Search results for: scanning time
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 19742

Search results for: scanning time

19472 Anti-Methicillin-Resistant Staphylococcus aureus (MRSA) Compounds from Bauhinia kockiana Korth and Their Mechanism of Antibacterial Activity

Authors: Yik Ling Chew, Adlina Maisarah Mahadi, Joo Kheng Goh

Abstract:

Bauhinia kockiana originates from Peninsular Malaysia, and it is grown as a garden ornamental plant. However, it is used as medicinal plant by Malaysia ‘Kelabit’ ethic group in treating various diseases and illnesses. This study focused on the assessment of the antibacterial activity of B. kockiana towards MRSA, to purify and identify the antibacterial compounds, and to determine the mechanism of antibacterial activity. Antibacterial activity of B. kockiana flower is evaluated qualitatively and quantitatively using disc diffusion assay and microbroth dilution method to determine the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of extracts. Phytochemical analysis is performed to determine the classes of phytochemicals in the extracts. Bioactivity-guided isolation is performed to purify the antibacterial agents and identified the chemical structures via various spectroscopy methods. Scanning electron microscopy (SEM) technique is adopted to evaluate the antibacterial mechanism of extract and compounds isolated. B. kockiana flower is found to exhibit fairly strong antibacterial activity towards both strains of MRSA bacteria. Gallic acid and its ester derivatives are purified from ethyl acetate extract and the antibacterial activity is evaluated. SEM has revealed the mechanism of the extracts and compounds isolated.

Keywords: alkyl gallates, Bauhinia kockiana, MRSA, scanning electron microscopy

Procedia PDF Downloads 369
19471 The Preparation of 2H-Indazolo [2, 1-b] Phthalazinetriones by One-Pot 4,4ʹ-Bipyridinium Dichloride Ordered Mesoporous Silica

Authors: Aigin Bashti

Abstract:

Preparation of multicomponent reactions (MCRs) via a simple one-pot strategy is considered a novel procedure which has attracted a lot of interest from organic and medicinal chemists. Due to the great importance of phthalazide triones, it was decided to introduce a novel and cost-effective green procedure for the preparation of these derivatives. In this methodology, an efficient 4,4ʹ-Bipyridinium Dichloride Ordered Mesoporous Silica functionalized catalyst (BP-SBA-15) was utilized. The catalyst was characterized by X-ray diffraction analysis (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), thermo-gravimetric analysis (TGA), and Fourier-transform infrared spectroscopy (FT-IR) analysis. In conclusion, it should be mentioned that this methodology has some advantages, including short reaction time, high yield of the products, recyclable catalyst, green procedure, and facile work-up procedure. The catalyst was successfully utilized for the one-pot preparation of various phthalazinetrione derivatives.

Keywords: dimedone, green procedure, multicomponent reactions, phthalhydrazide

Procedia PDF Downloads 99
19470 Potentiostatic Growth of Hazenite Mineral Coating on AZ31 Magnesium Alloy in 0.1 M K₂HPO₄/0.1 M Na₂HPO₄ Solution

Authors: Liping Wu, Durga Bhakta Pokharel, Junhua Dong, Changgang Wang, Lin Zhao, Wei Ke, Nan Chen

Abstract:

Hazenite conversion coating was deposited on AZ31 Mg alloy in a deaerated phosphate solution containing 0.1 M K₂HPO₄ and 0.1 M Na₂HPO₄ (Na₀.₁K0₀.₁) with pH 9 at −0.8 V. The coating mechanism of hazenite was elucidated by in situ potentiostatic current decay, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR), electron probe micro-analyzer (EPMA) and differential scanning calorimetry (DSC). The volume of H₂ evolved during potentiostatic polarization was measured by a gas collection apparatus. The degradation resistance of the hazenite coating was evaluated in simulated body fluid (SBF) at 37℃ by using potentiodynamic polarization (PDP). The results showed that amorphous Mg(OH)₂ was deposited first, followed by the transformation of Mg(OH)₂ to amorphous MgHPO₄, subsequently the conversion of MgHPO₄ to crystallized K-struvite (KMgPO₄·6H₂O), finally the crystallization of crystallized hazenite (NaKMg₂(PO₄)₂·14H₂O). The deposited coating was composed of four layers where the inner layer is comprised of Mg(OH)₂, the middle layer of Mg(OH)₂ and MgHPO₄, the top layer of Mg(OH)₂, MgHPO₄ and K-struvite, the topmost layer of Mg(OH)₂, MgHPO₄, K-struvite and hazenite (NaKMg₂(PO₄)₂·14H₂O). The PD results showed that the hazenite coating decreased the corrosion rate by two orders of magnitude.

