Search results for: spatial information network
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 16186

Search results for: spatial information network

13216 Gender Justice and Feminist Self-Management Practices in the Solidarity Economy: A Quantitative Analysis of the Factors that Impact Enterprises Formed by Women in Brazil

Authors: Maria de Nazaré Moraes Soares, Silvia Maria Dias Pedro Rebouças, José Carlos Lázaro

Abstract:

The Solidarity Economy (SE) acts in the re-articulation of the economic field to the other spheres of social action. The significant participation of women in SE resulted in the formation of a national network of self-managed enterprises in Brazil: The Solidarity and Feminist Economy Network (SFEN). The objective of the research is to identify factors of gender justice and feminist self-management practices that adhere to the reality of women in SE enterprises. The conceptual apparatus related to feminist studies in this research covers Nancy Fraser approaches on gender justice, and Patricia Yancey Martin approaches on feminist management practices, and authors of postcolonial feminism such as Mohanty and Maria Lugones, who lead the discussion to peripheral contexts, a necessary perspective when observing the women’s movement in SE. The research has a quantitative nature in the phases of data collection and analysis. The data collection was performed through two data sources: the database mapped in Brazil in 2010-2013 by the National Information System in Solidary Economy and 150 questionnaires with women from 16 enterprises in SFEN, in a state of Brazilian northeast. The data were analyzed using the multivariate statistical technique of Factor Analysis. The results show that the factors that define gender justice and feminist self-management practices in SE are interrelated in several levels, proving statistically the intersectional condition of the issue of women. The evidence from the quantitative analysis allowed us to understand the dimensions of gender justice and feminist management practices intersectionality; in this sense, the non-distribution of domestic work interferes in non-representation of women in public spaces, especially in peripheral contexts. The study contributes with important reflections to the studies of this area and can be complemented in the future with a qualitative research that approaches the perspective of women in the context of the SE self-management paradigm.

Keywords: feminist management practices, gender justice, self-management, solidarity economy

Procedia PDF Downloads 129
13215 Building Safer Communities through Institutional Collaboration in Ghana: An Appraisal of Existing Arrangement

Authors: Louis Kusi Frimpong, Martin Oteng-Ababio

Abstract:

The problem of crime and insecurity in urban environments are often complex, multilayered, multidimensional and sometimes interwoven. It is from this perspective that recent approaches and strategies aimed at responding to crime and insecurity have looked at the problem from a social, economic, spatial and institutional point of view. In Ghana, there is much understanding of how various elements of the social and spatial setting influence crime and safety concerns of residents in urban areas. However, little research attention has been given to the institutional dimension of the problem of crime and insecurity in urban Ghana. In particular, scholars and policymakers in the area of safety and security have scarcely interrogated the forms of collaboration that exist between the various formal and informal institutions and how gaps and lapses in this collaboration influence vulnerability to crime and feelings of insecurity. Using Sekondi-Takoradi as a case study and drawing on both primary and secondary data, this paper assesses the activities of various institutions both formal and informal in crime control and prevention in the Sekondi-Takoradi metropolis, the third largest city in Ghana. More importantly, the paper seeks to address gaps in the institutional arrangement and coordination between and among institutions at the forefront of crime prevention efforts in the metropolis and by extension Ghanaian cities. The study found that whiles there is some form of collaboration between the police and the community, little collaboration existed between planning authorities and the police on the one hand, and the community on the other hand. The paper concludes that in light of the complex nature of a crime, institutional coordination and an inclusive approach involving formal and informal will be critical in promoting safer cities in Ghana.

Keywords: crime prevention, coordination, Ghana, institutional arrangement

Procedia PDF Downloads 126
13214 A Model Based Metaheuristic for Hybrid Hierarchical Community Structure in Social Networks

Authors: Radhia Toujani, Jalel Akaichi

Abstract:

In recent years, the study of community detection in social networks has received great attention. The hierarchical structure of the network leads to the emergence of the convergence to a locally optimal community structure. In this paper, we aim to avoid this local optimum in the introduced hybrid hierarchical method. To achieve this purpose, we present an objective function where we incorporate the value of structural and semantic similarity based modularity and a metaheuristic namely bees colonies algorithm to optimize our objective function on both hierarchical level divisive and agglomerative. In order to assess the efficiency and the accuracy of the introduced hybrid bee colony model, we perform an extensive experimental evaluation on both synthetic and real networks.

Keywords: social network, community detection, agglomerative hierarchical clustering, divisive hierarchical clustering, similarity, modularity, metaheuristic, bee colony

Procedia PDF Downloads 379
13213 Modular Robotics and Terrain Detection Using Inertial Measurement Unit Sensor

Authors: Shubhakar Gupta, Dhruv Prakash, Apoorv Mehta

Abstract:

In this project, we design a modular robot capable of using and switching between multiple methods of propulsion and classifying terrain, based on an Inertial Measurement Unit (IMU) input. We wanted to make a robot that is not only intelligent in its functioning but also versatile in its physical design. The advantage of a modular robot is that it can be designed to hold several movement-apparatuses, such as wheels, legs for a hexapod or a quadpod setup, propellers for underwater locomotion, and any other solution that may be needed. The robot takes roughness input from a gyroscope and an accelerometer in the IMU, and based on the terrain classification from an artificial neural network; it decides which method of propulsion would best optimize its movement. This provides the bot with adaptability over a set of terrains, which means it can optimize its locomotion on a terrain based on its roughness. A feature like this would be a great asset to have in autonomous exploration or research drones.

