 culture dish for 48 hr, and then the medium was replaced with the serum-free medium with ITS liquid medium supplement for 24 hr. We replaced the medium with phosphate buffered saline and incubated cells for 10 min. After that, cells were exposed to the acoustic radiation pressure for 5 min. We also collected cells by using trypsinization as control. Cells collected by the proposed method and trypsinization were respectively reseeded in ø60 culture dishes and cultured for 24 hr. Then, the number of proliferated cells was counted. Results achieved: By a phase contrast microscope imaging, shrink of lamellipodia was observed before exposed to acoustic radiation pressure, and no cells remained on the culture dish after the exposed of acoustic radiation pressure. This result suggests that serum-free medium with ITS liquid inhibits adhesivity of cells and acoustic radiation pressure detaches cells from the dish. Moreover, the number of proliferated cells 24 hr after collected by the proposed method with 150 and 300 V is the same or more than that by trypsinization, i.e., cells were proliferated 15% higher with the proposed method using acoustic radiation pressure than with the traditional cell collecting method of trypsinization. These results proved that cells were able to be collected by using the appropriate exposure of acoustic radiation pressure. Conclusions: This study proposed a cell detachment method using acoustic radiation pressure by the assistance of serum-free medium. The proposed method provides an enzyme-free cell detachment method so that it may be used in future clinical applications instead of trypsinization.

Keywords: acoustic radiation pressure, cell detachment, enzyme free, ultrasonic transducer

Procedia PDF Downloads 254
1165 An Experimental Study on Service Life Prediction of Self: Compacting Concrete Using Sorptivity as a Durability Index

Authors: S. Girish, N. Ajay

Abstract:

Permeation properties have been widely used to quantify durability characteristics of concrete for assessing long term performance and sustainability. The processes of deterioration in concrete are mediated largely by water. There is a strong interest in finding a better way of assessing the material properties of concrete in terms of durability. Water sorptivity is a useful single material property which can be one of the measures of durability useful in service life planning and prediction, especially in severe environmental conditions. This paper presents the results of the comparative study of sorptivity of Self-Compacting Concrete (SCC) with conventionally vibrated concrete. SCC is a new, special type of concrete mixture, characterized by high resistance to segregation that can flow through intricate geometrical configuration in the presence of reinforcement, under its own mass, without vibration and compaction. SCC mixes were developed for the paste contents of 0.38, 0.41 and 0.43 with fly ash as the filler for different cement contents ranging from 300 to 450 kg/m3. The study shows better performance by SCC in terms of capillary absorption. The sorptivity value decreased as the volume of paste increased. The use of higher paste content in SCC can make the concrete robust with better densification of the micro-structure, improving the durability and making the concrete more sustainable with improved long term performance. The sorptivity based on secondary absorption can be effectively used as a durability index to predict the time duration required for the ingress of water to penetrate the concrete, which has practical significance.

Keywords: self-compacting concrete, service life prediction, sorptivity, volume of paste

Procedia PDF Downloads 321
1164 The Mechanism of Parabacteroides goldsteinii on Immune Modulation and Anti-Obsogenicity

Authors: Yu-Ling Tsai, Chih-Jung Chang, Chia-Chen Lu, Eric Wu, Chuan-Sheng Lin, Tzu-Lung Lin, Hsin-Chih Lai

Abstract:

It is urgent that novel anti-obesity measures that are safe, effective and widely available are developed for counteracting the rapidly growing obesity epidemics. In the present study, we show that a probiotic bacterium Parabacteroides goldsteinii screened through culture under the high molecular weight polysaccharides prepared from two iconic medicinal fungi, the Ganoderma lucidum and the Hirsutella sinensis, reduced body weight by ca. 20% in high-fat diet (HFD)-fed mice. The bacterium also decreased intestinal permeability, metabolic endotoxemia, inflammation and insulin resistance. Notably, oral administration of live, but not high temperature-killed, P. goldsteinii to HFD fed mice considerably reduces weight gain and obesity-associated metabolic disorders. A three months feeding of the mice with P. goldsteinii did not show any aberrant side effects, indicating the safety of this bacterium. Transcriptome analysis indicated that P. goldsteinii enhances immunity in resting dendritic cells, but reduces inflammation in lipopolysaccharide (LPS)-induced dendritic cells. On top, Naïve T-cells were skewed towards regulatory T-cells after encountering with dendritic cells (DCs) pretreated with P. goldsteinii. These results indicated P. goldsteinii showed anti-inflammatory effects and can work as a potential probiotic ameliorating obesogenicity and related metabolic syndromes.

