Search results for: urban waste water
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 13180

Search results for: urban waste water

10180 Physicochemical and Microbiological Assessment of Source and Stored Domestic Water from Three Local Governments in Ile-Ife, Nigeria

Authors: Mary A. Bisi-Johnson, Kehinde A. Adediran, Saheed A. Akinola, Hamzat A. Oyelade

Abstract:

Some of the main problems man contends with are the quantity (source and amount) and quality of water in Nigeria. Scarcity leads to water being obtained from various sources and microbiological contaminations of the water may thus occur between the collection point and the point of usage. Thus, this study aims to assess the general and microbiological quality of domestic water sources and household stored water used within selected areas in Ile-Ife, South-Western part of Nigeria for microbial contaminants. Physicochemical and microbiological examination were carried out on 45 source and stored water samples collected from well and spring in three different local government areas i.e. Ife east, Ife-south, and Ife-north. Physicochemical analysis included pH value, temperature, total dissolved solid, dissolved oxygen, and biochemical oxygen demand. Microbiology involved most probable number analysis, total coliform, heterotrophic plate, faecal coliform, and streptococcus count. The result of the physicochemical analysis of samples showed anomalies compared to acceptable standards with the pH value of 7.20-8.60 for stored and 6.50-7.80 for source samples as the total dissolved solids (TDS of stored 20-70mg/L, source 352-691mg/L), dissolved oxygen (DO of stored 1.60-9.60mg/L, source 1.60-4.80mg/L), biochemical oxygen demand (BOD stored 0.80-3.60mg/L, source 0.60-5.40mg/L). General microbiological quality indicated that both stored and source samples with the exception of a sample were not within acceptable range as indicated by analysis of the MPN/100ml which ranges (stored 290-1100mg/L, source 9-1100mg/L). Apart from high counts, most samples did not meet the World Health Organization standard for drinking water with the presence of some pathogenic bacteria and fungi such as Salmonella and Aspergillus spp. To annul these constraints, standard treatment methods should be adopted to make water free from contaminants. This will help identify common and likely water related infection origin within the communities and thus help guide in terms of interventions required to prevent the general populace from such infections.

Keywords: domestic, microbiology, physicochemical, quality, water

Procedia PDF Downloads 344
10179 Utilization of Sugar Factory Waste as an Organic Fertilizer on Growth and Production of Baby Corn

Authors: Marliana S. Palad

Abstract:

The research purpose is to view and know the influence of giving blotong against growth and production of baby corn. The research was arranged as a factorial experiment in completely randomized block design (RBD) with three replications. The first is fertilizer type: blotong (B1), blotong+EM4 (B2) and bokashi blotong (B3), while of the blotong dose assigned as the second factor: blotong 5 ton ha -1 (D1), blotong 10 ton ha-1 (D2) and blotong 15 ton ha-1 (D3). The research result indicated that bokashi blotong gives the best influence compare to blotong+EM4 against all parameters. Interaction between fertilizers does 10 ton ha-1 to the bokashi. Blotong gives the best influence to the baby corn production 4.41 ton ha-1, bokasi blotong best anyway influence on baby corn vegetative growth, that is: plant height 113.00 cm, leaves number 8 (eight) pieces and stem diameter 6.02 cm. Results of analysis of variance showed that giving of bokashi blotong (B3) showed a better effect on the growth and production of baby corn and highly significant for plant height age of 60 days after planting, leaf number aged 60 days after planting, cob length cornhusk and without cornhusk, diameter stems and cobs, cob weight with cornhusk and without cornhusk and production are converted into ton ha-1. This is due to bokashi blotong has organic content of C, N, P, and K totalling more than the maximum treatment blotong (B1) and the blotong+EM4 (B2). Based on the research result, it can be summarised that sugar factory waste called blotong can be used to make bokashi as organic fertilizer, so the baby corn can growth and production better.

Keywords: blotong, bokashi, organic fertilizer, sugar factory waste

Procedia PDF Downloads 376
10178 A Study on the Effects of Urban Density, Sociodemographic Vulnerability, and Medical Service on the Impact of COVID-19

Authors: Jang-hyun Oh, Kyoung-ho Choi, Jea-sun Lee

Abstract:

The outbreak of the COVID-19 pandemic brought reconsiderations and doubts about urban density as compact cities became epidemic hot spots. Density, though, provides an upside in that medical services required to protect citizens against the spread of disease are concentrated within compact cities, which helps reduce the mortality rate. Sociodemographic characteristics are also a crucial factor in determining the vulnerability of the population, and the purpose of this study is to empirically discover how these three urban factors affect the severity of the epidemic impacts. The study aimed to investigate the influential relationships between urban factors and epidemic impacts and provide answers to whether superb medical service in compact cities can scale down the impacts of COVID-19. SEM (Structural Equation Modeling) was applied as a suitable research method for verifying interrelationships between factors based on theoretical grounds. The study accounted for 144 municipalities in South Korea during periods from the first emergence of COVID-19 to December 31st, 2022. The study collected data related to infection and mortality cases from each municipality, and it holds significance as primary research that enlightens the aspects of epidemic impact concerning urban settings and investigates for the first time the mediated effects of medical service. The result of the evaluation shows that compact cities are most likely to have lower sociodemographic vulnerability and better quality of medical service, while cities with low density contain a higher portion of vulnerable populations and poorer medical services. However, the quality of medical service had no significant influence in reducing neither the infection rate nor the mortality rate. Instead, density acted as the major influencing factor in the infection rate, while sociodemographic vulnerability was the major determinant of the mortality rate. Thus, the findings strongly paraphrase that compact cities, although with high infection rates, tend to have lower mortality rates due to less vulnerability in sociodemographics, Whereas death was more frequent in less dense cities due to higher portions of vulnerable populations such as the elderly and low-income classes. Findings suggest an important lesson for post-pandemic urban planning-intrinsic characteristics of urban settings, such as density and population, must be taken into account to effectively counteract future epidemics and minimize the severity of their impacts. Moreover, the study is expected to contribute as a primary reference material for follow-up studies that further investigate related subjects, including urban medical services during the pandemic.