Keywords: magnesium alloy, potentiostatic technique, hazenite, mineral conversion coating

Procedia PDF Downloads 186
19469 Development of a Steam or Microwave-Assisted Sequential Salt-Alkali Pretreatment for Sugarcane Leaf Waste

Authors: Preshanthan Moodley

Abstract:

This study compares two different pretreatments for sugarcane leaf waste (SLW): steam salt-alkali (SSA) and microwave salt-alkali (MSA). The two pretreatment types were modelled, optimized, and validated with R² > 0.97. Reducing sugar yields of 1.21g/g were obtained with optimized SSA pretreatment using 1.73M ZnCl₂, 1.36M NaOH and 9.69% solid loading, and 1.17g/g with optimized MSA pretreatment using 1.67M ZnCl₂, 1.52M NaOH at 400W for 10min. A lower pretreatment time (10min) was required for the MSA model (83% lower). The structure of pretreated SLW was assessed using scanning electron microscopy (SEM) and Fourier Transform Infrared analysis (FTIR). The optimized SSA and MSA models showed lignin removal of 80.5 and 73% respectively. The MSA pretreatment was further examined on sorghum leaves and Napier grass and showed yield improvements of 1.9- and 2.8-fold compared to recent reports. The developed pretreatment methods demonstrated high efficiency at enhancing enzymatic hydrolysis on various lignocellulosic substrates.

Keywords: lignocellulosic biomass, pretreatment, salt, sugarcane leaves

Procedia PDF Downloads 264
19468 Structural and Magnetic Properties of NiFe2O4 Spinel Ferrite Nanoparticles Synthesized by Starch-Assisted Sol-Gel Auto-Combustion Method

Authors: R. S. Yadav, J. Havlica, I. Kuřitka, Z. Kozakova, J. Masilko, L. Kalina, M. Hajdúchová, V. Enev, J. Wasserbauer

Abstract:

Nickel spinel ferrite NiFe2O4 nanoparticles with different particle size at different annealing temperature were synthesized using the starch-assisted sol-gel auto-combustion method. The synthesized nanoparticles were characterized by conventional powder X-ray diffraction (XRD) spectroscopy, Raman Spectroscopy, Fourier Transform Infrared Spectroscopy, Field-Emission Scanning Electron Microscopy, X-ray Photoelectron Spectroscopy and Vibrating Sample Magnetometer. The XRD patterns confirmed the formation of NiFe2O4 spinel ferrite nanoparticles. Field-Emission Scanning Electron Microscopy revealed that particles are of spherical morphology with particle size 5-20 nm at lower annealing temperature. An infrared spectroscopy study showed the presence of two principal absorption bands in the frequency range around 525 cm-1 (ν1) and around 340 cm-1 (ν2); which indicate the presence of tetrahedral and octahedral group complexes, respectively, within the spinel ferrite nanoparticles. Raman spectroscopy study also indicated the change in octahedral and tetrahedral site related Raman modes in nickel ferrite nanoparticles with change of particle size. This change in magnetic behavior with change of particle size of NiFe2O4 nanoparticles was observed.