Keywords: modular robotics, terrain detection, terrain classification, neural network

Procedia PDF Downloads 145
13212 The Minimum Patch Size Scale for Seagrass Canopy Restoration

Authors: Aina Barcelona, Carolyn Oldham, Jordi Colomer, Teresa Serra

Abstract:

The loss of seagrass meadows worldwide is being tackled by formulating coastal restoration strategies. Seagrass loss results in a network of vegetated patches which are barely interconnected, and consequently, the ecological services they provide may be highly compromised. Hence, there is a need to optimize coastal management efforts in order to implement successful restoration strategies, not only through modifying the architecture of the canopies but also by gathering together information on the hydrodynamic conditions of the seabeds. To obtain information on the hydrodynamics within the patches of vegetation, this study deals with the scale analysis of the minimum lengths of patch management strategies that can be effectively used on. To this aim, a set of laboratory experiments were conducted in a laboratory flume where the plant densities, patch lengths, and hydrodynamic conditions were varied to discern the vegetated patch lengths that can provide optimal ecosystem services for canopy development. Two possible patch behaviours based on the turbulent kinetic energy (TKE) production were determined: one where plants do not interact with the flow and the other where plants interact with waves and produce TKE. Furthermore, this study determines the minimum patch lengths that can provide successful management restoration. A canopy will produce TKE, depending on its density, the length of the vegetated patch, and the wave velocities. Therefore, a vegetated patch will produce plant-wave interaction under high wave velocities when it presents large lengths and high canopy densities.

Keywords: seagrass, minimum patch size, turbulent kinetic energy, oscillatory flow

Procedia PDF Downloads 197
13211 Opinion Mining and Sentiment Analysis on DEFT

Authors: Najiba Ouled Omar, Azza Harbaoui, Henda Ben Ghezala

Abstract:

Current research practices sentiment analysis with a focus on social networks, DEfi Fouille de Texte (DEFT) (Text Mining Challenge) evaluation campaign focuses on opinion mining and sentiment analysis on social networks, especially social network Twitter. It aims to confront the systems produced by several teams from public and private research laboratories. DEFT offers participants the opportunity to work on regularly renewed themes and proposes to work on opinion mining in several editions. The purpose of this article is to scrutinize and analyze the works relating to opinions mining and sentiment analysis in the Twitter social network realized by DEFT. It examines the tasks proposed by the organizers of the challenge and the methods used by the participants.

Keywords: opinion mining, sentiment analysis, emotion, polarity, annotation, OSEE, figurative language, DEFT, Twitter, Tweet

Procedia PDF Downloads 138
13210 Victims and Violators: Open Source Information, Admissibility Standards, and War Crimes Investigations in Iraq and Syria

Authors: Genevieve Zingg

Abstract:

Modern technology and social media platforms have fundamentally altered the nature of war crimes investigations by providing new forms of data, evidence, and documentation, and pose a unique opportunity to expand the efficacy of international law. However, much of the open source information available is deemed inadmissible in subsequent legal proceedings and fails to function as evidence largely due to issues of reliability and verifiability. Focusing on current judicial investigations related to ongoing conflicts in Syria and Iraq, this paper will examine key challenges and opportunities for the effective use of open source information in securing justice. This paper will consider strategies and approaches that can be used to ensure that information collected by affected populations meets basic admissibility standards. This paper argues that the critical failure to equip civilian populations in conflict zones with knowledge and information regarding established admissibility standards and guidelines both jeopardizes the potential of open source information and compromises the ability of victims to participate effectively in justice and accountability processes. The ultimate purpose of this paper is, therefore, to examine how to maximize the value of open source information based on the rules of evidence in international, regional, and national courts, and how to maximize the participation of affected populations in holding their abusers to account.

Keywords: human rights, international criminal law, international justice, international law, Iraq, open source information, social media, Syria, transitional justice, war crimes

Procedia PDF Downloads 336
13209 A Study of Human Communication in an Internet Community

Authors: Andrew Laghos

Abstract:

The Internet is a big part of our everyday lives. People can now access the internet from a variety of places including home, college, and work. Many airports, hotels, restaurants and cafeterias, provide free wireless internet to their visitors. Using technologies like computers, tablets, and mobile phones, we spend a lot of our time online getting entertained, getting informed, and communicating with each other. This study deals with the latter part, namely, human communication through the Internet. People can communicate with each other using social media, social network sites (SNS), e-mail, messengers, chatrooms, and so on. By connecting with each other they form virtual communities. Regarding SNS, types of connections that can be studied include friendships and cliques. Analyzing these connections is important to help us understand online user behavior. The method of Social Network Analysis (SNA) was used on a case study, and results revealed the existence of some useful patterns of interactivity between the participants. The study ends with implications of the results and ideas for future research.

Keywords: human communication, internet communities, online user behavior, psychology

Procedia PDF Downloads 497
13208 Security Issues in Long Term Evolution-Based Vehicle-To-Everything Communication Networks

Authors: Mujahid Muhammad, Paul Kearney, Adel Aneiba

Abstract:

The ability for vehicles to communicate with other vehicles (V2V), the physical (V2I) and network (V2N) infrastructures, pedestrians (V2P), etc. – collectively known as V2X (Vehicle to Everything) – will enable a broad and growing set of applications and services within the intelligent transport domain for improving road safety, alleviate traffic congestion and support autonomous driving. The telecommunication research and industry communities and standardization bodies (notably 3GPP) has finally approved in Release 14, cellular communications connectivity to support V2X communication (known as LTE – V2X). LTE – V2X system will combine simultaneous connectivity across existing LTE network infrastructures via LTE-Uu interface and direct device-to-device (D2D) communications. In order for V2X services to function effectively, a robust security mechanism is needed to ensure legal and safe interaction among authenticated V2X entities in the LTE-based V2X architecture. The characteristics of vehicular networks, and the nature of most V2X applications, which involve human safety makes it significant to protect V2X messages from attacks that can result in catastrophically wrong decisions/actions include ones affecting road safety. Attack vectors include impersonation attacks, modification, masquerading, replay, MiM attacks, and Sybil attacks. In this paper, we focus our attention on LTE-based V2X security and access control mechanisms. The current LTE-A security framework provides its own access authentication scheme, the AKA protocol for mutual authentication and other essential cryptographic operations between UEs and the network. V2N systems can leverage this protocol to achieve mutual authentication between vehicles and the mobile core network. However, this protocol experiences technical challenges, such as high signaling overhead, lack of synchronization, handover delay and potential control plane signaling overloads, as well as privacy preservation issues, which cannot satisfy the adequate security requirements for majority of LTE-based V2X services. This paper examines these challenges and points to possible ways by which they can be addressed. One possible solution, is the implementation of the distributed peer-to-peer LTE security mechanism based on the Bitcoin/Namecoin framework, to allow for security operations with minimal overhead cost, which is desirable for V2X services. The proposed architecture can ensure fast, secure and robust V2X services under LTE network while meeting V2X security requirements.

Keywords: authentication, long term evolution, security, vehicle-to-everything

Procedia PDF Downloads 167
13207 Convolution Neural Network Based on Hypnogram of Sleep Stages to Predict Dosages and Types of Hypnotic Drugs for Insomnia

Authors: Chi Wu, Dean Wu, Wen-Te Liu, Cheng-Yu Tsai, Shin-Mei Hsu, Yin-Tzu Lin, Ru-Yin Yang

Abstract:

Background: The results of previous studies compared the benefits and risks of receiving insomnia medication. However, the effects between hypnotic drugs used and enhancement of sleep quality were still unclear. Objective: The aim of this study is to establish a prediction model for hypnotic drugs' dosage used for insomnia subjects and associated the relationship between sleep stage ratio change and drug types. Methodologies: According to American Academy of Sleep Medicine (AASM) guideline, sleep stages were classified and transformed to hypnogram via the polysomnography (PSG) in a hospital in New Taipei City (Taiwan). The subjects with diagnosis for insomnia without receiving hypnotic drugs treatment were be set as the comparison group. Conversely, hypnotic drugs dosage within the past three months was obtained from the clinical registration for each subject. Furthermore, the collecting subjects were divided into two groups for training and testing. After training convolution neuron network (CNN) to predict types of hypnotics used and dosages are taken, the test group was used to evaluate the accuracy of classification. Results: We recruited 76 subjects in this study, who had been done PSG for transforming hypnogram from their sleep stages. The accuracy of dosages obtained from confusion matrix on the test group by CNN is 81.94%, and accuracy of hypnotic drug types used is 74.22%. Moreover, the subjects with high ratio of wake stage were correctly classified as requiring medical treatment. Conclusion: CNN with hypnogram was potentially used for adjusting the dosage of hypnotic drugs and providing subjects to pre-screening the types of hypnotic drugs taken.

Keywords: convolution neuron network, hypnotic drugs, insomnia, polysomnography

Procedia PDF Downloads 195
13206 A Survey of Field Programmable Gate Array-Based Convolutional Neural Network Accelerators

Authors: Wei Zhang

Abstract:

With the rapid development of deep learning, neural network and deep learning algorithms play a significant role in various practical applications. Due to the high accuracy and good performance, Convolutional Neural Networks (CNNs) especially have become a research hot spot in the past few years. However, the size of the networks becomes increasingly large scale due to the demands of the practical applications, which poses a significant challenge to construct a high-performance implementation of deep learning neural networks. Meanwhile, many of these application scenarios also have strict requirements on the performance and low-power consumption of hardware devices. Therefore, it is particularly critical to choose a moderate computing platform for hardware acceleration of CNNs. This article aimed to survey the recent advance in Field Programmable Gate Array (FPGA)-based acceleration of CNNs. Various designs and implementations of the accelerator based on FPGA under different devices and network models are overviewed, and the versions of Graphic Processing Units (GPUs), Application Specific Integrated Circuits (ASICs) and Digital Signal Processors (DSPs) are compared to present our own critical analysis and comments. Finally, we give a discussion on different perspectives of these acceleration and optimization methods on FPGA platforms to further explore the opportunities and challenges for future research. More helpfully, we give a prospect for future development of the FPGA-based accelerator.

Keywords: deep learning, field programmable gate array, FPGA, hardware accelerator, convolutional neural networks, CNN

Procedia PDF Downloads 128
13205 Introduction to Multi-Agent Deep Deterministic Policy Gradient

Authors: Xu Jie

Abstract:

As a key network security method, cryptographic services must fully cope with problems such as the wide variety of cryptographic algorithms, high concurrency requirements, random job crossovers, and instantaneous surges in workloads. Its complexity and dynamics also make it difficult for traditional static security policies to cope with the ever-changing situation. Cyber Threats and Environment. Traditional resource scheduling algorithms are inadequate when facing complex decisionmaking problems in dynamic environments. A network cryptographic resource allocation algorithm based on reinforcement learning is proposed, aiming to optimize task energy consumption, migration cost, and fitness of differentiated services (including user, data, and task security). By modeling the multi-job collaborative cryptographic service scheduling problem as a multiobjective optimized job flow scheduling problem, and using a multi-agent reinforcement learning method, efficient scheduling and optimal configuration of cryptographic service resources are achieved. By introducing reinforcement learning, resource allocation strategies can be adjusted in real time in a dynamic environment, improving resource utilization and achieving load balancing. Experimental results show that this algorithm has significant advantages in path planning length, system delay and network load balancing, and effectively solves the problem of complex resource scheduling in cryptographic services.