Keywords: urban planning, sociodemographic vulnerability, medical service, COVID-19, pandemic

Procedia PDF Downloads 41
10177 Microgreenspace Regeneration in an Inclusive Perspective

Authors: Li Shiyue

Abstract:

In an urban built environment, urban green space is scarce, especially around old residential areas. Due to the innate design deficiency and the non-core location of these areas, they lack green space, and the recreational opportunities of the surrounding residents are not guaranteed. Micro greenspace becomes a "patch" to compensate for the urban function. To realize the renewal and transformation of micro greenspace, and make it meet the use needs of most groups, this paper introduces the concept of inclusive design. Based on relevant research at home and abroad, this paper discusses the connotation and current situation of micro greenspace. Combining with the realistic conditions of China, this paper thinks about the planning path of inclusive renewal from the aspects of selecting micro greenspace transformation potential points and exploring the key points of site renewal. Among them, the key points of site renewal are explored from five angles: land guarantee, systematic coordination, refined design, and shared space creation, to provide useful references for related research and practice.

Keywords: inclusive design, micro greenspace, old city area, space renewal

Procedia PDF Downloads 45
10176 Lean Construction Techniques in Construction Projects of Pakistan

Authors: Aftab Hameed Memon, Shadab Noor, Muhammad Akram Akhund

Abstract:

Lean construction is a philosophy adopted in the construction industry to increase the value of a project by reducing waste and improving construction productivity. Lean emphasizes on maximizing the value of a project with less expenditure. Globally, lean philosophy has received wider popularity in construction sector. Lean construction has supported the practitioners with several tools and techniques to implement at various stages of a construction project. Following the global trends, this study has investigated the lean practice in Pakistan. The level of implementation of different lean tools and techniques altogether with potential benefits experienced by its implementation in construction projects of Pakistan is analyzed. To achieve the targets, the opinion was sought by the practitioners involved in handling construction projects representing four stakeholders that are a client, consultant, contractors and material suppliers through a structured questionnaire. A total of 34 completed questionnaires were collected and then statistically analyzed. The findings of the analysis have highlighted that pull approach, work standardization, just in time, increase visualization tools, integrated project delivery method and fail-safe for quality are common lean techniques implemented in the local construction industry. While reduction in waste, client’s satisfaction, improved communication, visual control and proper task management are major benefits of the lean construction application.

Keywords: lean construction, lean tools and techniques, lean benefits, waste reduction, Pakistan

Procedia PDF Downloads 271
10175 Water Sorption of Self Cured Resin Acrylic Soaked in Clover Solution

Authors: Hermanto J. M, Mirna Febriani

Abstract:

Resin acrylic, which is widely used, has the physical properties that can absorb liquids. This can lead to a change in the dimensions of the acrylic resin material. If repeated immersions were done, its strength would be affected. Disinfectant solutions have been widely used to reduce microorganisms both inside and outside the patient's mouth. One of the disinfecting materials that can be used is a clover solution. The purpose of this research is to find the ratio of water absorption of the acrylic resin material of self-cured type, soaked in clover solution for 10 minutes. The results showed that the average value obtained before soaked in clover solution was 0.0692 mg/cm3 and after soaked, in clover solution, the value was 0.090 mg/cm3. The conclusion of this research shows that the values of water sorption of acrylic resin before and after soaked in clover solution is still in ISO standard 1567/2001. Differences in water sorption value of self-cured acrylic resin before and after the immersion are caused by the process of liquid diffusion into the acrylic resin.

Keywords: absorption of fluid, self-cured acrylic resin, soaked, clover solution

Procedia PDF Downloads 145
10174 Barrier Properties of Starch-Ethylene Vinyl Alcohol Nanocomposites

Authors: Farid Amidi Fazli

Abstract:

Replacement of plastics used in the food industry seems to be a serious issue to overcome mainly the environmental problems in recent years. This study investigates the hydrophilicity and permeability properties of starch biopolymer which ethylene vinyl alcohol (EVOH) (0-10%) and nanocrystalline cellulose (NCC) (1 -15%) were used to enhance its properties. Starch -EVOH nanocomposites were prepared by casting method in different formulations. NCC production by acid hydrolysis was confirmed by scanning electron microscopy. Solubility, water vapor permeability, water vapor transmission rate and moisture absorbance were measured on each of the nanocomposites. The results were analyzed by SAS software. The lowest moisture absorbance was measured in pure starch nanocomposite containing 8% NCC. The lowest permeability to water vapor belongs to starch nanocomposite containing 8% NCC and the sample containing 7.8% EVOH and 13% NCC. Also, the lowest solubility was observed in the composite contains the highest amount of EVOH. Applied Process resulted in production of bio films which have good resistance to water vapor permeability and solubility in water. The use of NCC and EVOH leads to reduced moisture absorbance property of the biofilms.

Keywords: starch, EVOH, nanocrystalline cellulose, hydrophilicity

Procedia PDF Downloads 398
10173 Scaling Analysis for the Liquefaction Phenomena Generated by Water Waves

Authors: E. Arcos, E. Bautista, F. Méndez

Abstract:

In this work, a scaling analysis of the liquefaction phenomena is presented. The characteristic scales are obtained by balancing term by term of the well-known partial dynamics governing equations, (U − P). From the above, the order of magnitude of the horizontal displacement is very smaller compared with the vertical displacement and therefore the governing equation is only a function of the dependent vertical variables. The U − P approximation is reduced and presented in its dimensionless version. This scaling analysis can be used to obtain analytical solutions of the liquefaction phenomena under the action of the water waves.

Keywords: approximation U-P, porous seabed, scaling analysis, water waves

Procedia PDF Downloads 331
10172 Traditional Rainwater Harvesting Systems: A Sustainable Solution for Non-Urban Populations in the Mediterranean

Authors: S. Fares, K. Mellakh, A. Hmouri

Abstract:

The StorMer project aims to set up a network of researchers to study traditional hydraulic rainwater harvesting systems in the Mediterranean basin, a region suffering from the major impacts of climate change and limited natural water resources. The arid and semi-arid Mediterranean basin has a long history of pioneering water management practices. The region has developed various ancient traditional water management systems, such as cisterns and qanats, to sustainably manage water resources under historical conditions of scarcity. Therefore, the StorMer project brings together Spain, France, Italy, Greece, Jordan and Morocco to explore traditional rainwater harvesting practices and systems in the Mediterranean region and to develop accurate modeling to simulate the performance and sustainability of these technologies under present-day climatic conditions. The ultimate goal of this project was to resuscitate and valorize these practices in the context of contemporary challenges. This project was intended to establish a Mediterranean network to serve as a basis for a more ambitious project. The ultimate objective was to analyze traditional hydraulic systems and create a prototype hydraulic ecosystem using a coupled environmental approach and traditional and ancient know-how, with the aim of reinterpreting them in the light of current techniques. The combination of ‘traditional’ and ‘modern knowledge/techniques’ is expected to lead to proposals for innovative hydraulic systems. The pandemic initially slowed our progress, but in the end it forced us to carry out the fieldwork in Morocco and Saudi Arabia, and so restart the project. With the participation of colleagues from chronologically distant fields (archaeology, sociology), we are now prepared to share our observations and propose the next steps. This interdisciplinary approach should give us a global vision of the project's objectives and challenges. A diachronic approach is needed to tackle the question of the long-term adaptation of societies in a Mediterranean context that has experienced several periods of water stress. The next stage of the StorMer project is the implementation of pilots in non-urbanized regions. These pilots will test the implementation of traditional systems and will be maintained and evaluated in terms of effectiveness, cost and acceptance. Based on these experiences, larger projects will be proposed and could provide information for regional water management policies. One of the most important lessons learned from this project is the highly social nature of managing traditional rainwater harvesting systems. Unlike modern, centralized water infrastructures, these systems often require the involvement of communities, which assume ownership and responsibility for them. This kind of community engagement leads to greater maintenance and, therefore, sustainability of the systems. Knowledge of the socio-cultural characteristics of these communities means that the systems can be adapted to the needs of each location, ensuring greater acceptance and efficiency.

Keywords: oasis, rainfall harvesting, arid regions, Mediterranean

Procedia PDF Downloads 17
10171 Exploring the Impact of Tillage and Manure on Soil Water Retention and Van Genuchten

Authors: Azadeh Safadoust, Ali Akbar Mahboubi

Abstract:

A study was conducted to evaluate hydraulic properties of a sandy loam soil and corn (Zea mays L.) crop production under a short-term tillage and manure combinations field experiment carried out in west of Iran. Treatments included composted cattle manure application rates [0, 30, and 60 Mg (dry weight) ha-1] and tillage systems [no-tillage (NT), chisel plowing (CP), and moldboard plowing (MP)] arranged in a split-plot design. Soil water characteristic curve (SWCC) and saturated hydraulic conductivity (Ks) were significantly affected by manure and tillage treatments. At any matric suction, the soil water content was in the order of MP>CP>NT. At all matric suctions, the amount of water retained by the soil increased as manure application rate increased (i.e. 60>30>0 Mg ha-1). Similar to the tillage effects, at high suctions the differences of water retained due to manure addition were less than that at low suctions. The change of SWCC from tillage methods and manure applications may attribute to the change of pore size and aggregate size distributions. Soil Ks was in the order of CP>MP>NT for the first two layers and in the order of MP>CP and NT for the deeper soil layer. The Ks also increased with increasing rates of manure application (i.e. 60>30>0 Mg ha-1). This was due to the increase in the total pore size and continuity.

Keywords: corn, manure, saturated hydraulic conductivity, soil water characteristic curve, tillage

Procedia PDF Downloads 53
10170 Biodegradable Elastic Polymers Are Used to Create Stretchable Piezoresistive Strain Sensors

Authors: Mostafa Vahdani, Mohsen Asadnia, Shuying Wu

Abstract:

Huge amounts of e-waste are being produced by the rapidly expanding use of electronics; the majority of this material is either burned or dumped directly in landfills since recycling would either be impracticable or too expensive. Degradable and environmentally friendly materials are therefore seen as the answer to this urgent problem. Here, we create strain sensors that are biodegradable, robust, and incredibly flexible using thin films of sodium carboxymethyl cellulose (NaCMC), glycerol, and polyvinyl alcohol (PVA). Due to the creation of many inter- or intramolecular hydrogen bonds, the polymer blends (NaCMC/PVA/glycerol) exhibit a failure strain of up to 330% and negligible hysteresis when exposed to cyclic stretching-releasing. What's more intriguing is that the sensors can degrade completely in deionized water at a temperature of 95 °C in about 25 minutes. This project illustrates a novel method for developing wearable electronics that are environmentally beneficial.

Keywords: degradable, stretchable, strain sensors, wearable electronics.

Procedia PDF Downloads 84
10169 Modeling Landscape Performance: Evaluating the Performance Benefits of the Olmsted Brothers’ Proposed Parkway Designs for Los Angeles

Authors: Aaron Liggett

Abstract:

This research focuses on the visionary proposal made by the Olmsted Brothers Landscape Architecture firm in the 1920s for a network of interconnected parkways in Los Angeles. Their envisioned parkways aimed to address environmental and cultural strains by providing green space for recreation, wildlife habitat, and stormwater management while serving as multimodal transportation routes. Although the parkways were never constructed, through an evidence-based approach, this research presents a framework for evaluating the potential functionality and success of the parkways by modeling and visualizing their quantitative and qualitative landscape performance and benefits. Historical documents and innovative digital modeling tools produce detailed analysis, modeling, and visualization of the parkway designs. A set of 1928 construction documents are used to analyze and interpret the design intent of the parkways. Grading plans are digitized in CAD and modeled in Sketchup to produce 3D visualizations of the parkway. Drainage plans are digitized to model stormwater performance. Planting plans are analyzed to model urban forestry and biodiversity. The EPA's Storm Water Management Model (SWMM) predicts runoff quantity and quality. The USDA Forests Service tools evaluate carbon sequestration and air quality. Spatial and overlay analysis techniques are employed to assess urban connectivity and the spatial impacts of the parkway designs. The study reveals how the integration of blue infrastructure, green infrastructure, and transportation infrastructure within the parkway design creates a multifunctional landscape capable of offering alternative spatial and temporal uses. The analysis demonstrates the potential for multiple functional, ecological, aesthetic, and social benefits to be derived from the proposed parkways. The analysis of the Olmsted Brothers' proposed Los Angeles parkways, which predated contemporary ecological design and resiliency practices, demonstrates the potential for providing multiple functional, ecological, aesthetic, and social benefits within urban designs. The findings highlight the importance of integrated blue, green, and transportation infrastructure in creating a multifunctional landscape that simultaneously serves multiple purposes. The research contributes new methods for modeling and visualizing landscape performance benefits, providing insights and techniques for informing future designs and sustainable development strategies.