Keywords: nickel ferrite, nanoparticles, magnetic property, NiFe2O4

Procedia PDF Downloads 383
19467 Microstructural Investigation and Fatigue Damage Quantification of Anisotropic Behavior in AA2017 Aluminum Alloy under Cyclic Loading

Authors: Abdelghani May

Abstract:

This paper reports on experimental investigations concerning the underlying reasons for the anisotropic behavior observed during the cyclic loading of AA2017 aluminum alloy. Initially, we quantified the evolution of fatigue damage resulting from controlled proportional cyclic loadings along the axial and shear directions. Our primary objective at this stage was to verify the anisotropic mechanical behavior recently observed. To accomplish this, we utilized various models of fatigue damage quantification and conducted a comparative study of the obtained results. Our analysis confirmed the anisotropic nature of the material under investigation. In the subsequent step, we performed microstructural investigations aimed at understanding the origins of the anisotropic mechanical behavior. To this end, we utilized scanning electron microscopy to examine the phases and precipitates in both the transversal and longitudinal sections. Our findings indicate that the structure and morphology of these entities are responsible for the anisotropic behavior observed in the aluminum alloy. Furthermore, results obtained from Kikuchi diagrams, pole figures, and inverse pole figures have corroborated these conclusions. These findings demonstrate significant differences in the crystallographic texture of the material.

Keywords: microstructural investigation, fatigue damage quantification, anisotropic behavior, AA2017 aluminum alloy, cyclic loading, crystallographic texture, scanning electron microscopy

Procedia PDF Downloads 76
19466 Microwave Assisted Synthesis and Metal Complexes of Some Copolymers Based on Itaconic Acid

Authors: Mohamed H. El-Newehy, Sameh M. Osman, Moamen S. Refat, Salem S. Al-Deyab, Ayman El-Faham

Abstract:

The two copolymers itaconic acid-methyl methacrylate and itaconic acid-acrylamide have been prepared in different ratio by radical copolymerization in the presence of azobisisobutyronitrile (AIBN) as initiator and using 2-butanone as reaction medium using microwave irradiation. The microwave technique is safe, fast, and gives high yield of the products with high purity in an optimum time, comparing to the traditional conventional heating. All the prepared copolymers were characterized by FT-IR, thermal analysis and elemental microanalysis. The itaconic acid-based copolymers showed a good sensitivity in alkaline media for scavenging Cu (II) and Pb (II). The chelation behavior of both Cu (II) and Pb (II) complexes were checked using FT-IR, thermogravimetric analysis (TGA), and differential scanning calorimetery (DSC). The infrared data are in a good agreement with the coordination through carboxylate-to-metal, in which the copolymers acting as a bidentate ligand.

Keywords: microwave synthesis, itaconic acid, copolymerization, scavenging, thermal stability

Procedia PDF Downloads 458
19465 Synthesis of Iron-Based Perovskite Type Catalysts from Rust Wastes as a Source of Iron

Authors: M. P. Joshi, F. Deganello, L. F. Liotta, V. La Parola, G. Pantaleo

Abstract:

For the first time, commercial iron nitrate was replaced by rust wastes, as a source of Iron for the preparation of LaFeO₃ powders by solution combustion synthesis (SCS). A detailed comparison with a reference powder obtained by SCS, starting from a commercial iron nitrate, was also performed. Several techniques such as X-ray diffraction combined with Rietveld refinement, mass plasma atomic emission spectroscopy, nitrogen adsorption measurements, temperature programmed reduction, X-ray photoelectron spectroscopy, Fourier transform analysis and scanning electron microscopy were used for the characterization of the rust wastes as well as of the perovskite powders. The performance of this ecofriendly material was evaluated by testing the activity and selectivity in the propylene oxidation, in order to use it for the benefit of the environment. Characterization and performance results clearly evidenced limitations and peculiarities of this new approach.

Keywords: perovskite type catalysts, solution combustion synthesis, X-ray diffraction, rust wastes

Procedia PDF Downloads 333
19464 Development of Microwave-Assisted Alkalic Salt Pretreatment Regimes for Enhanced Sugar Recovery from Corn Cobs

Authors: Yeshona Sewsynker

Abstract:

This study presents three microwave-assisted alkalic salt pretreatments to enhance delignification and enzymatic saccharification of corn cobs. The effects of process parameters of salt concentration (0-15%), microwave power intensity (0-800 W) and pretreatment time (2-8 min) on reducing sugar yield from corn cobs were investigated. Pretreatment models were developed with the high coefficient of determination values (R2>0.85). Optimization gave a maximum reducing sugar yield of 0.76 g/g. Scanning electron microscopy (SEM) and Fourier Transform Infrared analysis (FTIR) showed major changes in the lignocellulosic structure after pretreatment. A 7-fold increase in the sugar yield was observed compared to previous reports on the same substrate. The developed pretreatment strategy was effective for enhancing enzymatic saccharification from lignocellulosic wastes for microbial biofuel production processes and value-added products.