Keywords: multi-agent reinforcement learning, non-stationary dynamics, multi-agent systems, cooperative and competitive agents

Procedia PDF Downloads 24
13204 Evaluating Urban Land Expansion Using Geographic Information System and Remote Sensing in Kabul City, Afghanistan

Authors: Ahmad Sharif Ahmadi, Yoshitaka Kajita

Abstract:

With massive population expansion and fast economic development in last decade, urban land has increasingly expanded and formed high informal development territory in Kabul city. This paper investigates integrated urbanization trends in Kabul city since the formation of the basic structure of the present city using GIS and remote sensing. This study explores the spatial and temporal difference of urban land expansion and land use categories among different time intervals, 1964-1978 and 1978-2008 from 1964 to 2008 in Kabul city. Furthermore, the goal of this paper is to understand the extent of urban land expansion and the factors driving urban land expansion in Kabul city. Many factors like population expansion, the return of refugees from neighboring countries and significant economic growth of the city affected urban land expansion. Across all the study area urban land expansion rate, population expansion rate and economic growth rate have been compared to analyze the relationship of driving forces with urban land expansion. Based on urban land change data detected by interpreting land use maps, it was found that in the entire study area the urban territory has been expanded by 14 times between 1964 and 2008.

Keywords: GIS, Kabul city, land use, urban land expansion, urbanization

Procedia PDF Downloads 340
13203 Multi-Sender MAC Protocol Based on Temporal Reuse in Underwater Acoustic Networks

Authors: Dongwon Lee, Sunmyeng Kim

Abstract:

Underwater acoustic networks (UANs) have become a very active research area in recent years. Compared with wireless networks, UANs are characterized by the limited bandwidth, long propagation delay and high channel dynamic in acoustic modems, which pose challenges to the design of medium access control (MAC) protocol. The characteristics severely affect network performance. In this paper, we study a MS-MAC (Multi-Sender MAC) protocol in order to improve network performance. The proposed protocol exploits temporal reuse by learning the propagation delays to neighboring nodes. A source node locally calculates the transmission schedules of its neighboring nodes and itself based on the propagation delays to avoid collisions. Performance evaluation is conducted using simulation, and confirms that the proposed protocol significantly outperforms the previous protocol in terms of throughput.

Keywords: acoustic channel, MAC, temporal reuse, UAN

Procedia PDF Downloads 349
13202 Sugar-Induced Stabilization Effect of Protein Structure

Authors: Mitsuhiro Hirai, Satoshi Ajito, Nobutaka Shimizu, Noriyuki Igarashi, Hiroki Iwase, Shinichi Takata

Abstract:

Sugars and polyols are known to be bioprotectants preventing such as protein denaturation and enzyme deactivation and widely used as a nontoxic additive in various industrial and medical products. The mechanism of their protective actions has been explained by specific bindings between biological components and additives, changes in solvent viscosities, and surface tension and free energy changes upon transfer of those components into additive solutions. On the other hand, some organisms having tolerances against extreme environment produce stress proteins and/or accumulate sugars in cells, which is called cryptobiosis. In particular, trehalose has been drawing attention relevant to cryptobiosis under external stress such as high or low temperature, drying, osmotic pressure, and so on. The function of cryptobiosis by trehalose has been explained relevant to the restriction of the intra-and/or-inter-molecular movement by vitrification or from the replacement of water molecule by trehalose. Previous results suggest that the structure and interaction between sugar and water are a key determinant for understanding cryptobiosis. Recently, we have shown direct evidence that the protein hydration (solvation) and structural stability against chemical and thermal denaturation significantly depend on sugar species and glycerol. Sugar and glycerol molecules tend to be preferentially or weakly excluded from the protein surface and preserved the native protein hydration shell. Due to the protective action of the protein hydration shell by those molecules, the protein structure is stabilized against chemical (guanidinium chloride) and thermal denaturation. The protective action depends on sugar species. To understand the above trend and difference in detail, it is essentially important to clarify the characteristics of solutions containing those additives. In this study, by using wide-angle X-ray scattering technique covering a wide spatial region (~3-120 Å), we have clarified structures of sugar solutions with the concentration from 5% w/w to 65% w/w. The sugars measured in the present study were monosaccharides (glucose, fructose, mannose) and disaccharides (sucrose, trehalose, maltose). Due to observed scattering data with a wide spatial resolution, we have succeeded in obtaining information on the internal structure of individual sugar molecules and on the correlation between them. Every sugar gradually shortened the average inter-molecular distance as the concentration increased. The inter-molecular interaction between sugar molecules was essentially showed an exclusive tendency for every sugar, which appeared as the presence of a repulsive correlation hole. This trend was more weakly seen for trehalose compared to other sugars. The intermolecular distance and spread of individual molecule clearly showed the dependence of sugar species. We will discuss the relation between the characteristic of sugar solution and its protective action of biological materials.