Keywords: landscape architecture, ecological urban design, greenway, landscape performance

Procedia PDF Downloads 104
10168 Adsorption of Chlorinated Pesticides in Drinking Water by Carbon Nanotubes

Authors: Hacer Sule Gonul, Vedat Uyak

Abstract:

Intensive use of pesticides in agricultural activity causes mixing of these compounds into water sources with surface flow. Especially after the 1970s, a number of limitations imposed on the use of chlorinated pesticides that have a carcinogenic risk potential and regulatory limit have been established. These chlorinated pesticides discharge to water resources, transport in the water and land environment and accumulation in the human body through the food chain raises serious health concerns. Carbon nanotubes (CNTs) have attracted considerable attention from on all because of their excellent mechanical, electrical, and environmental characteristics. Due to CNT particles' high degree of hydrophobic surfaces, these nanoparticles play critical role in the removal of water contaminants of natural organic matters, pesticides and phenolic compounds in water sources. Health concerns associated with chlorinated pesticides requires the removal of such contaminants from aquatic environment. Although the use of aldrin and atrazine was restricted in our country, repatriation of illegal entry and widespread use of such chemicals in agricultural areas cause increases for the concentration of these chemicals in the water supply. In this study, the compounds of chlorinated pesticides such as aldrin and atrazine compounds would be tried to eliminate from drinking water with carbon nanotube adsorption method. Within this study, 2 different types of CNT would be used including single-wall (SWCNT) and multi-wall (MWCNT) carbon nanotubes. Adsorption isotherms within the scope of work, the parameters affecting the adsorption of chlorinated pesticides in water are considered as pH, contact time, CNT type, CNT dose and initial concentration of pesticides. As a result, under conditions of neutral pH conditions with MWCNT respectively for atrazine and aldrin obtained adsorption capacity of determined as 2.24 µg/mg ve 3.84 µg/mg. On the other hand, the determined adsorption capacity rates for SWCNT for aldrin and atrazine has identified as 3.91 µg/mg ve 3.92 µg/mg. After all, each type of pesticide that provides superior performance in relieving SWCNT particles has emerged.

Keywords: pesticide, drinking water, carbon nanotube, adsorption

Procedia PDF Downloads 152
10167 Study of Biofouling Wastewater Treatment Technology

Authors: Sangho Park, Mansoo Kim, Kyujung Chae, Junhyuk Yang

Abstract:

The International Maritime Organization (IMO) recognized the problem of invasive species invasion and adopted the "International Convention for the Control and Management of Ships' Ballast Water and Sediments" in 2004, which came into force on September 8, 2017. In 2011, the IMO approved the "Guidelines for the Control and Management of Ships' Biofouling to Minimize the Transfer of Invasive Aquatic Species" to minimize the movement of invasive species by hull-attached organisms and required ships to manage the organisms attached to their hulls. Invasive species enter new environments through ships' ballast water and hull attachment. However, several obstacles to implementing these guidelines have been identified, including a lack of underwater cleaning equipment, regulations on underwater cleaning activities in ports, and difficulty accessing crevices in underwater areas. The shipping industry, which is the party responsible for understanding these guidelines, wants to implement them for fuel cost savings resulting from the removal of organisms attached to the hull, but they anticipate significant difficulties in implementing the guidelines due to the obstacles mentioned above. Robots or people remove the organisms attached to the hull underwater, and the resulting wastewater includes various species of organisms and particles of paint and other pollutants. Currently, there is no technology available to sterilize the organisms in the wastewater or stabilize the heavy metals in the paint particles. In this study, we aim to analyze the characteristics of the wastewater generated from the removal of hull-attached organisms and select the optimal treatment technology. The organisms in the wastewater generated from the removal of the attached organisms meet the biological treatment standard (D-2) using the sterilization technology applied in the ships' ballast water treatment system. The heavy metals and other pollutants in the paint particles generated during removal are treated using stabilization technologies such as thermal decomposition. The wastewater generated is treated using a two-step process: 1) development of sterilization technology through pretreatment filtration equipment and electrolytic sterilization treatment and 2) development of technology for removing particle pollutants such as heavy metals and dissolved inorganic substances. Through this study, we will develop a biological removal technology and an environmentally friendly processing system for the waste generated after removal that meets the requirements of the government and the shipping industry and lays the groundwork for future treatment standards.

Keywords: biofouling, ballast water treatment system, filtration, sterilization, wastewater

Procedia PDF Downloads 90
10166 Understanding the Cultural Landscape of Kuttanad: Life within the Constraints of Nature

Authors: K. Nikilsha, Lakshmi Manohar, Debayan Chatterjee

Abstract:

Landscape is a setting that informs the way of life of a set of people, and the repository of intangible values and human meanings that nurture our very existence. Along with the linkage that it forms with our lives, it can be argued that landscape and memory cannot be separated, as landscape is the nucleus of our memories. In this context, this paper studies landscape evolution of a region with unique geographic setting, where the dependency of the inhabitants on its resources, led to the formation of certain peculiar beliefs and taboos that formed the basis of a set of unwritten rules and guidelines which they still follow as a part of their lifestyle. One such example is Kuttanad, a low lying region in Kerala which is a complex mosaic of fragmented agricultural landscape incorporating coastal backwaters, rivers, marshes, paddy fields and water channels. The more the physical involvement with the resources, the more was the inhabitants attachment towards it. This attachment of the inhabitants to the place is very strong because the creation of this land was the result of the toil of the low caste labourers who strived day and night to create Kuttanad, which was reclaimed from water with the help of the finance supplied by their landlords. However, the greatest challenge faced by them is posed by the forces of water in the form of floods. As this land is fed by five rivers, even the slight variation in rainfall in its watershed area can cause a large imbalance in the water level causing the reclaimed land to be inundated. The effects of climate change including increase in rainfall, rise in sea level and change of seasons can act as a catalyst to this damage. Hasty urbanization has led to the conversion of paddy fields to housing plots and coconut/plantain fields giving no regard to the traditional systems which had once respected nature and combated floods and draughts through the various cultural practices and taboos practiced by the people. Thus it is essential to look back at the landscape evolution of Kuttanad and to recognise methods used traditionally in the region to establish a cultural landscape, and to understand how climate change and urbanisation shall pose a challenge to the existing landscape and lifestyle. This research also explores the possibilities of alternative and sustainable approaches for resilient urban development learned from Kuttanad as a case study.

