Search results for: industrial scale nano-CaCO3
5952 Extracellular Laccase Production by Co-culture between Galactomyces reesii IFO 10823 and Filamentous Fungal Strains Isolated from Fungus Comb Using Natural Inducer
Authors: P. Chaijak, M. Lertworapreecha, C. Sukkasem
Abstract:
Extracellular laccases are copper-containing microbial enzymes with many industrial biotechnological applications. This study evaluated the ability of nutrients in coconut coir to enhance the yield of extracellular laccase of Galactomyces reesii IFO 10823 and develop a co-culture between this yeast and other filamentous fungi isolated from the fungus comb of Macrotermes sp. The co-culture between G. reesii IFO 10823 and M. indicus FJ-M-5 (G3) gave the highest activity at 580.20 U/mL. When grown in fermentation media prepared from coconut coir and distilled water at 70% of initial moisture without supplement addition, G3 produced extracellular laccase of 113.99 U/mL.Keywords: extracellular laccase, production, yeast, natural inducer
Procedia PDF Downloads 2665951 Calibration of Residential Buildings Energy Simulations Using Real Data from an Extensive in situ Sensor Network – A Study of Energy Performance Gap
Authors: Mathieu Bourdeau, Philippe Basset, Julien Waeytens, Elyes Nefzaoui
Abstract:
As residential buildings account for a third of the overall energy consumption and greenhouse gas emissions in Europe, building energy modeling is an essential tool to reach energy efficiency goals. In the energy modeling process, calibration is a mandatory step to obtain accurate and reliable energy simulations. Nevertheless, the comparison between simulation results and the actual building energy behavior often highlights a significant performance gap. The literature discusses different origins of energy performance gaps, from building design to building operation. Then, building operation description in energy models, especially energy usages and users’ behavior, plays an important role in the reliability of simulations but is also the most accessible target for post-occupancy energy management and optimization. Therefore, the present study aims to discuss results on the calibration ofresidential building energy models using real operation data. Data are collected through a sensor network of more than 180 sensors and advanced energy meters deployed in three collective residential buildings undergoing major retrofit actions. The sensor network is implemented at building scale and in an eight-apartment sample. Data are collected for over one year and half and coverbuilding energy behavior – thermal and electricity, indoor environment, inhabitants’ comfort, occupancy, occupants behavior and energy uses, and local weather. Building energy simulations are performed using a physics-based building energy modeling software (Pleaides software), where the buildings’features are implemented according to the buildingsthermal regulation code compliance study and the retrofit project technical files. Sensitivity analyses are performed to highlight the most energy-driving building features regarding each end-use. These features are then compared with the collected post-occupancy data. Energy-driving features are progressively replaced with field data for a step-by-step calibration of the energy model. Results of this study provide an analysis of energy performance gap on an existing residential case study under deep retrofit actions. It highlights the impact of the different building features on the energy behavior and the performance gap in this context, such as temperature setpoints, indoor occupancy, the building envelopeproperties but also domestic hot water usage or heat gains from electric appliances. The benefits of inputting field data from an extensive instrumentation campaign instead of standardized scenarios are also described. Finally, the exhaustive instrumentation solution provides useful insights on the needs, advantages, and shortcomings of the implemented sensor network for its replicability on a larger scale and for different use cases.Keywords: calibration, building energy modeling, performance gap, sensor network
Procedia PDF Downloads 1615950 Particle Swarm Optimisation of a Terminal Synergetic Controllers for a DC-DC Converter
Authors: H. Abderrezek, M. N. Harmas
Abstract:
DC-DC converters are widely used as reliable power source for many industrial and military applications, computers and electronic devices. Several control methods were developed for DC-DC converters control mostly with asymptotic convergence. Synergetic control (SC) is a proven robust control approach and will be used here in a so-called terminal scheme to achieve finite time convergence. Lyapunov synthesis is adopted to assure controlled system stability. Furthermore particle swarm optimization (PSO) algorithm, based on an integral time absolute of error (ITAE) criterion will be used to optimize controller parameters. Simulation of terminal synergetic control of a DC-DC converter is carried out for different operating conditions and results are compared to classic synergetic control performance, that which demonstrate the effectiveness and feasibility of the proposed control method.Keywords: DC-DC converter, PSO, finite time, terminal, synergetic control
Procedia PDF Downloads 5035949 Evaluation of Cooperative Hand Movement Capacity in Stroke Patients Using the Cooperative Activity Stroke Assessment
Authors: F. A. Thomas, M. Schrafl-Altermatt, R. Treier, S. Kaufmann
Abstract:
Stroke is the main cause of adult disability. Especially upper limb function is affected in most patients. Recently, cooperative hand movements have been shown to be a promising type of upper limb training in stroke rehabilitation. In these movements, which are frequently found in activities of daily living (e.g. opening a bottle, winding up a blind), the force of one upper limb has to be equally counteracted by the other limb to successfully accomplish a task. The use of standardized and reliable clinical assessments is essential to evaluate the efficacy of therapy and the functional outcome of a patient. Many assessments for upper limb function or impairment are available. However, the evaluation of cooperative hand movement tasks are rarely included in those. Thus, the aim of this study was (i) to develop a novel clinical assessment (CASA - Cooperative Activity Stroke Assessment) for the evaluation of patients’ capacity to perform cooperative hand movements and (ii) to test its inter- and interrater reliability. Furthermore, CASA scores were compared to current gold standard assessments for upper extremity in stroke patients (i.e. Fugl-Meyer Assessment, Box & Blocks Test). The CASA consists of five cooperative activities of daily living including (1) opening a jar, (2) opening a bottle, (3) open and closing of a zip, (4) unscrew a nut and (5) opening a clipbox. Here, the goal is to accomplish the tasks as fast as possible. In addition to the quantitative rating (i.e. time) which is converted to a 7-point scale, also the quality of the movement is rated in a 4-point scale. To test the reliability of CASA, fifteen stroke subjects were tested within a week twice by the same two raters. Intra-and interrater reliability was calculated using the intraclass correlation coefficient (ICC) for total CASA score and single items. Furthermore, Pearson-correlation was used to compare the CASA scores to the scores of Fugl-Meyer upper limb assessment and the box and blocks test, which were assessed in every patient additionally to the CASA. ICC scores of the total CASA score indicated an excellent- and single items established a good to excellent inter- and interrater reliability. Furthermore, the CASA score was significantly correlated to the Fugl-Meyer and Box & Blocks score. The CASA provides a reliable assessment for cooperative hand movements which are crucial for many activities of daily living. Due to its non-costly setup, easy and fast implementation, we suggest it to be well suitable for clinical application. In conclusion, the CASA is a useful tool in assessing the functional status and therapy related recovery in cooperative hand movement capacity in stroke patients.Keywords: activitites of daily living, clinical assessment, cooperative hand movements, reliability, stroke
Procedia PDF Downloads 3205948 Energy Management System
Authors: S. Periyadharshini, K. Ramkumar, S. Jayalalitha, M. GuruPrasath, R. Manikandan
Abstract:
This paper presents a formulation and solution for industrial load management and product grade problem. The formulation is created using linear programming technique thereby optimizing the electricity cost by scheduling the loads satisfying the process, storage, time zone and production constraints which will create an impact of reducing maximum demand and thereby reducing the electricity cost. Product grade problem is formulated using integer linear programming technique of optimization using lingo software and the results show that overall increase in profit margin. In this paper, time of use tariff is utilized and this technique will provide significant reductions in peak electricity consumption.Keywords: cement industries, integer programming, optimal formulation, objective function, constraints
Procedia PDF Downloads 5935947 Study on the Geometric Similarity in Computational Fluid Dynamics Calculation and the Requirement of Surface Mesh Quality
Authors: Qian Yi Ooi
Abstract:
At present, airfoil parameters are still designed and optimized according to the scale of conventional aircraft, and there are still some slight deviations in terms of scale differences. However, insufficient parameters or poor surface mesh quality is likely to occur if these small deviations are embedded in a future civil aircraft with a size that is quite different from conventional aircraft, such as a blended-wing-body (BWB) aircraft with future potential, resulting in large deviations in geometric similarity in computational fluid dynamics (CFD) simulations. To avoid this situation, the study on the CFD calculation on the geometric similarity of airfoil parameters and the quality of the surface mesh is conducted to obtain the ability of different parameterization methods applied on different airfoil scales. The research objects are three airfoil scales, including the wing root and wingtip of conventional civil aircraft and the wing root of the giant hybrid wing, used by three parameterization methods to compare the calculation differences between different sizes of airfoils. In this study, the constants including NACA 0012, a Reynolds number of 10 million, an angle of attack of zero, a C-grid for meshing, and the k-epsilon (k-ε) turbulence model are used. The experimental variables include three airfoil parameterization methods: point cloud method, B-spline curve method, and class function/shape function transformation (CST) method. The airfoil dimensions are set to 3.98 meters, 17.67 meters, and 48 meters, respectively. In addition, this study also uses different numbers of edge meshing and the same bias factor in the CFD simulation. Studies have shown that with the change of airfoil scales, different parameterization methods, the number of control points, and the meshing number of divisions should be used to improve the accuracy of the aerodynamic performance of the wing. When the airfoil ratio increases, the most basic point cloud parameterization method will require more and larger data to support the accuracy of the airfoil’s aerodynamic performance, which will face the severe test of insufficient computer capacity. On the other hand, when using the B-spline curve method, average number of control points and meshing number of divisions should be set appropriately to obtain higher accuracy; however, the quantitative balance cannot be directly defined, but the decisions should be made repeatedly by adding and subtracting. Lastly, when using the CST method, it is found that limited control points are enough to accurately parameterize the larger-sized wing; a higher degree of accuracy and stability can be obtained by using a lower-performance computer.Keywords: airfoil, computational fluid dynamics, geometric similarity, surface mesh quality
Procedia PDF Downloads 2225946 Assessment of Water Reuse Potential in a Metal Finishing Factory
Authors: Efe Gumuslu, Guclu Insel, Gülten Yuksek, Nilay Sayi Ucar, Emine Ubay Cokgor, Tuğba Olmez Hanci, Didem Okutman Tas, Fatoş Germirli Babuna, Derya Firat Ertem, Ökmen Yildirim, Özge Erturan, Betül Kirci
Abstract:
Although water reclamation and reuse are inseparable parts of sustainable production concept all around the world, current levels of reuse constitute only a small fraction of the total volume of industrial effluents. Nowadays, within the perspective of serious climate change, wastewater reclamation and reuse practices should be considered as a requirement. Industrial sector is one of the largest users of water sources. The OECD Environmental Outlook to 2050 predicts that global water demand for manufacturing will increase by 400% from 2000 to 2050 which is much larger than any other sector. Metal finishing industry is one of the industries that requires high amount of water during the manufacturing. Therefore, actions regarding the improvement of wastewater treatment and reuse should be undertaken on both economic and environmental sustainability grounds. Process wastewater can be reused for more purposes if the appropriate treatment systems are installed to treat the wastewater to the required quality level. Recent studies showed that membrane separation techniques may help in solving the problem of attaining a suitable quality of water that allows being recycled back to the process. The metal finishing factory where this study is conducted is one of the biggest white-goods manufacturers in Turkey. The sheet metal parts used in the cookers production have to be exposed to surface pre-treatment processes composed of degreasing, rinsing, nanoceramics coating and deionization rinsing processes, consecutively. The wastewater generating processes in the factory are enamel coating, painting and styrofoam processes. In the factory, the main source of water is the well water. While some part of the well water is directly used in the processes after passing through resin treatment, some portion of it is directed to the reverse osmosis treatment to obtain required water quality for enamel coating and painting processes. In addition to these processes another important source of water that can be considered as a potential water source is rainwater (3660 tons/year). In this study, process profiles as well as pollution profiles were assessed by a detailed quantitative and qualitative characterization of the wastewater sources generated in the factory. Based on the preliminary results the main water sources that can be considered for reuse in the processes were determined as painting and styrofoam processes.Keywords: enamel coating, painting, reuse, wastewater
Procedia PDF Downloads 3805945 Continuous Manufacturing of Ultra Fine Grained Materials by Severe Plastic Deformation Methods
Authors: Aslı Günay Bulutsuz, Mehmet Emin Yurci
Abstract:
Severe plastic deformation techniques are top-down deformation methods which enable superior mechanical properties by decreasing grain size. Different kind severe plastic deformation methods have been widely being used at various process temperature and geometries. Besides manufacturing advantages of severe plastic deformation technique, most of the types are being used only at the laboratory level. They cannot be adapted to industrial usage due to their continuous manufacturability and manufacturing costs. In order to enhance these manufacturing difficulties and enable widespread usage, different kinds of methods have been developed. In this review, a comprehensive literature research was fulfilled in order to highlight continuous severe plastic deformation methods.Keywords: continuous manufacturing, severe plastic deformation, ultrafine grains, grain size refinement
Procedia PDF Downloads 2385944 Using Fractal Architectures for Enhancing the Thermal-Fluid Transport
Authors: Surupa Shaw, Debjyoti Banerjee
Abstract:
Enhancing heat transfer in compact volumes is a challenge when constrained by cost issues, especially those associated with requirements for minimizing pumping power consumption. This is particularly acute for electronic chip cooling applications. Technological advancements in microelectronics have led to development of chip architectures that involve increased power consumption. As a consequence packaging, technologies are saddled with needs for higher rates of power dissipation in smaller form factors. The increasing circuit density, higher heat flux values for dissipation and the significant decrease in the size of the electronic devices are posing thermal management challenges that need to be addressed with a better design of the cooling system. Maximizing surface area for heat exchanging surfaces (e.g., extended surfaces or “fins”) can enable dissipation of higher levels of heat flux. Fractal structures have been shown to maximize surface area in compact volumes. Self-replicating structures at multiple length scales are called “Fractals” (i.e., objects with fractional dimensions; unlike regular geometric objects, such as spheres or cubes whose volumes and surface area values scale as integer values of the length scale dimensions). Fractal structures are expected to provide an appropriate technology solution to meet these challenges for enhanced heat transfer in the microelectronic devices by maximizing surface area available for heat exchanging fluids within compact volumes. In this study, the effect of different fractal micro-channel architectures and flow structures on the enhancement of transport phenomena in heat exchangers is explored by parametric variation of fractal dimension. This study proposes a model that would enable cost-effective solutions for thermal-fluid transport for energy applications. The objective of this study is to ascertain the sensitivity of various parameters (such as heat flux and pressure gradient as well as pumping power) to variation in fractal dimension. The role of the fractal parameters will be instrumental in establishing the most effective design for the optimum cooling of microelectronic devices. This can help establish the requirement of minimal pumping power for enhancement of heat transfer during cooling. Results obtained in this study show that the proposed models for fractal architectures of microchannels significantly enhanced heat transfer due to augmentation of surface area in the branching networks of varying length-scales.Keywords: fractals, microelectronics, constructal theory, heat transfer enhancement, pumping power enhancement
Procedia PDF Downloads 3195943 RoboWeedSupport-Semi-Automated Unmanned Aerial System for Cost Efficient High Resolution in Sub-Millimeter Scale Acquisition of Weed Images
Authors: Simon L. Madsen, Mads Dyrmann, Morten S. Laursen, Rasmus N. Jørgensen