Keywords: hydration, protein, sugar, X-ray scattering

Procedia PDF Downloads 156
13201 Next Generation Radiation Risk Assessment and Prediction Tools Generation Applying AI-Machine (Deep) Learning Algorithms

Authors: Selim M. Khan

Abstract:

Indoor air quality is strongly influenced by the presence of radioactive radon (222Rn) gas. Indeed, exposure to high 222Rn concentrations is unequivocally linked to DNA damage and lung cancer and is a worsening issue in North American and European built environments, having increased over time within newer housing stocks as a function of as yet unclear variables. Indoor air radon concentration can be influenced by a wide range of environmental, structural, and behavioral factors. As some of these factors are quantitative while others are qualitative, no single statistical model can determine indoor radon level precisely while simultaneously considering all these variables across a complex and highly diverse dataset. The ability of AI- machine (deep) learning to simultaneously analyze multiple quantitative and qualitative features makes it suitable to predict radon with a high degree of precision. Using Canadian and Swedish long-term indoor air radon exposure data, we are using artificial deep neural network models with random weights and polynomial statistical models in MATLAB to assess and predict radon health risk to human as a function of geospatial, human behavioral, and built environmental metrics. Our initial artificial neural network with random weights model run by sigmoid activation tested different combinations of variables and showed the highest prediction accuracy (>96%) within the reasonable iterations. Here, we present details of these emerging methods and discuss strengths and weaknesses compared to the traditional artificial neural network and statistical methods commonly used to predict indoor air quality in different countries. We propose an artificial deep neural network with random weights as a highly effective method for assessing and predicting indoor radon.

Keywords: radon, radiation protection, lung cancer, aI-machine deep learnng, risk assessment, risk prediction, Europe, North America

Procedia PDF Downloads 96
13200 Construction Information Visualization System Using nD CAD Model

Authors: Hyeon-seoung Kim, Sang-mi Park, Sun-ju Han, Leen-seok Kang

Abstract:

The visualization technology of construction information using 3D and nD modeling can satisfy the visualization needs of each construction project participant. The nD CAD system is a tool that the construction information, such as construction schedule, cost and resource utilization, are simulated by 4D, 5D and 6D object formats based on 3D object. This study developed a methodology and simulation engine for nD CAD system for construction project management. It has improved functions such as built-in schedule generation, cost simulation of changed budget and built-in resource allocation comparing with the current systems. To develop an integrated nD CAD system, this study attempts an integrated method to link 5D and 6D objects based on 4D object.

Keywords: building information modeling, visual simulation, 3D object, nD CAD augmented reality

Procedia PDF Downloads 312
13199 Assessing the Nutritional Characteristics and Habitat Modeling of the Comorian’s Yam (Dioscorea comorensis) in a Fragmented Landscape

Authors: Mounir Soule, Hindatou Saidou, Razafimahefa, Mohamed Thani Ibouroi

Abstract:

High levels of habitat fragmentation and loss are the main drivers of plant species extinction. They reduce the habitat quality, which is a determining factor for the reproduction of plant species, and generate strong selective pressures for habitat selection, with impacts on the reproduction and survival of individuals. The Comorian’s yam (Dioscorea comorensis) is one of the most threatened plant species of the Comoros archipelago. The species faces one of the highest rates of habitat loss worldwide (9.3 % per year) and is classified as Endangered in the IUCN red list. Despite the nutritional potential of this tuber, the Comorian’s yam cultivation remains neglected by local populations due probably to lack of knowledge on its nutritional importance and the factors driving its spatial distribution and development. In this study, we assessed the nutritional characteristics of Dioscorea comorensis and the drivers of spatial distribution and abundance to propose conservation measures and improve crop yields. To determine the nutritional characteristics, the Kjeldahl method, the Soxhlet method, and Atwater's specific calorific coefficients methods were applied for analyzing proteins, lipids, and caloric energy respectively. In addition, atomic absorption spectrometry was used to measure mineral particles. By combining species occurrences with ecological (habitat types), climatic (temperature, rainfall, etc.), and physicochemical (soil types and quality) variables, we assessed habitat suitability and spatial distribution of the species and the factors explaining the origin, persistence, distribution and competitive capacity of a species using a Species Distribution Modeling (SDM) method. The results showed that the species contains 83.37% carbohydrates, 6.37% protein, and 0.45% lipids. In 100 grams, the quantities of Calcium, Sodium, Zinc, Iron, Copper, Potassium, Phosphorus, Magnesium, and Manganese are respectively 422.70, 599.41, 223.11, 252.32, 332.20, 780.41, 444.17, 287.71 and 220.73 mg. Its PRAL index is negative (- 9.80 mEq/100 g), and its Ca/P (0.95) and Na/K (0.77) ratios are less than 1. This species provides an energy value of 357.46 Kcal per 100 g, thanks to its carbohydrates and minerals and is distinguished from others by its high protein content, offering benefits for cardiovascular health. According to our SDM, the species has a very limited distribution, restricted to forests with higher biomass, humidity, and clay. Our findings highlight how distribution patterns are related to ecological and environmental factors. They also emphasize how the Comoros yam is beneficial in terms of nutritional quality. Our results represent a basic knowledge that will help scientists and decision-makers to develop conservation strategies and to improve crop yields.

Keywords: Dioscorea comorensis, nutritional characteristics, species distribution modeling, conservation strategies, crop yields improvement

Procedia PDF Downloads 31
13198 Impact of Transportation on the Economic Growth of Nigeria

Authors: E. O. E. Nnadi

Abstract:

Transportation is a critical factor in the economic growth and development of any nation, region or state. Good transportation network supports every sector of the economy like the manufacturing, transportation and encourages investors thereby affect the overall economic prosperity. The paper evaluates the impact of transportation on the economic growth of Nigeria using south eastern states as a case study. The choice of the case study is its importance as the commercial and industrial nerve of the country. About 200 respondents who are of different professions such as dealers in goods, transporters, contractors, consultants, bankers were selected and a set of questionnaire were administered to using the systematic sampling technique in the five states of the region. Descriptive statistics and relative importance index (RII) technique was employed for the analysis of the data gathered. The findings of the analysis reveal that Nigeria has the least effective ratio per population in Africa of 949.91 km/Person. Conclusion was drawn to improve road network in the area and the country as a whole to enhance the economic activities of the people.