Keywords: ecological conservation, landscape and ecological engineering, landscape evolution, man-made landscapes

Procedia PDF Downloads 249
10165 Effect of Pollutions on Mangrove Forests of Nayband National Marine Park

Authors: Esmaeil Kouhgardi, Elaheh Shakerdargah

Abstract:

The mangrove ecosystem is a complex of various inter-related elements in the land-sea interface zone which is linked with other natural systems of the coastal region such as corals, sea-grass, coastal fisheries and beach vegetation. The mangrove ecosystem consists of water, muddy soil, trees, shrubs, and their associated flora, fauna and microbes. It is a very productive ecosystem sustaining various forms of life. Its waters are nursery grounds for fish, crustacean, and mollusk and also provide habitat for a wide range of aquatic life, while the land supports a rich and diverse flora and fauna, but pollutions may affect these characteristics. Iran has the lowest share of Persian Gulf pollution among the eight littoral states; environmental experts are still deeply concerned about the serious consequences of the pollution in the oil-rich gulf. Prolongation of critical conditions in the Persian Gulf has endangered its aquatic ecosystem. Water purification equipment, refineries, wastewater emitted by onshore installations, especially petrochemical plans, urban sewage, population density and extensive oil operations of Arab states are factors contaminating the Persian Gulf waters. Population density has been the major cause of pollution and environmental degradation in the Persian Gulf. Persian Gulf is a closed marine environment which is connected to open waterways only from one way. It usually takes between three and four years for the gulf's water to be completely replaced. Therefore, any pollution entering the water will remain there for a relatively long time. Presently, the high temperature and excessive salt level in the water have exposed the marine creatures to extra threats, which mean they have to survive very tough conditions. The natural environment of the Persian Gulf is very rich with good fish grounds, extensive coral reefs and pearl oysters in abundance, but has become increasingly under pressure due to the heavy industrialization and in particular the repeated major oil spillages associated with the various recent wars fought in the region. Pollution may cause the mortality of mangrove forests by effect on root, leaf and soil of the area. Study was showed the high correlation between industrial pollution and mangrove forests health in south of Iran and increase of population, coupled with economic growth, inevitably caused the use of mangrove lands for various purposes such as construction of roads, ports and harbors, industries and urbanization.

Keywords: Mangrove forest, pollution, Persian Gulf, population, environment

Procedia PDF Downloads 383
10164 Use of the Budyko Framework to Estimate the Virtual Water Content in Shijiazhuang Plain, North China

Authors: Enze Zhang

Abstract:

One of the most challenging steps in implementing virtual water content (VWC) analysis of crops is to get properly the total volume of consumptive water use (CWU) and, therefore, the choice of a reliable crop CWU estimation method. In practice, lots of previous researches obtaining CWU of crops follow a classical procedure for calculating crop evapotranspiration which is determined by multiplying reference evapotranspiration by appropriate coefficient, such as crop coefficient and water stress coefficients. However, this manner of calculation requires lots of field experimental data at point scale and more seriously, when current growing conditions differ from the standard conditions, may easily produce deviation between the calculated CWU and the actual CWU. Since evapotranspiration caused by crop planting always plays a vital role in surface water-energy balance in an agricultural region, this study decided to alternatively estimates crop evapotranspiration by Budyko framework. After brief introduce the development process of Budyko framework. We choose a modified Budyko framework under unsteady-state to better evaluated the actual CWU and apply it in an agricultural irrigation area in North China Plain which rely on underground water for irrigation. With the agricultural statistic data, this calculated CWU was further converted into VWC and its subdivision of crops at the annual scale. Results show that all the average values of VWC, VWC_blue and VWC_green show a downward trend with increased agricultural production and improved acreage. By comparison with the previous research, VWC calculated by Budyko framework agree well with part of the previous research and for some other research the value is greater. Our research also suggests that this methodology and findings may be reliable and convenient for investigation of virtual water throughout various agriculture regions of the world.

Keywords: virtual water content, Budyko framework, consumptive water use, crop evapotranspiration

Procedia PDF Downloads 318
10163 Effects of a Cooler on the Sampling Process in a Continuous Emission Monitoring System

Authors: J. W. Ahn, I. Y. Choi, T. V. Dinh, J. C. Kim

Abstract:

A cooler has been widely employed in the extractive system of the continuous emission monitoring system (CEMS) to remove water vapor in the gas stream. The effect of the cooler on analytical target gases was investigated in this research. A commercial cooler for the CEMS operated at 4 C was used. Several gases emitted from a coal power plant (i.e. CO2, SO2, NO, NO2 and CO) were mixed with humid air, and then introduced into the cooler to observe its effect. Concentrations of SO2, NO, NO2 and CO were made as 200 ppm. The CO2 concentration was 8%. The inlet absolute humidity was produced as 12.5% at 100 C using a bubbling method. It was found that the reduction rate of SO2 was the highest (~21%), followed by NO2 (~17%), CO2 (~11%) and CO (~10%). In contrast, the cooler was not affected by NO gas. The result indicated that the cooler caused a significant effect on the water soluble gases due to condensate water in the cooler. To overcome this problem, a correction factor may be applied. However, water vapor might be different, and emissions of target gases are also various. Therefore, the correction factor is not only a solution, but also a better available method should be employed.

Keywords: cooler, CEMS, monitoring, reproductive, sampling

Procedia PDF Downloads 343
10162 Geospatial Techniques and VHR Imagery Use for Identification and Classification of Slums in Gujrat City, Pakistan

Authors: Muhammad Ameer Nawaz Akram

Abstract:

The 21st century has been revealed that many individuals around the world are living in urban settlements than in rural zones. The evolution of numerous cities in emerging and newly developed countries is accompanied by the rise of slums. The precise definition of a slum varies countries to countries, but the universal harmony is that slums are dilapidated settlements facing severe poverty and have lacked access to sanitation, water, electricity, good living styles, and land tenure. The slum settlements always vary in unique patterns within and among the countries and cities. The core objective of this study is the spatial identification and classification of slums in Gujrat city Pakistan from very high-resolution GeoEye-1 (0.41m) satellite imagery. Slums were first identified using GPS for sample site identification and ground-truthing; through this process, 425 slums were identified. Then Object-Oriented Analysis (OOA) was applied to classify slums on digital image. Spatial analysis softwares, e.g., ArcGIS 10.3, Erdas Imagine 9.3, and Envi 5.1, were used for processing data and performing the analysis. Results show that OOA provides up to 90% accuracy for the identification of slums. Jalal Cheema and Allah Ho colonies are severely affected by slum settlements. The ratio of criminal activities is also higher here than in other areas. Slums are increasing with the passage of time in urban areas, and they will be like a hazardous problem in coming future. So now, the executive bodies need to make effective policies and move towards the amelioration process of the city.