Keywords: pretreatment, lignocellulosic biomass, enzymatic hydrolysis, delignification

Procedia PDF Downloads 499
19463 Effect of Friction Pressure on the Properties of Friction Welded Aluminum–Ceramic Dissimilar Joints

Authors: Fares Khalfallah, Zakaria Boumerzoug, Selvarajan Rajakumar, Elhadj Raouache

Abstract:

The ceramic-aluminum bond is strongly present in industrial tools, due to the need to combine the properties of metals, such as ductility, thermal and electrical conductivity, with ceramic properties like high hardness, corrosion and wear resistance. In recent years, some joining techniques have been developed to achieve a good bonding between these materials such as brazing, diffusion bonding, ultrasonic joining and friction welding. In this work, AA1100 aluminum alloy rods were welded with Alumina 99.9 wt% ceramic rods, by friction welding. The effect of friction pressure on mechanical and structural properties of welded joints was studied. The welding was performed by direct friction welding machine. The welding samples were rotated at a constant rotational speed of 900 rpm, friction time of 4 sec, forging strength of 18 MPa, and forging time of 3 sec. Three different friction pressures were applied to 20, 34 and 45 MPa. The three-point bending test and Vickers microhardness measurements were used to evaluate the strength of the joints and investigate the mechanical properties of the welding area. The microstructure of joints was examined by optical microscopy (OM), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The results show that bending strength increased, and then decreased after reaching a maximum value, with increasing friction pressure. The SEM observation shows that the increase in friction pressure led to the appearance of cracks in the microstructure of the interface area, which is decreasing the bending strength of joints.

Keywords: welding of ceramic to aluminum, friction welding, alumina, AA1100 aluminum alloy

Procedia PDF Downloads 129
19462 Preclinical Studying of Stable Fe-Citrate Effect on 68Ga-Citrate Tissue Distribution

Authors: A. S. Lunev, A. A. Larenkov, O. E. Klementyeva, G. E. Kodina

Abstract:

Background and aims: 68Ga-citrate is one of prospective radiopharmaceutical for PET-imaging of inflammation and infection. 68Ga-citrate is 67Ga-citrate analogue using since 1970s for SPECT-imaging. There's known rebinding reaction occurs past Ga-citrate injection and gallium (similar iron Fe3+) binds with blood transferrin. Then radiolabeled protein complex is delivered to pathological foci (inflammation/infection sites). But excessive gallium bindings with transferrin are cause of slow blood clearance, long accumulation time in foci (24-72 h) and exception of application possibility of the short-lived gallium-68 (T½ = 68 min). Injection of additional chemical agents (e.g. Fe3+ compounds) competing with radioactive gallium to the blood transferrin joining (blocking of its metal binding capacity) is one of the ways to solve formulated problem. This phenomenon can be used for correction of 68Ga-citrate pharmacokinetics for increasing of the blood clearance and accumulation in foci. The aim of real studying is research of effect of stable Fe-citrate on 68Ga-citrate tissue distribution. Materials and methods: 68Ga-citrate without/with extra injection of stable Fe-citrate (III) was injected nonlinear mice with inflammation models (aseptic soft tissue inflammation, lung infection, osteomyelitis). PET/X-RAY Genisys4 (Sofie Bioscience, USA) was used for non-invasive PET imaging (for 30, 60, 120 min past injection 68Ga-citrate) with subsequent reconstruction of imaging and their analysis (value of clearance, distribution volume). Scanning time is 10 min. Results and conclusions: I. v. injection of stable Fe-citrate blocks the metal-binding capability of transferrin serum and allows decreasing gallium-68 radioactivity in blood significantly and increasing accumulation in inflammation (3-5 time). It allows receiving more informative PET-images of inflammation early (for 30-60 min after injection). Pharmacokinetic parameters prove it. Noted there is no statistically significant difference between 68Ga-citrate accumulation for different inflammation model because PET imaging is indication of pathological processes and is not their identification.