Keywords: Parabacteroides goldsteinii, gut microbiome, obesity, immune modulation

Procedia PDF Downloads 177
1163 Literature Review of the Antibacterial Effects of Salvia Officinalis L.

Authors: Benguerine Zohra, Merzak Siham, Bouziane Cheimaa, Si Tayeb Fatima, Jou Siham, Belkessam

Abstract:

Introduction: Antibiotics, widely produced and consumed in large quantities, have proven problematic due to various types of side effects. The development of bacterial resistance to currently available antibiotics has made the search for new antibacterial agents necessary. One alternative strategy to combat antibiotic-resistant bacteria is the use of natural antimicrobial substances such as plant extracts. The objective of this study is to provide an overview of the antibacterial effects of a plant native to the Middle East and Mediterranean regions, Salvia officinalis (sage). Materials and Methods: This review article was conducted by searching studies in the PubMed, Scopus, JSTOR, and SpringerLink databases. The search terms were "Salvia officinalis L." and "antibacterial effects." Only studies that met our inclusion criteria (in English, antibacterial effects of Salvia officinalis L., and primarily dating from 2012 to 2023) were accepted for further review. Results and Discussion: The initial search strategy identified approximately 78 references, with only 13 articles included in this review. The synthesis of the articles revealed that several data sources confirm the antimicrobial effects of S. officinalis. Its essential oil and alcoholic extract exhibit strong bactericidal and bacteriostatic effects against both Gram-positive and Gram-negative bacteria. Conclusion: The significant value of the extract, oil, and leaves of S. officinalis calls for further studies on the other useful and unknown properties of this multi-purpose plant.

Keywords: salvia officinalis, literature review, antibacterial, effects

Procedia PDF Downloads 38
1162 Procedure for Impact Testing of Fused Recycled Glass

Authors: David Halley, Tyra Oseng-Rees, Luca Pagano, Juan A Ferriz-Papi

Abstract:

Recycled glass material is made from 100% recycled bottle glass and consumes less energy than re-melt technology. It also uses no additives in the manufacturing process allowing the recycled glass material, in principal, to go back to the recycling stream after end-of-use, contributing to the circular economy with a low ecological impact. The aim of this paper is to investigate the procedure for testing the recycled glass material for impact resistance, so it can be applied to pavements and other surfaces which are at risk of impact during service. A review of different impact test procedures for construction materials was undertaken, comparing methodologies and international standards applied to other materials such as natural stone, ceramics and glass. A drop weight impact testing machine was designed and manufactured in-house to perform these tests. As a case study, samples of the recycled glass material were manufactured with two different thicknesses and tested. The impact energy was calculated theoretically, obtaining results with 5 and 10 J. The results on the material were subsequently discussed. Improvements on the procedure can be made using high speed video technology to calculate velocity just before and immediately after the impact to know the absorbed energy. The initial results obtained in this procedure were positive although repeatability needs to be developed to obtain a correlation of results and finally be able to validate the procedure. The experiment with samples showed the practicality of this procedure and application to the recycled glass material impact testing although further research needs to be developed.

Keywords: construction materials, drop weight impact, impact testing, recycled glass

Procedia PDF Downloads 296
1161 Effect of Falcaria vulgaris in Wound Healing and Immune Response of Common Carp (Cyprinus carpio)

Authors: N. Choobkar, M. Rezaeimanesh, A. M. Emami Rad, M. Ghaeni, H. Norouzi, S. Pahlavani, M. S. Tamasoki, E. Nezafatian

Abstract:

Antibiotics are used to increase the immune and wound healing in many animals . But due to the residual effects of a drug , researchers sought to replace them with natural materials such as Plant extracts. Falcaria vulgaris is the most attractive sources of the new drugs. Falcaria vulgaris (locally named Ghazzyaghi/Poghazeh) is a member of Umbelliferae family which grows near farmlands and is consumed as a vegetable in some regions of Iran. In the West of the country, in the wound healing and irregularities in the digestive system is also used. There were no scientific reports available in literature in support of the traditional claims of F. vulgaris in fish. The present study is therefore an attempt to assess the efficacy of this indigenous herb for its healing effect in common carp (Cyprinus carpio). Falcaria vulgaris at concentrations of 0, 2 and 10 % with Lophag foods used on wound healing of common carp and immune response, and weight grow and survival during periods of 21 days with feeding 2 times per day on the basis of body weight. The results showed that, compared with the control group, using of concentration 10 % F. vulgaris have significant effect on wound healing and stimulates the immune system by increasing white blood cells (WBC) and weight grow and survival of carp. The herb can used in wound healing, increased resistance to disease and weight grow in fish and the beneficial effects of this combination goes back to man.

Keywords: common carp, falcaria vulgaris, immune response, wound healing

Procedia PDF Downloads 591
1160 Study of Microstructure and Mechanical Properties Obtained by FSW of Similar and Dissimilar Non-Ferrous Alloys Used in Aerospace and Automobile Industry

Authors: Ajay Sidana, Kulbir Singh Sandhu, Balwinder Singh Sidhu

Abstract:

Joining of dissimilar non-ferrous alloys like aluminium and magnesium alloys becomes important in various automobile and aerospace applications due to their low density and good corrosion resistance. Friction Stir Welding (FSW), a solid state joining process, successfully welds difficult to weld similar and dissimilar aluminum and magnesium alloys. Two tool rotation speeds were selected by keeping the transverse speed constant to weld similar and dissimilar alloys. Similar(Al to Al) and Dissimilar(Al to Mg) weld joints were obtained by FSW. SEM scans revealed that higher tool rotation fragments the coarse grains of base material into fine grains in the weld zone. Also, there are less welding defects in weld joints obtained with higher tool rotation speed. The material of dissimilar alloys was mixed with each other forming recrystallised new intermetallics. There was decrease in hardness of similar weld joint however there is significant increase in hardness of weld zone in case of dissimilar weld joints due to stirring action of tool and formation of inter metallics. Tensile tests revealed that there was decrease in percentage elongation in both similar and dissimilar weld joints.

Keywords: aluminum alloys, magnesium alloys, friction stir welding, microstructure, mechanical properties

Procedia PDF Downloads 455
1159 Optimum Design of Steel Space Frames by Hybrid Teaching-Learning Based Optimization and Harmony Search Algorithms

Authors: Alper Akin, Ibrahim Aydogdu

Abstract:

This study presents a hybrid metaheuristic algorithm to obtain optimum designs for steel space buildings. The optimum design problem of three-dimensional steel frames is mathematically formulated according to provisions of LRFD-AISC (Load and Resistance factor design of American Institute of Steel Construction). Design constraints such as the strength requirements of structural members, the displacement limitations, the inter-story drift and the other structural constraints are derived from LRFD-AISC specification. In this study, a hybrid algorithm by using teaching-learning based optimization (TLBO) and harmony search (HS) algorithms is employed to solve the stated optimum design problem. These algorithms are two of the recent additions to metaheuristic techniques of numerical optimization and have been an efficient tool for solving discrete programming problems. Using these two algorithms in collaboration creates a more powerful tool and mitigates each other’s weaknesses. To demonstrate the powerful performance of presented hybrid algorithm, the optimum design of a large scale steel building is presented and the results are compared to the previously obtained results available in the literature.

Keywords: optimum structural design, hybrid techniques, teaching-learning based optimization, harmony search algorithm, minimum weight, steel space frame

Procedia PDF Downloads 545
1158 Modified Polysaccharide as Emulsifier in Oil-in-Water Emulsions

Authors: Tatiana Marques Pessanha, Aurora Perez-Gramatges, Regina Sandra Veiga Nascimento

Abstract:

Emulsions are commonly used in applications involving oil/water dispersions, where handling of interfaces becomes a crucial aspect. The use of emulsion technology has greatly evolved in the last decades to suit the most diverse uses, ranging from cosmetic products and biomedical adjuvants to complex industrial fluids. The stability of these emulsions is influenced by factors such as the amount of oil, size of droplets and emulsifiers used. While commercial surfactants are typically used as emulsifiers to reduce interfacial tension, and therefore increase emulsion stability, these organic amphiphilic compounds are often toxic and expensive. A suitable alternative for emulsifiers can be obtained from the chemical modification of polysaccharides. Our group has been working on modification of polysaccharides to be used as additives in a variety of fluid formulations. In particular, we have obtained promising results using chitosan, a natural and biodegradable polymer that can be easily modified due to the presence of amine groups in its chemical structure. In this way, it is possible to increase both the hydrophobic and hydrophilic character, which renders a water-soluble, amphiphilic polymer that can behave as an emulsifier. The aim of this work was the synthesis of chitosan derivatives structurally modified to act as surfactants in stable oil-in-water. The synthesis of chitosan derivatives occurred in two steps, the first being the hydrophobic modification with the insertion of long hydrocarbon chains, while the second step consisted in the cationization of the amino groups. All products were characterized by infrared spectroscopy (FTIR) and carbon magnetic resonance (13C-NMR) to evaluate the cationization and hydrofobization degrees. These modified polysaccharides were used to formulate oil-in water (O:W) emulsions with different oil/water ratios (i.e 25:75, 35:65, 60:40) using mineral paraffinic oil. The formulations were characterized according to the type of emulsion, density and rheology measurements, as well as emulsion stability at high temperatures. All emulsion formulations were stable for at least 30 days, at room temperature (25°C), and in the case of the high oil content emulsion (60:40), the formulation was also stable at temperatures up to 100°C. Emulsion density was in the range of 0.90-0.87 s.g. The rheological study showed a viscoelastic behaviour in all formulations at room temperature, which is in agreement with the high stability showed by the emulsions, since the polymer acts not only reducing interfacial tension, but also forming an elastic membrane at the oil/water interface that guarantees its integrity. The results obtained in this work are a strong evidence of the possibility of using chemically modified polysaccharides as environmentally friendly alternatives to commercial surfactants in the stabilization of oil-in water formulations.

Keywords: emulsion, polymer, polysaccharide, stability, chemical modification

Procedia PDF Downloads 353
1157 Effect of the Firing Cycle on the Microstructure and Mechanical Properties of High Steel Barrel Fabricated by Forging Process

Authors: El Oualid Mokhnache, Noureddine Ramdani

Abstract:

The choice of gun barrel materials is crucial to ensure the maximum high rate of fire. The high rate of fire causes wear-out damage and shuts off mechanical properties (hardness, strength, wear resistance, etc.) and ballistic properties (bullet speed, dispersion and precision, longevity of barrel, etc). To overcome these kinds of problems, a deep understanding of the effect of the firing cycle on the mechanical and ballistic properties of the barrel is regarded as crucial to improving its characteristics. In the present work, a real experimental test of firing by using a high steel barrel with 7.62x39 ammunition was carried. Microstructural observations by using SEM were investigated. Hardness evolution through the barrel of both barrels labeled as reference barrels and as fired barrels were compared and discussed. Ballistic properties during the firing test, including speed of projectile and precision dispersion, are revealed and discussed as well. The aim of the present communication is about to discuss the relationship between pressure distribution versus mechanical properties through the wall barrel. Ballistic properties, including speed of the projectile, dispersion, and precision results during the shooting process, were investigated. Microstructure observations of the as-rifled barrel in comparison with the as-reference barrel were performed as well.

Keywords: barrel, ballistic, pressure, microstructure evolution, hardness

Procedia PDF Downloads 75
1156 Electrical Effects during the Wetting-Drying Cycle of Porous Brickwork: Electrical Aspects of Rising Damp

Authors: Sandor Levai, Valentin Juhasz, Miklos Gasz

Abstract:

Rising damp is an extremely complex phenomenon that is of great practical interest to the field of building conservation due to the irreversible damages it can make to old and historic structures. The electrical effects occurring in damp masonry have been scarcely researched and are a largely unknown aspect of rising damp. Present paper describes the typical electrical patterns occurring in porous brickwork during a wetting and drying cycle. It has been found that in contrast with dry masonry, where electrical phenomena are virtually non-existent, damp masonry exhibits a wide array of electrical effects. Long-term real-time measurements performed in the lab on small-scale brick structures, using an array of embedded micro-sensors, revealed significant voltage, current, capacitance and resistance variations which can be linked to the movement of moisture inside porous materials. The same measurements performed on actual old buildings revealed a similar behaviour, the electrical effects being more significant in areas of the brickwork affected by rising damp. Understanding these electrical phenomena contributes to a better understanding of the driving mechanisms of rising damp, potentially opening new avenues of dealing with it in a less invasive manner.