Keywords: slums, GPS, satellite imagery, object oriented analysis, zonal change detection

Procedia PDF Downloads 113
10161 Determining the Spatial Vulnerability Levels and Typologies of Coastal Cities to Climate Change: Case of Turkey

Authors: Mediha B. Sılaydın Aydın, Emine D. Kahraman

Abstract:

One of the important impacts of climate change is the sea level rise. Turkey is a peninsula, so the coastal areas of the country are threatened by the problem of sea level rise. Therefore, the urbanized coastal areas are highly vulnerable to climate change. At the aim of enhancing spatial resilience of urbanized areas, this question arises: What should be the priority intervention subject in the urban planning process for a given city. To answer this question, by focusing on the problem of sea level rise, this study aims to determine spatial vulnerability typologies and levels of Turkey coastal cities based on morphological, physical and social characteristics. As a method, spatial vulnerability of coastal cities is determined by two steps as level and type. Firstly, physical structure, morphological structure and social structure were examined in determining spatial vulnerability levels. By determining these levels, most vulnerable areas were revealed as a priority in adaptation studies. Secondly, all parameters are also used to determine spatial typologies. Typologies are determined for coastal cities in order to use as a base for urban planning studies. Adaptation to climate change is crucial for developing countries like Turkey so, this methodology and created typologies could be a guide for urban planners as spatial directors and an example for other developing countries in the context of adaptation to climate change. The results demonstrate that the urban settlements located on the coasts of the Marmara Sea, the Aegean Sea and the Mediterranean respectively, are more vulnerable than the cities located on the Black Sea’s coasts to sea level rise.

Keywords: climate change, coastal cities, vulnerability, urban land use planning

Procedia PDF Downloads 302
10160 Wash Fastness of Textile Fibers Dyed with Natural Dye from Eucalyptus Wood Steaming Waste

Authors: Ticiane Rossi, Maurício C. Araújo, José O. Brito, Harold S. Freeman

Abstract:

Natural dyes are gaining interest due their expected low risk to human health and to the environment. In this study, the wash fastness of a natural coloring matter from the liquid waste produced in the steam treatment of eucalyptus wood in textile fabrics was investigated. Specifically, eucalyptus wood extract was used to dye cotton, nylon and wool in an exhaust dyeing process without the addition of the traditional mordanting agents and then submitted to wash fastness analysis. The resulting dyed fabrics were evaluated for color fastness. It was found that wash fastness of dyed fabrics was very good to cotton and excellent to nylon and wool.

Keywords: eucalyptus, natural dye, textile fibers, wash fastness

Procedia PDF Downloads 593
10159 Thermal Analysis on Heat Transfer Enhancement and Fluid Flow for Al2O3 Water-Ethylene Glycol Nano Fluid in Single PEMFC Mini Channel

Authors: Irnie Zakaria, W. A. N. W. Mohamed, W. H. Azmi

Abstract:

Thermal enhancement of a single mini channel in Proton Exchange Membrane Fuel Cell (PEMFC) cooling plate is numerically investigated. In this study, low concentration of Al2O3 in Water - Ethylene Glycol mixtures is used as coolant in mini channel of carbon graphite plate to mimic the PEMFC cooling plate. A steady and incompressible flow with constant heat flux is assumed in the channel of 1mm x 5mm x 100mm. Nano particle of Al2O3 used ranges from 0.1, 0.3 and 0.5 vol % concentration and then dispersed in 60:40 (water: Ethylene Glycol) mixture. The effect of different flow rates to fluid flow and heat transfer enhancement in Re number range of 20 to 140 was observed. The result showed that heat transfer coefficient was improved by 18.11%, 9.86% and 5.37% for 0.5, 0.3 and 0.1 vol % Al2O3 in 60:40 (water: EG) as compared to base fluid of 60:40 (water: EG). It is also showed that the higher vol % concentration of Al2O3 performed better in term of thermal enhancement but at the expense of higher pumping power required due to increase in pressure drop experienced. Maximum additional pumping power of 0.0012W was required for 0.5 vol % Al2O3 in 60:40 (water: EG) at Re number 140.

Keywords: heat transfer, mini channel, nanofluid, PEMFC

Procedia PDF Downloads 323
10158 Rainwater Harvesting and Management of Ground Water (Case Study Weather Modification Project in Iran)

Authors: Samaneh Poormohammadi, Farid Golkar, Vahideh Khatibi Sarabi

Abstract:

Climate change and consecutive droughts have increased the importance of using rainwater harvesting methods. One of the methods of rainwater harvesting and, in other words, the management of atmospheric water resources is the use of weather modification technologies. Weather modification (also known as weather control) is the act of intentionally manipulating or altering the weather. The most common form of weather modification is cloud seeding, which increases rain or snow, usually for the purpose of increasing the local water supply. Cloud seeding operations in Iran have been married since 1999 in central Iran with the aim of harvesting rainwater and reducing the effects of drought. In this research, we analyze the results of cloud seeding operations in the Simindashtplain in northern Iran. Rainwater harvesting with the help of cloud seeding technology has been evaluated through its effects on surface water and underground water. For this purpose, two different methods have been used to estimate runoff. The first method is the US Soil Conservation Service (SCS) curve number method. Another method, known as the reasoning method, has also been used. In order to determine the infiltration rate of underground water, the balance reports of the comprehensive water plan of the country have been used. In this regard, the study areas located in the target area of each province have been extracted by drawing maps of the influence coefficients of each area in the GIS software. It should be mentioned that the infiltration coefficients were taken from the balance sheet reports of the country's comprehensive water plan. Then, based on the area of each study area, the weighted average of the infiltration coefficient of the study areas located in the target area of each province is considered as the infiltration coefficient of that province. Results show that the amount of water extracted from the rain with the help of cloud seeding projects in Simindasht is as follows: an increase in runoff 63.9 million cubic meters (with SCS equation) or 51.2 million cubic meters (with logical equation) and an increase in ground water resources: 40.5 million cubic meters.