Keywords: 68Ga-citrate, Fe-citrate, PET imaging, mice, inflammation, infection

Procedia PDF Downloads 488
19461 Turmeric Mediated Synthesis and Characterization of Cerium Oxide Nanoparticles

Authors: Nithin Krisshna Gunasekaran, Prathima Prabhu Tumkur, Nicole Nazario Bayon, Krishnan Prabhakaran, Joseph C. Hall, Govindarajan T. Ramesh

Abstract:

Cerium oxide and turmeric have antioxidant properties, which have gained interest among researchers to study their applications in the field of biomedicine, such asanti-inflammatory, anticancer, and antimicrobial applications. In this study, the turmeric extract was prepared and mixed with cerium nitrate hexahydrate, stirred continuously to obtain a homogeneous solution and then heated on a hot plate to get the supernatant evaporated, then calcinated at 600°C to obtain the cerium oxide nanoparticles. Characterization of synthesized cerium oxide nanoparticles through Scanning Electron Microscopy determined the particle size to be in the range of 70 nm to 250 nm. Energy Dispersive X-Ray Spectroscopy determined the elemental composition of cerium and oxygen. Individual particles were identified through the characterization of cerium oxide nanoparticles using Field Emission Scanning Electron Microscopy, in which the particles were determined to be spherical and in the size of around 70 nm. The presence of cerium oxide was assured by analyzing the spectrum obtained through the characterization of cerium oxide nanoparticles by Fourier Transform Infrared Spectroscopy. The crystal structure of cerium oxide nanoparticles was determined to be face-centered cubic by analyzing the peaks obtained through theX-Ray Diffraction method. The crystal size of cerium oxide nanoparticles was determined to be around 13 nm by using the Debye Scherer equation. This study confirmed the synthesis of cerium oxide nanoparticles using turmeric extract.

Keywords: antioxidant, characterization, cerium oxide, synthesis, turmeric

Procedia PDF Downloads 164
19460 Physicochemical and Biological Characterization of Fine Particulate Matter in Ambient Air in Capital City of Pakistan

Authors: Sabir Hussain, Mujtaba Hassan, Kashif Rasool, Asif Shahzad

Abstract:

Fine particulate matter with an aerodynamic diameter of less than 2.5 μm (PM2.5) was collected in Islamabad from November 2022 to January 2023, at urban sites. The average mass concentrations of PM2.5 varied, ranging from 90.5 to 133 μg m−3 in urban areas. Environmental scanning electron microscopy (ESEM) analysis revealed that Islamabad's PM2.5 comprised soot aggregates, ashes, minerals, bio-particles, and unidentified particles. Results from inductively coupled plasma atomic emission spectroscopy (ICP-OES) indicated a gradual increase in total elemental concentrations in Islamabad PM2.5 in winter, with relatively high levels in December. Significantly different elemental compositions were observed in urban PM2.5. Enrichment factor (EF) analysis suggested that elements such as K, Na, Ca, Mg, Al, Fe, Ba, and Sr were of natural origin, while As, Cu, Zn, Pb, Cd, Mn, Ni, and Se originated from anthropogenic sources. Plasmid DNA assays demonstrated varying levels of potential toxicity in Islamabad PM2.5 collected from urban sites, as well as across different seasons. Notably, the urban winter PM2.5 sample exhibited much stronger toxicity compared to other samples. The presence of heavy metals in Islamabad PM2.5, including Cu, Zn, Pb, Cd, Cr, Mn, and Ni, may have synergistic effects on human health.