Keywords: economic growth, south-east, transportation, transportation cost, Nigeria

Procedia PDF Downloads 273
13197 Analyzing Information Management in Science and Technology Institute Libraries in India

Authors: P. M. Naushad Ali

Abstract:

India’s strength in basic research is recognized internationally. Science and Technology research in India has been performed by six distinct bodies or organizations such as Cooperative Research Associations, Autonomous Research Council, Institute under Ministries, Industrial R&D Establishment, Universities, Private Institutions. All most all these institutions are having a well-established library/information center to cater the information needs of their users like scientists and technologists. Information Management (IM) comprises disciplines concerned with the study and the effective and efficient management of information and resources, products and services as well as the understanding of the involved technologies and the people engaged in this activity. It is also observed that the libraries and information centers in India are also using modern technologies for the management of various activities and services to serve their users in a better way. Science and Technology libraries in the country are usually better equipped because the investment in Science and Technology in the country are much larger than those in other fields. Thus, most of the Science and Technology libraries are equipped with modern IT-based tools for handling and management of library services. In spite of these facts Science and Technology libraries are having all the characteristics of a model organization where computer application is found most successful, however, the adoption of this IT based management tool is not uniform in these libraries. The present study will help to know about the level use of IT-based management tools for the information management of Science and Technology libraries in India. The questionnaire, interview, observation and document review techniques have been used in data collection. Finally, the author discusses findings of the study and put forward some suggestions to improve the quality of Science and Technology institute library services in India.

Keywords: information management, science and technology libraries, India, IT-based tools

Procedia PDF Downloads 393
13196 Asymptotic Spectral Theory for Nonlinear Random Fields

Authors: Karima Kimouche

Abstract:

In this paper, we consider the asymptotic problems in spectral analysis of stationary causal random fields. We impose conditions only involving (conditional) moments, which are easily verifiable for a variety of nonlinear random fields. Limiting distributions of periodograms and smoothed periodogram spectral density estimates are obtained and applications to the spectral domain bootstrap are given.

Keywords: spatial nonlinear processes, spectral estimators, GMC condition, bootstrap method

Procedia PDF Downloads 453
13195 A Study of Adult Lifelong Learning Consulting and Service System in Taiwan

Authors: Wan Jen Chang

Abstract:

Back ground: Taiwan's current adult lifelong learning services have expanded from vocational training to universal lifelong learning. However, both the professional knowledge training of learning guidance and consulting services and the provision of adult online learning consulting service systems still need to be established. Purpose: The purposes of this study are as follows: 1. Analyze the professional training mechanism for cultivating adult lifelong learning consultation and coaching; 2. Explore the feasibility of constructing a system that uses network technology to provide adult learning consultation services. Research design: This study conducts a literature analysis of counseling and coaching policy reports on lifelong learning in European countries and the United States. There are two focus discussions were conducted with 15 lifelong learning scholars, experts and practitioners as research subjects. The following two topics were discussed and suggested: 1. The current situation, needs and professional ability training mechanism of "Adult Lifelong Learning Consulting and Services"; 2. Strategies for establishing an "Adult Lifelong Learning Consulting and Service internet System". Conclusion: 1.Based on adult lifelong learning consulting and service needs, plan a professional knowledge training and certification system.2.Adult lifelong learning consulting and service professional knowledge and skills training should include the use of network technology to provide consulting service skills.3.To establish an adult lifelong learning consultation and service system, the Ministry of Education should promulgate policies and measures at the central level and entrust local governments or private organizations to implement them.4.The adult lifelong learning consulting and service system can combine the national qualifications framework, private sector and NPO to expand learning consulting service partners.

Keywords: adult lifelong learning, profesional knowledge, consulting and service, network system

Procedia PDF Downloads 67
13194 Presenting a Job Scheduling Algorithm Based on Learning Automata in Computational Grid

Authors: Roshanak Khodabakhsh Jolfaei, Javad Akbari Torkestani

Abstract:

As a cooperative environment for problem-solving, it is necessary that grids develop efficient job scheduling patterns with regard to their goals, domains and structure. Since the Grid environments facilitate distributed calculations, job scheduling appears in the form of a critical problem for the management of Grid sources that influences severely on the efficiency for the whole Grid environment. Due to the existence of some specifications such as sources dynamicity and conditions of the network in Grid, some algorithm should be presented to be adjustable and scalable with increasing the network growth. For this purpose, in this paper a job scheduling algorithm has been presented on the basis of learning automata in computational Grid which the performance of its results were compared with FPSO algorithm (Fuzzy Particle Swarm Optimization algorithm) and GJS algorithm (Grid Job Scheduling algorithm). The obtained numerical results indicated the superiority of suggested algorithm in comparison with FPSO and GJS. In addition, the obtained results classified FPSO and GJS in the second and third position respectively after the mentioned algorithm.

Keywords: computational grid, job scheduling, learning automata, dynamic scheduling

Procedia PDF Downloads 343
13193 Information and Communication Technology in Architectural Education: The Challenges

Authors: Oluropo Stephen Ilesanmi, Oluwole Ayodele Alejo

Abstract:

Architectural education, beyond training the students to become architects, impacts in them the appreciation of the responsibilities relating to public health, safety, and welfare. Architecture is no longer a personal philosophical or aesthetic pursuit by individuals, rather, it has to consider everyday needs of the people and use technology to give a liveable environment. In the present age, architectural education must have to grapple with the recent integration of technology, in particular, facilities offered by information and communication technology. Electronic technologies have moved architecture from the drawing board to cyberspace. The world is now a global village in which new information and methods are easily and quickly available to people at different poles of the globe. It is the position of this paper that in order to remain relevant in the ever-competing forces within the building industry, architectural education must show the impetus to continue to draw from technological advancements associated with the use of computers.