Keywords: brick masonry, electrical phenomena in damp brickwork, porous building materials, rising damp, spontaneous electrical potential, wetting-drying cycle

Procedia PDF Downloads 131
1155 Microbiome Role in Tumor Environment

Authors: Chro Kavian

Abstract:

The studies conducted show that cancer is a disease caused by populations of microbes, a notion gaining traction as the interaction between the human microbiome and the tumor microenvironment (TME) increasingly shows how environment and microbes dictate the progress and treatment of neoplastic diseases. A person’s human microbiome is defined as a collection of bacteria, fungi, viruses, and other microorganisms whose structure and composition influence biological processes like immune system modulation and nutrient metabolism, which, in turn, affect how susceptible a person is to neoplastic diseases, and response to different therapies. Recent reports demonstrated the influence specific microbiome bacterial populations have on the TME, thereby altering tumoral behaviors and the TME’s contributing factors that impact patients' lives. In addition, gut microbes and their SCFA products are important determinants of the inflammatory landscape of tumors and augment anti-tumor immunity, which can influence immunotherapy outcomes. Studies have also found that dysbiosis, or microbial imbalance, correlates with biological processes such as cancer progression, metastasis, and therapy resistance, leading scientists to explore the use of microbiome deficiencies as adjunctive approaches to chemotherapy and other, more traditional treatments. Nonetheless, mental health practitioners struggling to comprehend the existent gap between cancer patients with pronounced resolutive capabilities and the profound clinical impact Microbiome-targeted cancer therapy has been proven to possess.

Keywords: microbiome, cancer, tumor, immune system

Procedia PDF Downloads 19
1154 Elaboration and Physico-Chemical Characterization of Edible Films Made from Chitosan and Spray Dried Ethanolic Extracts of Propolis

Authors: David Guillermo Piedrahita Marquez, Hector Suarez Mahecha, Jairo Humberto Lopez

Abstract:

It was necessary to establish which formulation is suitable for the preservation of aquaculture products, that why edible films were made. These were to a characterization in order to meet their morphology physicochemical and mechanical properties, optical. Six Formulations of chitosan and propolis ethanolic extract encapsulated were developed because of their activity against pathogens and due to their properties, which allows the creation waterproof polymer networks against gasses, vapor, and physical damage. In the six Formulations, the concentration of comparison material (1% w/v, 2% pv) and the bioactive concentrations (0.5% w/v, 1% w/v, 1.5% pv) were changed and the results obtained were compared with statistical and multivariate analysis methods. It was observed that the matrices showed a mayor impermeability and thickness control samples and the samples reported in the literature. Also, these films showed a notorious uniformity of the films and a bigger resistance to the physical damage compared with other edible films made of other biopolymers. However the action of some compounds had a negative effect on the mechanical properties and changed drastically the optical properties, the bioactive has an effect on Polymer Matrix and it was determined that the films with 2% w / v of chitosan and 1.5% w/v encapsulated, exhibited the best properties and suffered to a lesser extent the negative impact of immiscible substances.

Keywords: chitosan, edible films, ethanolic extract of propolis, mechanical properties, optical properties, physical characterization, scanning electron microscopy (SEM)

Procedia PDF Downloads 446
1153 Nanosilver Containing Biodegradable Bionanocomposites for Antimicrobial Application: Design, Preparation and Study

Authors: Nino Kupatadze, Shorena Tskhadadze, Mzevinar Bedinashvili, David Tugushi, Ramaz Katsarava

Abstract:

Surgical device-associated infection and biofilm formation are some of the major problems in biomedicine for today. The losing protection ability of conventional antimicrobial-drugs leads to the challenges in the current antibiotic therapy, the most serious of which is antibiotic resistance. Our strategy to overcome the biofilm formation consists in coating devices with polymeric film containing nanosilver(AgNPs) as a bactericidal agent. Such bionanocomposites are also promising as wound dressing materials. For this purpose, we have developed a new generation of AgNPs containing polymeric composites in which amino acid based biodegradable poly(ester amide)s (PEAs) were served as both matrices and AgNPs stabilizers. The AgNPs were formed by photochemical (daylight) reduction of AgNO3 in ethanol solution. The formation of AgNPs was monitored by coloring the solution in brownish-red and appearance of the absorption maximum at 420-430 nm in UV spectrum. Comparative studies of PEAs with polyvinylpyrrolidone (PVP) as particle stabilizers were carried out. It was found that PVP is better stabilizer in terms of particles yield and stability. Therefore, in subsequent experiments blends of PEAs and PVP were used as stabilizers for fabricating AgNPs. As expected, PVP increased the stabilizing effect and this apparently observed in the UV spectrum of the samples after 7 h daylight irradiation: for pure PVP λmax = 430 nm, D = 2.03, for pure PEA λmax= 420 nm, D = 0.65, and for the blend of PVP and PEA λmax = 435 nm, D = 1.88. Further study of the obtained nanobiocomposites is in progress now.

Keywords: biodegradation, bionanocompositions, polymer, nanosilver

Procedia PDF Downloads 342
1152 Enhancement of Dielectric Properties of Co-Precipitated Spinel Ferrites NiFe₂O₄/Carbon Nano Fibers Nanohybrid

Authors: Iftikhar Hussain Gul, Syeda Aatika

Abstract:

Nickel ferrite was prepared via wet chemical co-precipitation route. Carbon Nano Fibers (CNFs) were used to prepare NiFe₂O₄/CNFs nanohybrids. Polar solvent (ortho-xylene) was used for the dispersion of CNFs in ferrite matrix. X-ray diffraction patterns confirmed the formation of NiFe₂O₄/CNFs nanohybrids without any impurity peak. FTIR patterns showed two consistent characteristic absorption bands for tetrahedral and octahedral sites, confirming the formation of spinel structure of NiFe₂O₄. Scanning Electron Microscopy (SEM) images confirmed the coating of nickel ferrite nanoparticles on CNFs, which confirms the efficiency of deployed method. The dielectric properties were measured as a function of frequency at room temperature. Pure NiFe₂O₄ showed dielectric constant of 1.79 ×10³ at 100 Hz, which increased massively to 2.92 ×10⁶ at 100 Hz with the addition of 20% by weight of CNFs, proving it to be potential candidate for applications in supercapacitors. The impedance analysis showed a considerable decrease of resistance, reactance and cole-cole plot which confirms the decline of impedance on addition of CNFs. The pure NiFe₂O₄ has highest impedance values of 5.89 ×10⁷ Ohm at 100 Hz while the NiFe₂O₄/CNFs nanohybrid with CNFs (20% by weight) has the lowest impedance values of 4.25×10³ Ohm at 100 Hz, which proves this nanohybrid is useful for high-frequency applications.

Keywords: AC impedance, co-precipitation, nanohybrid, Fourier transform infrared spectroscopy, x-ray diffraction

Procedia PDF Downloads 139
1151 Investigating the Shear Behaviour of Fouled Ballast Using Discrete Element Modelling

Authors: Ngoc Trung Ngo, Buddhima Indraratna, Cholachat Rujikiathmakjornr

Abstract:

For several hundred years, the design of railway tracks has practically remained unchanged. Traditionally, rail tracks are placed on a ballast layer due to several reasons, including economy, rapid drainage, and high load bearing capacity. The primary function of ballast is to distributing dynamic track loads to sub-ballast and subgrade layers, while also providing lateral resistance and allowing for rapid drainage. Upon repeated trainloads, the ballast becomes fouled due to ballast degradation and the intrusion of fines which adversely affects the strength and deformation behaviour of ballast. This paper presents the use of three-dimensional discrete element method (DEM) in studying the shear behaviour of the fouled ballast subjected to direct shear loading. Irregularly shaped particles of ballast were modelled by grouping many spherical balls together in appropriate sizes to simulate representative ballast aggregates. Fouled ballast was modelled by injecting a specified number of miniature spherical particles into the void spaces. The DEM simulation highlights that the peak shear stress of the ballast assembly decreases and the dilation of fouled ballast increases with an increase level of fouling. Additionally, the distributions of contact force chain and particle displacement vectors were captured during shearing progress, explaining the formation of shear band and the evolutions of volumetric change of fouled ballast.

Keywords: railway ballast, coal fouling, discrete element modelling, discrete element method

Procedia PDF Downloads 451