Keywords: rainwater harvesting, ground water, atmospheric water resources, weather modification, cloud seeding

Procedia PDF Downloads 90
10157 A Meta-Analysis towards an Integrated Framework for Sustainable Urban Transportation within the Concept of Sustainable Cities

Authors: Hande Aladağ, Gökçe Aydın

Abstract:

The world’s population is increasing continuously and rapidly. Moreover, there are other problems such as the decline of natural energy resources, global warming, and environmental pollution. These facts have made sustainability an important and primary topic from future planning perspective. From this perspective, constituting sustainable cities and communities can be considered as one of the key issues in terms of sustainable development goals. The concept of sustainable cities can be evaluated under three headings such as green/sustainable buildings, self – contained cities and sustainable transportation. This study only concentrates on how to form and support a sustainable urban transportation system to contribute to the sustainable urbanization. Urban transportation system inevitably requires many engineering projects with various sizes. Engineering projects generally have four phases, in the following order: Planning, design, construction, operation. The order is valid but there are feedbacks from every phase to every phase in its upstream. In this regard, engineering projects are iterative processes. Sustainability is an integrated and comprehensive concept thus it should be among the primary concerns in every phase of transportation projects. In the study, a meta-analysis will be performed on the related studies in the literature. It is targeted and planned that, as a result of the findings of this meta-analysis, a framework for the list of principles and actions for sustainable transport will be formed. The meta-analysis will be performed to point out and clarify sustainability approaches in every phase of the related engineering projects, with also paying attention to the iterative nature of the process and relative contribution of the action for the outcomes of the sustainable transportation system. However, the analysis will not be limited to the engineering projects, non-engineering solutions will also be included in the meta-analysis. The most important contribution of this study is a determination of the outcomes of a sustainable urban transportation system in terms of energy efficiency, resource preservation and related social, environmental and economic factors. The study is also important because it will give light to the engineering and management approaches to achieve these outcomes.

Keywords: meta-analysis, sustainability, sustainable cities, sustainable urban transportation, urban transportation

Procedia PDF Downloads 312
10156 Indeterminacy: An Urban Design Tool to Measure Resilience to Climate Change, a Caribbean Case Study

Authors: Tapan Kumar Dhar

Abstract:

How well are our city forms designed to adapt to climate change and its resulting uncertainty? What urban design tools can be used to measure and improve resilience to climate change, and how would they do so? In addressing these questions, this paper considers indeterminacy, a concept originated in the resilience literature, to measure the resilience of built environments. In the realm of urban design, ‘indeterminacy’ can be referred to as built-in design capabilities of an urban system to serve different purposes which are not necessarily predetermined. An urban system, particularly that with a higher degree of indeterminacy, can enable the system to be reorganized and changed to accommodate new or unknown functions while coping with uncertainty over time. Underlying principles of this concept have long been discussed in the urban design and planning literature, including open architecture, landscape urbanism, and flexible housing. This paper argues that the concept indeterminacy holds the potential to reduce the impacts of climate change incrementally and proactively. With regard to sustainable development, both planning and climate change literature highly recommend proactive adaptation as it involves less cost, efforts, and energy than last-minute emergency or reactive actions. Nevertheless, the concept still remains isolated from resilience and climate change adaptation discourses even though the discourses advocate the incremental transformation of a system to cope with climatic uncertainty. This paper considers indeterminacy, as an urban design tool, to measure and increase resilience (and adaptive capacity) of Long Bay’s coastal settlements in Negril, Jamaica. Negril is one of the popular tourism destinations in the Caribbean highly vulnerable to sea-level rise and its associated impacts. This paper employs empirical information obtained from direct observation and informal interviews with local people. While testing the tool, this paper deploys an urban morphology study, which includes land use patterns and the physical characteristics of urban form, including street networks, block patterns, and building footprints. The results reveal that most resorts in Long Bay are designed for pre-determined purposes and offer a little potential to use differently if needed. Additionally, Negril’s street networks are found to be rigid and have limited accessibility to different points of interest. This rigidity can expose the entire infrastructure further to extreme climatic events and also impedes recovery actions after a disaster. However, Long Bay still has room for future resilient developments in other relatively less vulnerable areas. In adapting to climate change, indeterminacy can be reached through design that achieves a balance between the degree of vulnerability and the degree of indeterminacy: the more vulnerable a place is, the more indeterminacy is useful. This paper concludes with a set of urban design typologies to increase the resilience of coastal settlements.

Keywords: climate change adaptation, resilience, sea-level rise, urban form

Procedia PDF Downloads 346
10155 The Study of Stable Isotopes (18O, 2H & 13C) in Kardeh River and Dam Reservoir, North-Eastern Iran

Authors: Hossein Mohammadzadeh, Mojtaba Heydarizad

Abstract:

Among various water resources, the surface water has a dominant role in providing water supply in the arid and semi-arid region of Iran. Andarokh-Kardeh basin is located in 50 km from Mashhad city - the second biggest city of Iran (NE of Iran), draining by Kardeh river which provides a significant portion of potable and irrigation water needs for Mashhad. The stable isotopes (18O, 2H,13C-DIC, and 13C-DOC), as reliable and precious water fingerprints, have been measured in Kardeh river (Kharket, Mareshk, Jong, All and Kardeh stations) and in Kardeh dam reservoirs (at five different sites S1 to S5) during March to June 2011 and June 2012. On δ18O vs. δ2H diagram, the river samples were plotted between Global and Eastern Mediterranean Meteoric Water lines (GMWL and EMMWL) which demonstrate that various moisture sources are providing humidity for precipitation events in this area. The enriched δ18O and δ2H values (-6.5 ‰ and -44.5 ‰ VSMOW) of Kardeh dam reservoir are compared to Kardeh river (-8.6‰and-54.4‰), and its deviation from Mashhad meteoric water line (MMWL- δ2H=7.16δ18O+11.22) is due to evaporation from the open surface water body. The enriched value of δ 13C-DIC and high amount of DIC values (-7.9 ‰ VPDB and 57.23 ppm) in the river and Kardeh dam reservoir (-7.3 ‰ VPDB and 55.53 ppm) is due to dissolution of Mozdooran Carbonate Formation lithology (Jm1 to Jm3 units) (contains enriched δ13C DIC values of 9.2‰ to 27.7‰ VPDB) in the region. Because of the domination of C3 vegetations in Andarokh_Kardeh basin, the δ13C-DOC isotope of the river (-28.4‰ VPDB) and dam reservoir (-32.3‰ VPDB) demonstrate depleted values. Higher DOC concentration in dam reservoir (2.57 ppm) compared to the river (0.72 ppm) is due to more biologogical activities and organic matters in dam reservoir.