Keywords: architecture, education, communication, information, technology

Procedia PDF Downloads 209
13192 Cascaded Neural Network for Internal Temperature Forecasting in Induction Motor

Authors: Hidir S. Nogay

Abstract:

In this study, two systems were created to predict interior temperature in induction motor. One of them consisted of a simple ANN model which has two layers, ten input parameters and one output parameter. The other one consisted of eight ANN models connected each other as cascaded. Cascaded ANN system has 17 inputs. Main reason of cascaded system being used in this study is to accomplish more accurate estimation by increasing inputs in the ANN system. Cascaded ANN system is compared with simple conventional ANN model to prove mentioned advantages. Dataset was obtained from experimental applications. Small part of the dataset was used to obtain more understandable graphs. Number of data is 329. 30% of the data was used for testing and validation. Test data and validation data were determined for each ANN model separately and reliability of each model was tested. As a result of this study, it has been understood that the cascaded ANN system produced more accurate estimates than conventional ANN model.

Keywords: cascaded neural network, internal temperature, inverter, three-phase induction motor

Procedia PDF Downloads 345
13191 Genome-Wide Expression Profiling of Cicer arietinum Heavy Metal Toxicity

Authors: B. S. Yadav, A. Mani, S. Srivastava

Abstract:

Chickpea (Cicer arietinum L.) is an annual, self-pollinating, diploid (2n = 2x = 16) pulse crop that ranks second in world legume production after common bean (Phaseolus vulgaris). ICC 4958 flowers approximately 39 days after sowing under peninsular Indian conditions and the crop matures in less than 90 days in rained environments. The estimated collective yield losses due to abiotic stresses (6.4 million t) have been significantly higher than for biotic stresses (4.8 million t). Most legumes are known to be salt sensitive, and therefore, it is becoming increasingly important to produce cultivars tolerant to high-salinity in addition to other abiotic and biotic stresses for sustainable chickpea production. Our aim was to identify the genes that are involved in the defence mechanism against heavy metal toxicity in chickpea and establish the biological network of heavy metal toxicity in chickpea. ICC4958 variety of chick pea was taken and grown in normal condition and 150µM concentration of different heavy metal salt like CdCl₂, K₂Cr2O₇, NaAsO₂. At 15th day leave samples were collected and stored in RNA Later solution microarray was performed for checking out differential gene expression pattern. Our studies revealed that 111 common genes that involved in defense mechanism were up regulated and 41 genes were commonly down regulated during treatment of 150µM concentration of CdCl₂, K₂Cr₂O₇, and NaAsO₂. Biological network study shows that the genes which are differentially expressed are highly connected and having high betweenness and centrality.

Keywords: abiotic stress, biological network, chickpea, microarray

Procedia PDF Downloads 197
13190 Sea Surface Trend over the Arabian Sea and Its Influence on the South West Monsoon Rainfall Variability over Sri Lanka

Authors: Sherly Shelton, Zhaohui Lin

Abstract:

In recent decades, the inter-annual variability of summer precipitation over the India and Sri Lanka has intensified significantly with an increased frequency of both abnormally dry and wet summers. Therefore prediction of the inter-annual variability of summer precipitation is crucial and urgent for water management and local agriculture scheduling. However, none of the hypotheses put forward so far could understand the relationship to monsoon variability and related factors that affect to the South West Monsoon (SWM) variability in Sri Lanka. This study focused to identify the spatial and temporal variability of SWM rainfall events from June to September (JJAS) over Sri Lanka and associated trend. The monthly rainfall records covering 1980-2013 over the Sri Lanka are used for 19 stations to investigate long-term trends in SWM rainfall over Sri Lanka. The linear trends of atmospheric variables are calculated to understand the drivers behind the changers described based on the observed precipitation, sea surface temperature and atmospheric reanalysis products data for 34 years (1980–2013). Empirical orthogonal function (EOF) analysis was applied to understand the spatial and temporal behaviour of seasonal SWM rainfall variability and also investigate whether the trend pattern is the dominant mode that explains SWM rainfall variability. The spatial and stations based precipitation over the country showed statistically insignificant decreasing trends except few stations. The first two EOFs of seasonal (JJAS) mean of rainfall explained 52% and 23 % of the total variance and first PC showed positive loadings of the SWM rainfall for the whole landmass while strongest positive lording can be seen in western/ southwestern part of the Sri Lanka. There is a negative correlation (r ≤ -0.3) between SMRI and SST in the Arabian Sea and Central Indian Ocean which indicate that lower temperature in the Arabian Sea and Central Indian Ocean are associated with greater rainfall over the country. This study also shows that consistently warming throughout the Indian Ocean. The result shows that the perceptible water over the county is decreasing with the time which the influence to the reduction of precipitation over the area by weakening drawn draft. In addition, evaporation is getting weaker over the Arabian Sea, Bay of Bengal and Sri Lankan landmass which leads to reduction of moisture availability required for the SWM rainfall over Sri Lanka. At the same time, weakening of the SST gradients between Arabian Sea and Bay of Bengal can deteriorate the monsoon circulation, untimely which diminish SWM over Sri Lanka. The decreasing trends of moisture, moisture transport, zonal wind, moisture divergence with weakening evaporation over Arabian Sea, during the past decade having an aggravating influence on decreasing trends of monsoon rainfall over the Sri Lanka.