Abstract:
Recent advances in the Unmanned Aerial System (UAS) safety and perception systems enable safe low altitude autonomous terrain following flights recently demonstrated by the consumer DJI Mavic PRO and Phamtom 4 Pro drones. This paper presents the first prototype system utilizing this functionality in form of semi-automated UAS based collection of crop/weed images where the embedded perception system ensures a significantly safer and faster gathering of weed images with sub-millimeter resolution. The system is to be used when the weeds are at cotyledon stage and prior to the harvest recognizing the grass weed species, which cannot be discriminated at the cotyledon stage.Keywords: weed mapping, UAV, DJI SDK, automation, cotyledon plants
Procedia PDF Downloads 3095942 Investigating the Impact of Task Demand and Duration on Passage of Time Judgements and Duration Estimates
Authors: Jesika A. Walker, Mohammed Aswad, Guy Lacroix, Denis Cousineau
Abstract:
There is a fundamental disconnect between the experience of time passing and the chronometric units by which time is quantified. Specifically, there appears to be no relationship between the passage of time judgments (PoTJs) and verbal duration estimates at short durations (e.g., < 2000 milliseconds). When a duration is longer than several minutes, however, evidence suggests that a slower feeling of time passing is predictive of overestimation. Might the length of a task moderate the relation between PoTJs and duration estimates? Similarly, the estimation paradigm (prospective vs. retrospective) and the mental effort demanded of a task (task demand) have both been found to influence duration estimates. However, only a handful of experiments have investigated these effects for tasks of long durations, and the results have been mixed. Thus, might the length of a task also moderate the effects of the estimation paradigm and task demand on duration estimates? To investigate these questions, 273 participants performed either an easy or difficult visual and memory search task for either eight or 58 minutes, under prospective or retrospective instructions. Afterward, participants provided a duration estimate in minutes, followed by a PoTJ on a Likert scale (1 = very slow, 7 = very fast). A 2 (prospective vs. retrospective) × 2 (eight minutes vs. 58 minutes) × 2 (high vs. low difficulty) between-subjects ANOVA revealed a two-way interaction between task demand and task duration on PoTJs, p = .02. Specifically, time felt faster in the more challenging task, but only in the eight-minute condition, p < .01. Duration estimates were transformed into RATIOs (estimate/actual duration) to standardize estimates across durations. An ANOVA revealed a two-way interaction between estimation paradigm and task duration, p = .03. Specifically, participants overestimated the task more if they were given prospective instructions, but only in the eight-minute task. Surprisingly, there was no effect of task difficulty on duration estimates. Thus, the demands of a task may influence ‘feeling of time’ and ‘estimation time’ differently, contributing to the existing theory that these two forms of time judgement rely on separate underlying cognitive mechanisms. Finally, a significant main effect of task duration was found for both PoTJs and duration estimates (ps < .001). Participants underestimated the 58-minute task (m = 42.5 minutes) and overestimated the eight-minute task (m = 10.7 minutes). Yet, they reported the 58-minute task as passing significantly slower on a Likert scale (m = 2.5) compared to the eight-minute task (m = 4.1). In fact, a significant correlation was found between PoTJ and duration estimation (r = .27, p <.001). This experiment thus provides evidence for a compensatory effect at longer durations, in which people underestimate a ‘slow feeling condition and overestimate a ‘fast feeling condition. The results are discussed in relation to heuristics that might alter the relationship between these two variables when conditions range from several minutes up to almost an hour.Keywords: duration estimates, long durations, passage of time judgements, task demands
Procedia PDF Downloads 1325941 Eggshell Waste Bioprocessing for Sustainable Acid Phosphatase Production and Minimizing Environmental Hazards
Authors: Soad Abubakr Abdelgalil, Gaber Attia Abo-Zaid, Mohamed Mohamed Yousri Kaddah
Abstract:
Background: The Environmental Protection Agency has listed eggshell waste as the 15th most significant food industry pollution hazard. The utilization of eggshell waste as a source of renewable energy has been a hot topic in recent years. Therefore, finding a sustainable solution for the recycling and valorization of eggshell waste by investigating its potential to produce acid phosphatase (ACP) and organic acids by the newly-discovered B. sonorensis was the target of the current investigation. Results: The most potent ACP-producing B. sonorensis strain ACP2 was identified as a local bacterial strain obtained from the effluent of paper and pulp industries on basis of molecular and morphological characterization. The use of consecutive statistical experimental approaches of Plackett-Burman Design (PBD), and Orthogonal Central Composite Design (OCCD), followed by pH-uncontrolled cultivation conditions in a 7 L bench-top bioreactor, revealed an innovative medium formulation that substantially improved ACP production, reaching 216 U L⁻¹ with ACP yield coefficient Yp/x of 18.2 and a specific growth rate (µ) of 0.1 h⁻¹. The metals Ag+, Sn+, and Cr+ were the most efficiently released from eggshells during the solubilization process by B. sonorensis. The uncontrolled pH culture condition is the most suited and favored setting for improving the ACP and organic acids production simultaneously. Quantitative and qualitative analyses of produced organic acids were carried out using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Lactic acid, citric acid, and hydroxybenzoic acid isomer were the most common organic acids produced throughout the cultivation process. The findings of thermogravimetric analysis (TGA), differential scan calorimeter (DSC), scanning electron microscope (SEM), energy-dispersive spectroscopy (EDS), Fourier-Transform Infrared Spectroscopy (FTIR), and X-Ray Diffraction (XRD) analysis emphasize the significant influence of organic acids and ACP activity on the solubilization of eggshells particles. Conclusions: This study emphasized robust microbial engineering approaches for the large-scale production of a newly discovered acid phosphatase accompanied by organic acids production from B. sonorensis. The biovalorization of the eggshell waste and the production of cost-effective ACP and organic acids were integrated into the current study, and this was done through the implementation of a unique and innovative medium formulation design for eggshell waste management, as well as scaling up ACP production on a bench-top scale.Keywords: chicken eggshells waste, bioremediation, statistical experimental design, batch fermentation