Keywords: Dam reservoir, Iran, Kardeh river, Khorasan razavi, Stable isotopes

Procedia PDF Downloads 253
10154 Ground Surface Temperature History Prediction Using Long-Short Term Memory Neural Network Architecture

Authors: Venkat S. Somayajula

Abstract:

Ground surface temperature history prediction model plays a vital role in determining standards for international nuclear waste management. International standards for borehole based nuclear waste disposal require paleoclimate cycle predictions on scale of a million forward years for the place of waste disposal. This research focuses on developing a paleoclimate cycle prediction model using Bayesian long-short term memory (LSTM) neural architecture operated on accumulated borehole temperature history data. Bayesian models have been previously used for paleoclimate cycle prediction based on Monte-Carlo weight method, but due to limitations pertaining model coupling with certain other prediction networks, Bayesian models in past couldn’t accommodate prediction cycle’s over 1000 years. LSTM has provided frontier to couple developed models with other prediction networks with ease. Paleoclimate cycle developed using this process will be trained on existing borehole data and then will be coupled to surface temperature history prediction networks which give endpoints for backpropagation of LSTM network and optimize the cycle of prediction for larger prediction time scales. Trained LSTM will be tested on past data for validation and then propagated for forward prediction of temperatures at borehole locations. This research will be beneficial for study pertaining to nuclear waste management, anthropological cycle predictions and geophysical features

Keywords: Bayesian long-short term memory neural network, borehole temperature, ground surface temperature history, paleoclimate cycle

Procedia PDF Downloads 111
10153 Ageing Deterioration of High-Density Polyethylene Cable Spacer under Salt Water Dip Wheel Test

Authors: P. Kaewchanthuek, R. Rawonghad, B. Marungsri

Abstract:

This paper presents the experimental results of high-density polyethylene cable spacers for 22 kV distribution systems under salt water dip wheel test based on IEC 62217. The strength of anti-tracking and anti-erosion of cable spacer surface was studied in this study. During the test, dry band arc and corona discharge were observed on cable spacer surface. After 30,000 cycles of salt water dip wheel test, obviously surface erosion and tracking were observed especially on the ground end. Chemical analysis results by fourier transforms infrared spectroscopy showed chemical changed from oxidation and carbonization reaction on tested cable spacer. Increasing of C=O and C=C bonds confirmed occurrence of these reactions.

Keywords: cable spacer, HDPE, ageing of cable spacer, salt water dip wheel test

Procedia PDF Downloads 366
10152 Optimization of Artisanal Fishing Waste Fermentation for Volatile Fatty Acids Production

Authors: Luz Stella Cadavid-Rodriguez, Viviana E. Castro-Lopez

Abstract:

Fish waste (FW) has a high content of potentially biodegradable components, so it is amenable to be digested anaerobically. In this line, anaerobic digestion (AD) of FW has been studied for biogas production. Nevertheless, intermediate products such as volatile fatty acids (VFA), generated during the acidogenic stage, have been scarce investigated, even though they have a high potential as a renewable source of carbon. In the literature, there are few studies about the Inoculum-Substrate (I/S) ratio on acidogenesis. On the other hand, it is well known that pH is a critical factor in the production of VFA. The optimum pH for the production of VFA seems to change depending on the substrate and can vary in a range between 5.25 and 11. Nonetheless, the literature about VFA production from protein-rich waste, such as FW, is scarce. In this context, it is necessary to deepen on the determination of the optimal operating conditions of acidogenic fermentation for VFA production from protein-rich waste. Therefore, the aim of this research was to optimize the volatile fatty acid production from artisanal fishing waste, studying the effect of pH and the I/S ratio on the acidogenic process. For this research, the inoculum used was a methanogenic sludge (MS) obtained from a UASB reactor treating wastewater of a slaughterhouse plant, and the FW was collected in the port of Tumaco (Colombia) from the local artisanal fishers. The acidogenic fermentation experiments were conducted in batch mode, in 500 mL glass bottles as anaerobic reactors, equipped with rubber stoppers provided with a valve to release biogas. The effective volume used was 300 mL. The experiments were carried out for 15 days at a mesophilic temperature of 37± 2 °C and constant agitation of 200 rpm. The effect of 3 pH levels: 5, 7, 9, coupled with five I/S ratios, corresponding to 0.20, 0.15, 0.10, 0.05, 0.00 was evaluated taking as a response variable the production of VFA. A complete randomized block design was selected for the experiments in a 5x3 factorial arrangement, with two repetitions per treatment. At the beginning and during the process, pH in the experimental reactors was adjusted to the corresponding values of 5, 7, and 9 using 1M NaOH or 1M H2SO4, as was appropriated. In addition, once the optimum I/S ratio was determined, the process was evaluated at this condition without pH control. The results indicated that pH is the main factor in the production of VFA, obtaining the highest concentration with neutral pH. By reducing the I/S ratio, as low as 0.05, it was possible to maximize VFA production. Thus, the optimum conditions found were natural pH (6.6-7.7) and I/S ratio of 0.05, with which it was possible to reach a maximum total VFA concentration of 70.3 g Ac/L, whose major components were acetic acid (35%) and butyric acid (32%). The findings showed that the acidogenic fermentation of FW is an efficient way of producing VFA and that the operating conditions can be simple and economical.

Keywords: acidogenesis, artisanal fishing waste, inoculum to substrate ratio, volatile fatty acids

Procedia PDF Downloads 101
10151 Phrasemes With The Component 'Water' In Polish And Russian - Comparative Aspects

Authors: Aleksandra Majewska

Abstract:

The subject of this article is phrasemes with the component 'water' in Polish and Russian. The purpose of the study is to analyse the collocations from the point of view of lexis and semantics. The material for analysis was extracted from phraseological dictionaries of Polish and Russian. From the point of view of lexis, an analysis was made of the inflectional component 'water' in phrasal expressions in both languages. Then, the phrasemes were divided into their corresponding semantic groups. That division became the subject of another comparative analysis in a further step. Finally, the functioning of some phrasemes compounds in the contexts of modern Polish and Russian was shown.

Keywords: lingustic, language, phraseme, polish and Russian

Procedia PDF Downloads 13