Keywords: Arabian Sea, moisture flux convergence, South West Monsoon, Sri Lanka, sea surface temperature

Procedia PDF Downloads 132
13189 Unpacking the Spatial Outcomes of Public Transportation in a Developing Country Context: The Case of Johannesburg

Authors: Adedayo B. Adegbaju, Carel B. Schoeman, Ilse M. Schoeman

Abstract:

The unique urban contexts that emanated from the apartheid history of South Africa informed the transport landscape of the City of Johannesburg. Apartheid‘s divisive spatial planning and land use management policies promoted sprawling and separated workers from job opportunities. This was further exacerbated by poor funding of public transport and road designs that encouraged the use of private cars. However, the democratization of the country in 1994 and the hosting of the 2010 FIFA World Cup provided a new impetus to the city’s public transport-oriented urban planning inputs. At the same time, the state’s new approach to policy formulations that entails the provision of public transport as one of the tools to end years of marginalization and inequalities soon began to largely reflect in planning decisions of other spheres of government. The Rea Vaya BRT and the Gautrain were respectively implemented by the municipal and provincial governments to demonstrate strong political will and commitment to the new policy direction. While the Gautrain was implemented to facilitate elite movement within Gauteng and to crowd investments and economic growths around station nodes, the BRT was provided for previously marginalized public transport users to provide a sustainable alternative to the dominant minibus taxi. The aim of this research is to evaluate the spatial impacts of the Gautrain and Rea Vaya BRT on the City of Johannesburg and to inform future outcomes by determining the existing potentials. By using the case study approach with a focus on the BRT and fast rail in a metropolitan context, the triangulation research method, which combines various data collection methods, was used to determine the research outcomes. The use of interviews, questionnaires, field observation, and databases such as REX, Quantec, StatsSA, GCRO observatory, national and provincial household travel surveys, and the quality of life surveys provided the basis for data collection. The research concludes that the Gautrain has demonstrated that viable alternatives to the private car can be provided, with its satisfactory feedbacks from users; while some of its station nodes (Sandton, Rosebank) have shown promises of transit-oriented development, one of the project‘s key objectives. The other stations have been unable to stimulate growth due to reasons like non-implementation of their urban design frameworks and lack of public sector investment required to attract private investors. The Rea Vaya BRT continues to be expanded in spite of both its inability to induce modal change and its low ridership figures. The research identifies factors like the low peak to base ratio, pricing, and the city‘s disjointed urban fabric as some of the reasons for its below-average performance. By drawing from the highlights and limitations, the study recommends that public transport provision should be institutionally integrated across and within spheres of government. Similarly, harmonization of the funding structure, better understanding of users’ needs, and travel patterns, underlined with continuity of policy direction and objectives, will equally promote optimal outcomes.

Keywords: bus rapid transit, Gautrain, Rea Vaya, sustainable transport, spatial and transport planning, transit oriented development

Procedia PDF Downloads 114
13188 Access to Climate Change Information Through the Implementation of the Paris Agreement

Authors: Ana Cristina A. P. Carvalho, Solange Teles Da Silva

Abstract:

In April, 174 countries signed the Paris Agreement, a multilateral agreement on climate change which deals with greenhouse gas emissions, mitigation, adaptation, finance, access to information, transparency, among other subjects related to the environment. Since then, Parties shall cooperate in taking measures, as appropriate, to enhance climate change education, training, public awareness, public participation and public access to information, recognizing the importance of these steps with respect to enhancing actions under this Agreement. This paper aims to analyze the consequences of this new rule in terms of the implementation of the Agreement, collecting data from Brazilian and Canadian legislations in order to identify if these countries have rules complying with the Treaty, the steps that have been already taken and if they could be used as examples for other countries. The analysis will take into consideration the different kinds of climate change information, means of transparency, reliability of the data and how to spread the information. The methodology comprehends a comparative legal research based on both the Paris Agreement and domestic laws of Brazil and Canada, as well as on doctrine and Court decisions. The findings can contribute to the implementation of the Paris Agreement through compliance with this Treaty at countries’ domestic and policy level.

Keywords: climate change information, domestic legislation, Paris Agreement, public policy

Procedia PDF Downloads 309
13187 American Sign Language Recognition System

Authors: Rishabh Nagpal, Riya Uchagaonkar, Venkata Naga Narasimha Ashish Mernedi, Ahmed Hambaba

Abstract:

The rapid evolution of technology in the communication sector continually seeks to bridge the gap between different communities, notably between the deaf community and the hearing world. This project develops a comprehensive American Sign Language (ASL) recognition system, leveraging the advanced capabilities of convolutional neural networks (CNNs) and vision transformers (ViTs) to interpret and translate ASL in real-time. The primary objective of this system is to provide an effective communication tool that enables seamless interaction through accurate sign language interpretation. The architecture of the proposed system integrates dual networks -VGG16 for precise spatial feature extraction and vision transformers for contextual understanding of the sign language gestures. The system processes live input, extracting critical features through these sophisticated neural network models, and combines them to enhance gesture recognition accuracy. This integration facilitates a robust understanding of ASL by capturing detailed nuances and broader gesture dynamics. The system is evaluated through a series of tests that measure its efficiency and accuracy in real-world scenarios. Results indicate a high level of precision in recognizing diverse ASL signs, substantiating the potential of this technology in practical applications. Challenges such as enhancing the system’s ability to operate in varied environmental conditions and further expanding the dataset for training were identified and discussed. Future work will refine the model’s adaptability and incorporate haptic feedback to enhance the interactivity and richness of the user experience. This project demonstrates the feasibility of an advanced ASL recognition system and lays the groundwork for future innovations in assistive communication technologies.

Keywords: sign language, computer vision, vision transformer, VGG16, CNN

Procedia PDF Downloads 43