Procedia PDF Downloads 3765940 Improvement of Deficient Soils in Nigeria Using Bagasse Ash - A Review
Authors: Musa Alhassan, Alhaji Mohammed Mustapha
Abstract:
Review of studies carried out on the use of bagasse ash in the improvement of deficient soils in Nigeria, with emphasis on lateritic and black cotton soils is presented. Although, the bagasse ash is mostly used as additive to the conventional soil stabilizer (cement and lime), the studies generally showed improvement of geotechnical properties of the soils either modified or stabilized with the ash. This showed the potentials of using this agricultural waste (bagasse ash) in the improvement of geotechnical properties of deficient soils. Thus suggesting that using this material at large scale level, in geotechnical engineering practice could help in the provision of stable and durable structures, reduce cost of soil improvement and also reduces environmental nuisance caused by the unused waste in NigeriaKeywords: bagasse ash, black cotton soil, deficient soil, laterite, soil improvement
Procedia PDF Downloads 4205939 Analytical Investigation of Ductility of Reinforced Concrete Beams Strengthening with Polypropylene Fibers
Authors: Rifat Sezer, Abdulhamid Aryan
Abstract:
The purpose of this study is to research both the ductility of the reinforced concrete beams without fiber and the ductility of the reinforced concrete beams with fiber. For this purpose, the analytical load - displacement curves of the beams were formed and the areas under these curves were compared. According to the results of this comparison, it is concluded that the reinforced concrete beams with polypropylene fiber are more ductile. The dimension of the used beam-samples for analytical model in this study is 20x30 cm, their length is 200 cm and their scale is ½. The reinforced concrete reference-beams are produced as one item and the reinforced concrete beams with P-0.60 kg/m3 polypropylene fiber are produced as one item. The modeling of reinforced concrete beams was utilized with Abaqus software.Keywords: polypropylene, fiber-reinforced beams, strengthening of the beams, abaqus program
Procedia PDF Downloads 4965938 Vibration of Nonhomogeneous Timoshenko Nanobeam Resting on Winkler-Pasternak Foundation
Authors: Somnath Karmakar, S. Chakraverty
Abstract:
This work investigates the vibration of nonhomogeneous Timoshenko nanobeam resting on the Winkler-Pasternak foundation. Eringen’s nonlocal theory has been used to investigate small-scale effects. The Differential Quadrature method is used to obtain the frequency parameters with various classical boundary conditions. The nonhomogeneous beam model has been considered, where Young’s modulus and density of the beam material vary linearly and quadratically. Convergence of frequency parameters is also discussed. The influence of mechanical properties and scaling parameters on vibration frequencies are investigated for different boundary conditions.Keywords: Timoshenko beam, Eringen's nonlocal theory, differential quadrature method, nonhomogeneous nanobeam
Procedia PDF Downloads 1155937 Analysis Thermal of Composite Material in Cold Systems
Authors: Elmo Thiago Lins Cöuras Ford, Valentina Alessandra Carvalho do Vale, Rubens Maribondo do Nascimento, José Ubiragi de Lima Mendes
Abstract:
Given the unquestionable need of environmental preservation of discarded industrial residues, The scrape of tires have been seen as a salutary alternative for addictive in concrete, asphalt production and of other composites materials. In this work, grew a composite the base of scrape of tire as reinforcement and latex as matrix, to be used as insulating thermal in "cold" systems (0º). Analyzed the acting of the material was what plays the thermal conservation when submitted the flow of heat. Verified the temperature profiles in the internal surfaces and it expresses of the composite as well as the temperature gradient in the same. As a consequence, in function of the answers of the system, conclusions were reached.Keywords: cold system, latex, flow of heat, asphalt production
Procedia PDF Downloads 4625936 Dynamics Analyses of Swing Structure Subject to Rotational Forces
Authors: Buntheng Chhorn, WooYoung Jung
Abstract:
Large-scale swing has been used in entertainment and performance, especially in circus, for a very long time. To increase the safety of this type of structure, a thorough analysis for displacement and bearing stress was performed for an extreme condition where a full cycle swing occurs. Different masses, ranging from 40 kg to 220 kg, and velocities were applied on the swing. Then, based on the solution of differential dynamics equation, swing velocity response to harmonic force was obtained. Moreover, the resistance capacity was estimated based on ACI steel structure design guide. Subsequently, numerical analysis was performed in ABAQUS to obtain the stress on each frame of the swing. Finally, the analysis shows that the expansion of swing structure frame section was required for mass bigger than 150kg.Keywords: swing structure, displacement, bearing stress, dynamic loads response, finite element analysis
Procedia PDF Downloads 3785935 Contribution to the Decision-Making Process for Selecting the Suitable Maintenance Policy
Authors: Nasser Y. Mahamoud, Pierre Dehombreux, Hassan E. Robleh
Abstract:
Industrial companies may be confronted with questions about their choice of maintenance policy. This choice must be guided by several numbers of decision criteria or objectives related to their production or service activities but also to their level of development and their investment prospects. A decision-support methodology to choose a maintenance policy (corrective, systematic or conditional preventive, predictive, opportunistic or not) is proposed to facilitate this choice using the main categories of the most important decision criteria. The different steps of this methodology are illustrated using theoretical case: identification of the different maintenance alternatives, determining the structure of the most important categories of the decision criteria, assessing the different maintenance policies on to the criteria by using an ordinal preference relation, and finally ranking the different maintenance policies.Keywords: maintenance policy, decision criteria, decision-making process, AHP
Procedia PDF Downloads 3335934 The Relationship between Spiritual Well-Being and the Quality of Life among Older Adults Who Live in Aged Institutions
Authors: Li-Fen Wu
Abstract:
Spiritual well-being is one aspect of quality of life that can significantly improve the quality of life of individuals. However, the reports of older adults’ spiritual well-being that live in aged institutions were few. This study aims to identify the relationship between spiritual well-being and quality of life among older adults residing in aged institutions in Taiwan. The correlative study design is used. Data collected by basic personal information, Spiritual Index of Well-being Scale and EuroQol-5D-3L. Case managers help participants complete the questionnaires. This study uses descriptive statistics and correlation test analysis data. The study finds the positive correlation between spiritual well-being and quality of life. According to the correlation between spiritual well-being and quality-of-life score, awareness of the importance of spiritual well-being in caring for these people is recommended.Keywords: older adult, spiritual well-being, quality of life, aged institution
Procedia PDF Downloads 2605933 Slugging Frequency Correlation for High Viscosity Oil-Gas Flow in Horizontal Pipeline
Authors: B. Y. Danjuma, A. Archibong-Eso, Aliyu M. Aliyu, H. Yeung
Abstract:
In this experimental investigation, a new data for slugging frequency for high viscosity oil-gas flow are reported. Scale experiments were carried out using a mixture of air and mineral oil as the liquid phase in a 17 m long horizontal pipe with 0.0762 ID. The data set was acquired using two high-speed Gamma Densitometers at a data acquisition frequency of 250 Hz over a time interval of 30 seconds. For the range of flow conditions investigated, increase in liquid oil viscosity was observed to strongly influence the slug frequency. A comparison of the present data with prediction models available in the literature revealed huge discrepancies. A new correlation incorporating the effect of viscosity on slug frequency has been proposed for the horizontal flow, which represents the main contribution of this work.Keywords: gamma densitometer, flow pattern, pressure gradient, slug frequency
Procedia PDF Downloads 4135932 Evaluation of the Electric Vehicle Impact in Distribution System
Authors: Sania Maghsodloo, Sirus Mohammadi
Abstract:
Electric Vehicle (EV) technology is expected to take a major share in the light-vehicle market in the coming decades. Transportation electrification has become an important issue in recent decades and the large scale deployment of EVs has yet to be achieved. The smart coordination of EV demand addresses an improvement in the flexibility of power systems and reduces the costs of power system investment. The uncertainty in EV drivers’ behaviour is one of the main problems to solve to obtain an optimal integration of EVs into power systems Charging of EVs will put an extra burden on the distribution grid and in some cases adjustments will need to be made. The stochastic process of the driving pattern is done to make the outcome of the project more realistic. Based on the stochastic data, the optimization of charging plans is made.Keywords: electric vehicles (PEVs), smart grid, Monticello, distribution system
Procedia PDF Downloads 5525931 Effect of Electromagnetic Fields on Protein Extraction from Shrimp By-Products for Electrospinning Process
Authors: Guido Trautmann-Sáez, Mario Pérez-Won, Vilbett Briones, María José Bugueño, Gipsy Tabilo-Munizaga, Luis Gonzáles-Cavieres
Abstract:
Shrimp by-products are a valuable source of protein. However, traditional protein extraction methods have limitations in terms of their efficiency. Protein extraction from shrimp (Pleuroncodes monodon) industrial by-products assisted with ohmic heating (OH), microwave (MW) and pulsed electric field (PEF). It was performed by chemical method (using NaOH and HCl 2M) assisted with OH, MW and PEF in a continuous flow system (5 ml/s). Protein determination, differential scanning calorimetry (DSC) and Fourier-transform infrared (FTIR). Results indicate a 19.25% (PEF) 3.65% (OH) and 28.19% (MW) improvement in protein extraction efficiency. The most efficient method was selected for the electrospinning process and obtaining fiber.Keywords: electrospinning process, emerging technology, protein extraction, shrimp by-products
Procedia PDF Downloads 925930 Impact of Mass Customization for 3D Geographic Information Systems under Turbulent Environments
Authors: Abdo Shabah
Abstract:
Mass customization aims to produce customized goods (allowing economies of scope) at lower cost (to achieve economies of scale) using multiple strategies (modularization and postponement). Through a simulation experiment of organizations under turbulent environment, we aim to compare standardization and mass customization of services and assess the impact of different forms of mass customization (early and late postponement) on performance, quality and consumer satisfaction, on the use of modular dynamic 3D Geographic Information System. Our hypothesis is that mass customization performs better and achieves better quality in turbulent environment than standardization, but only when using early postponement strategies. Using mixed methods study, we try to confirm our hypothesis.Keywords: mass customization, postponement, experiment, performance, quality, satisfaction, 3D GIS
Procedia PDF Downloads 4535929 Lead Removal From Ex- Mining Pond Water by Electrocoagulation: Kinetics, Isotherm, and Dynamic Studies
Authors: Kalu Uka Orji, Nasiman Sapari, Khamaruzaman W. Yusof
Abstract:
Exposure of galena (PbS), tealite (PbSnS2), and other associated minerals during mining activities release lead (Pb) and other heavy metals into the mining water through oxidation and dissolution. Heavy metal pollution has become an environmental challenge. Lead, for instance, can cause toxic effects to human health, including brain damage. Ex-mining pond water was reported to contain lead as high as 69.46 mg/L. Conventional treatment does not easily remove lead from water. A promising and emerging treatment technology for lead removal is the application of the electrocoagulation (EC) process. However, some of the problems associated with EC are systematic reactor design, selection of maximum EC operating parameters, scale-up, among others. This study investigated an EC process for the removal of lead from synthetic ex-mining pond water using a batch reactor and Fe electrodes. The effects of various operating parameters on lead removal efficiency were examined. The results obtained indicated that the maximum removal efficiency of 98.6% was achieved at an initial PH of 9, the current density of 15mA/cm2, electrode spacing of 0.3cm, treatment time of 60 minutes, Liquid Motion of Magnetic Stirring (LM-MS), and electrode arrangement = BP-S. The above experimental data were further modeled and optimized using a 2-Level 4-Factor Full Factorial design, a Response Surface Methodology (RSM). The four factors optimized were the current density, electrode spacing, electrode arrangements, and Liquid Motion Driving Mode (LM). Based on the regression model and the analysis of variance (ANOVA) at 0.01%, the results showed that an increase in current density and LM-MS increased the removal efficiency while the reverse was the case for electrode spacing. The model predicted the optimal lead removal efficiency of 99.962% with an electrode spacing of 0.38 cm alongside others. Applying the predicted parameters, the lead removal efficiency of 100% was actualized. The electrode and energy consumptions were 0.192kg/m3 and 2.56 kWh/m3 respectively. Meanwhile, the adsorption kinetic studies indicated that the overall lead adsorption system belongs to the pseudo-second-order kinetic model. The adsorption dynamics were also random, spontaneous, and endothermic. The higher temperature of the process enhances adsorption capacity. Furthermore, the adsorption isotherm fitted the Freundlish model more than the Langmuir model; describing the adsorption on a heterogeneous surface and showed good adsorption efficiency by the Fe electrodes. Adsorption of Pb2+ onto the Fe electrodes was a complex reaction, involving more than one mechanism. The overall results proved that EC is an efficient technique for lead removal from synthetic mining pond water. The findings of this study would have application in the scale-up of EC reactor and in the design of water treatment plants for feed-water sources that contain lead using the electrocoagulation method.Keywords: ex-mining water, electrocoagulation, lead, adsorption kinetics
Procedia PDF Downloads 1495928 Influence Maximization in Dynamic Social Networks and Graphs
Authors: Gkolfo I. Smani, Vasileios Megalooikonomou
Abstract:
Social influence and influence diffusion have been studied in social networks. However, most existing tasks on this subject focus on static networks. In this paper, the problem of maximizing influence diffusion in dynamic social networks, i.e., the case of networks that change over time, is studied. The DM algorithm is an extension of the MATI algorithm and solves the influence maximization (IM) problem in dynamic networks and is proposed under the linear threshold (LT) and independent cascade (IC) models. Experimental results show that our proposed algorithm achieves a diffusion performance better by 1.5 times than several state-of-the-art algorithms and comparable results in diffusion scale with the Greedy algorithm. Also, the proposed algorithm is 2.4 times faster than previous methods.Keywords: influence maximization, dynamic social networks, diffusion, social influence, graphs
Procedia PDF Downloads 2425927 Monitoring CO2 and H2S Emission in Live Austrian and UK Concrete Sewer Pipes
Authors: Anna Romanova, Morteza A. Alani
Abstract:
Corrosion of concrete sewer pipes induced by sulfuric acid is an acknowledged problem and a ticking time-bomb to sewer operators. Whilst the chemical reaction of the corrosion process is well-understood, the indirect roles of other parameters in the corrosion process which are found in sewer environment are not highly reflected on. This paper reports on a field studies undertaken in Austria and United Kingdom, where the parameters of temperature, pH, H2S and CO2 were monitored over a period of time. The study establishes that (i) effluent temperature and pH have similar daily pattern and peak times, When examined in minutes scale, (ii) H2S and CO2 have an identical hourly pattern, (iii) H2S instant or shifted relation to effluent temperature is governed by the root mean square value of CO2.Keywords: concrete corrosion, carbon dioxide, hydrogen sulphide, sewer pipe, sulfuric acid
Procedia PDF Downloads 3075926 Need for a Tailor Made HIV Prevention Services to the Migrants Community: Evidence from Implementing Migrant Service Delivery System (MSDS) among Migrant Workers, National AIDS Control Program, and India
Authors: Debasish Chowdhury, Sunil Mekale, Sarvanamurthy Sakthivel, Sukhvinder Kaur, Rambabu Khambampati, Ashok Agarwal
Abstract:
Introduction: The migrant intervention in India was initiated during the National AIDS Control Program (NACP) Phase-2 (2002-2007). HIV Sentinel surveillance Studies (HSS) conducted in 2012-13 indicated higher HIV prevalence among migrants (0.99%) compared to general populations (0.35%). Migrants continue to bear a heightened risk of HIV infection which results from the condition and structure of the migration process. USAID PHFI-PIPPSE project in collaboration with the National AIDS Control Organization (NACO) developed a unique system called Migrant Service Delivery System (MSDS) to capture migrants profile with respect to their risk profile and to provide tailor made services to them. Description: MSDS is a web-based system, designed and implemented to increase service uptake among migrants through evidence based planning. 110 destination migrants Targeted Intervention (TI) from 11 states were selected for study with varied target populations in terms of occupations; to understand occupation related risk behaviors among the migrants. Occupation wise registration data of high risk vulnerable migrants were analyzed through MSDS for the period April 2014–June 2016. Analysis was made on specific indicators among these occupational groups to understand the risk behavior and their vulnerability to HIV and STIs. Findings: Out of total HIV positive migrant’s workers (N= 847) enrolled in MSDS HIV rate is found to be highest among Auto-Rickshaw (18.66%) followed by Daily wage laborers (14.46%), Loom workers (10.73%), Industrial workers (10.04%) and Construction worker 7.93%. With 45.14% positivity, industrial workers are found to be most vulnerable to Sexually Transmitted Infections (STIs) (N=10057) among all occupational categories followed by loom workers (16.28%), Skilled worker (Furniture, Jeweler)-7.14%, daily wage laborers (5.45%). Conclusion: MSDS is an effective tool to assess migrants’ risk and their vulnerability to HIV for designing evidence informed program. This system calls for a replication across all destination TIs by NACO for differential strategies for different occupation groups to ensure better yield through scientific planning of intervention among high risk and high vulnerable migrants.Keywords: migrants, migrant service delivery system, risk, vulnerability
Procedia PDF Downloads 2715925 Identification of Candidate Gene for Root Development and Its Association With Plant Architecture and Yield in Cassava
Authors: Abiodun Olayinka, Daniel Dzidzienyo, Pangirayi Tongoona, Samuel Offei, Edwige Gaby Nkouaya Mbanjo, Chiedozie Egesi, Ismail Yusuf Rabbi
Abstract:
Cassava (Manihot esculenta Crantz) is a major source of starch for various industrial applications. However, the traditional cultivation and harvesting methods of cassava are labour-intensive and inefficient, limiting the supply of fresh cassava roots for industrial starch production. To achieve improved productivity and quality of fresh cassava roots through mechanized cultivation, cassava cultivars with compact plant architecture and moderate plant height are needed. Plant architecture-related traits, such as plant height, harvest index, stem diameter, branching angle, and lodging tolerance, are critical for crop productivity and suitability for mechanized cultivation. However, the genetics of cassava plant architecture remain poorly understood. This study aimed to identify the genetic bases of the relationships between plant architecture traits and productivity-related traits, particularly starch content. A panel of 453 clones developed at the International Institute of Tropical Agriculture, Nigeria, was genotyped and phenotyped for 18 plant architecture and productivity-related traits at four locations in Nigeria. A genome-wide association study (GWAS) was conducted using the phenotypic data from a panel of 453 clones and 61,238 high-quality Diversity Arrays Technology sequencing (DArTseq) derived Single Nucleotide Polymorphism (SNP) markers that are evenly distributed across the cassava genome. Five significant associations between ten SNPs and three plant architecture component traits were identified through GWAS. We found five SNPs on chromosomes 6 and 16 that were significantly associated with shoot weight, harvest index, and total yield through genome-wide association mapping. We also discovered an essential candidate gene that is co-located with peak SNPs linked to these traits in M. esculenta. A review of the cassava reference genome v7.1 revealed that the SNP on chromosome 6 is in proximity to Manes.06G101600.1, a gene that regulates endodermal differentiation and root development in plants. The findings of this study provide insights into the genetic basis of plant architecture and yield in cassava. Cassava breeders could leverage this knowledge to optimize plant architecture and yield in cassava through marker-assisted selection and targeted manipulation of the candidate gene.Keywords: manihot esculenta crantz, plant architecture, dartseq, snp markers, genome-wide association study
Procedia PDF Downloads 975924 Protein-Starch-Potassium Iodide Composite as a Sensor for Chlorine in Water
Authors: S. Mowafi, A. Abou El-Kheir, M. Abou Taleb, H. El-Sayed
Abstract:
Two proteinic biopolymers; namely keratin and sericin, were extracted from their respective natural resources by simple appropriate methods. The said proteins were dissolved in the appropriate solvents followed by regeneration in a form of film polyvinyl alcohol. Protein-starch-potassium iodide (PSPI) composite was prepared by anchoring starch and potassium iodide mixture onto the film surface using appropriate polymeric material. The possibility of using PSPI composite for determination of the concentration of chlorine ions in domestic as well as industrial water was examined. The concentration of chlorine in water was determined spectrophotometrically by measuring the intensity of blue colour of formed between starch and the released iodine obtained by interaction of potassium iodide chlorine in the tested water sample.Keywords: chlorine, protein, potassium iodide, water
Procedia PDF Downloads 3775923 Analysis on the Satisfaction of University-Industry Collaboration
Authors: Jeonghwan Jeon
Abstract:
Recently, the industry and academia have been planning development through industry/university cooperation (IUC), and the government has been promoting alternative methods to achieve successful IUC. Representatively, business cultivation involves the lead university (regarding IUC), research and development (R&D), company support, professional manpower cultivation, and marketing, etc., and the scale of support expands every year. Research is performed by many academic researchers to achieve IUC and although satisfaction of their results is high, expectations are not being met and study of the main factor is insufficient. Therefore, this research improves on theirs by analysing the main factors influencing their satisfaction. Each factor is analysed by AHP, and portfolio analysis is performed on the importance and current satisfaction level. This will help improve satisfaction of business participants and ensure effective IUC in the future.Keywords: industry/university cooperation, satisfaction, portfolio analysis, business participant
Procedia PDF Downloads 497