Keywords: islamabad particulate matter pm2.5, scanning electron microscopy with energy-dispersive x-ray spectroscopy(sem-eds), fourier transform infrared spectroscopy(ftir), inductively coupled plasma optical emission spectroscopy(icp-oes)

Procedia PDF Downloads 80
19459 Deposition and Properties of PEO Coatings on Zinc-Aluminum Alloys

Authors: Linlin Wang, Guangdong Bian, Jifeng Shen, Jingzhu Zeng

Abstract:

Zinc-aluminum alloys have been applied as alternatives to bronze, aluminum alloys, and cast iron due to their distinguishing features such as high as-cast strength, excellent bearing properties, as well as low energy requirements for melting. In this study, oxide coatings were produced on ZA27 zinc-aluminum alloy by a plasma electrolytic oxidation (PEO) method. Three coatings were deposited by using three various electrolytes, i.e. silicate, aluminate and aluminate/borate composite solutions. The current density is set at 0.1A/cm2, deposition time is 40 mins for all the deposition processes. The surface morphology and phase structure of the three coatings were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). Pin-on-disc sliding wear tests were conducted to test the tribological properties of coatings. The results indicated that the coating produced using the aluminate/borate composite electrolyte had the highest deposition rate and best wear resistance among the three coatings.

Keywords: oxide coating, PEO, tribological properties, ZA27

Procedia PDF Downloads 495
19458 General Time-Dependent Sequenced Route Queries in Road Networks

Authors: Mohammad Hossein Ahmadi, Vahid Haghighatdoost

Abstract:

Spatial databases have been an active area of research over years. In this paper, we study how to answer the General Time-Dependent Sequenced Route queries. Given the origin and destination of a user over a time-dependent road network graph, an ordered list of categories of interests and a departure time interval, our goal is to find the minimum travel time path along with the best departure time that minimizes the total travel time from the source location to the given destination passing through a sequence of points of interests belonging to each of the specified categories of interest. The challenge of this problem is the added complexity to the optimal sequenced route queries, where we assume that first the road network is time dependent, and secondly the user defines a departure time interval instead of one single departure time instance. For processing general time-dependent sequenced route queries, we propose two solutions as Discrete-Time and Continuous-Time Sequenced Route approaches, finding approximate and exact solutions, respectively. Our proposed approaches traverse the road network based on A*-search paradigm equipped with an efficient heuristic function, for shrinking the search space. Extensive experiments are conducted to verify the efficiency of our proposed approaches.

Keywords: trip planning, time dependent, sequenced route query, road networks

Procedia PDF Downloads 321
19457 Adsorption of Reactive Dye Using Entrapped nZVI

Authors: P. Gomathi Priya, M. E. Thenmozhi

Abstract:

Iron nanoparticles were used to cleanup effluents. This paper involves synthesis of iron nanoparticles chemically by sodium borohydride reduction of ammonium ferrous sulfate solution (FAS). Iron oxide nanoparticles have lesser efficiency of adsorption than Zero Valent Iron nanoparticles (nZVI). Glucosamine acts as a stabilizing agent and chelating agent to prevent Iron nanoparticles from oxidation. nZVI particles were characterized using Scanning Electron Microscopy (SEM). Thus, the synthesized nZVI was subjected to entrapment in biopolymer, viz. barium (Ba)-alginate beads. The beads were characterized using SEM. Batch dye degradation studies were conducted using Reactive black Water soluble Nontoxic Natural substances (WNN) dye which is one of the most hazardous dyes used in textile industries. Effect of contact time, effect of pH, initial dye concentration, adsorbent dosage, isotherm and kinetic studies were carried out.

Keywords: ammonium ferrous sulfate solution, barium, alginate beads, reactive black WNN dye, zero valent iron nanoparticles

Procedia PDF Downloads 331
19456 Comparative Antibacterial Property of Matured Trunk and Stem Bark Extract of Tamarindus indica L., Preformulation, Development and Quality Control of Cream

Authors: A. M. T. Jacinto, M.O. Osi

Abstract:

Tamarind has various medicinal properties among which is its antibacterial property. Its bark contains saponins, alkaloids, sesquiterpenes and tannins. It is rich in phlobapenes which is responsible for antibacterial property. The objective of the study was to determine which bark will produce the highest antibacterial property, develop it into a topical cream and evaluate its quality and characteristics. Powdered barks of Tamarind were extracted by soxhlet method using 70% acetone. Stem bark produced a higher yield than trunk bark (5.85 g vs. 4.73 g). It was found that the trunk bark was more sensitive than stem bark to microorganisms namely Staphylococcus aureus, Corynebacterium minutissimum, and Streptococcus spp. Sensitivity of trunk bark can be attributed to a more developed phytoconstituents. Dermal sensitization test on both sexes of rabbits using the following concentrations: 100%, 40% and 20% of extract showed that Tamarind has no irritating property and therefore safe for formulation into an antibacterial cream. Excipients used for formulation such as methyl paraben, propyl paraben, stearyl alcohol and white petrolatum were compatible with the Tamarind acetone extract through Differential Scanning Calorimetry except sodium lauryl sulfate that exhibited crystallization when subjected at 200˚C. The method of manufacture used in cream is fusion, therefore strict compliance of processing temperature should be observed to prevent polymorphism. Quality control tests of formulated cream based on USP 30 and Philippine Pharmacopeia were satisfactory.

Keywords: antibacterial, differential scanning calorimetry, tannins, dermal sensitization

Procedia PDF Downloads 486
19455 A Study on Evaluation for Performance Verification of Ni-63 Radioisotope Betavoltaic Battery

Authors: Youngmok Yun, Bosung Kim, Sungho Lee, Kyeongsu Jeon, Hyunwook Hwangbo, Byounggun Choi

Abstract:

A betavoltaic battery converts nuclear energy released as beta particles (β-) directly into electrical energy. Betavoltaic cells are analogous to photovoltaic cells. The beta particle’s kinetic energy enters a p-n junction and creates electron-hole pairs. Subsequently, the built-in potential of the p-n junction accelerates the electrons and ions to their respective collectors. The major challenges are electrical conversion efficiencies and exact evaluation. In this study, the performance of betavoltaic battery was evaluated. The betavoltaic cell was evaluated in the same condition as radiation from radioactive isotope using by FE-SEM(field emission scanning electron microscope). The average energy of the radiation emitted from the Ni-63 radioisotope is 17.42 keV. FE-SEM is capable of emitting an electron beam of 1-30keV. Therefore, it is possible to evaluate betavoltaic cell without radioactive isotopes. The betavoltaic battery consists of radioisotope that is physically connected on the surface of Si-based PN diode. The performance of betavoltaic battery can be estimated by the efficiency of PN diode unit cell. The current generated by scanning electron microscope with fixed accelerating voltage (17keV) was measured by using faraday cup. Electrical characterization of the p-n junction diode was performed by using Nano Probe Work Station and I-V measurement system. The output value of the betavoltaic cells developed by this research team was 0.162 μw/cm2 and the efficiency was 1.14%.

Keywords: betavoltaic, nuclear, battery, Ni-63, radio-isotope

Procedia PDF Downloads 258
19454 Performance Evaluation of Arrival Time Prediction Models

Authors: Bin Li, Mei Liu

Abstract:

Arrival time information is a crucial component of advanced public transport system (APTS). The advertisement of arrival time at stops can help reduce the waiting time and anxiety of passengers, and improve the quality of service. In this research, an experiment was conducted to compare the performance on prediction accuracy and precision between the link-based and the path-based historical travel time based model with the automatic vehicle location (AVL) data collected from an actual bus route. The research results show that the path-based model is superior to the link-based model, and achieves the best improvement on peak hours.

Keywords: bus transit, arrival time prediction, link-based, path-based

Procedia PDF Downloads 359
19453 Extracellular Polymeric Substances (EPS) Attribute to Biofouling of Anaerobic Membrane Bioreactor: Adhesion and Viscoelastic Properties

Authors: Kbrom Mearg Haile

Abstract:

Introduction: Membrane fouling is the bottleneck for the anaerobic membrane bioreactor (AnMBR) robust continuous operation, primarily caused by the mixed liquor suspended solids (MLSS) characteristics formed by aggregated flocs and a scaffold of microbial self-produced extracellular polymeric substances (EPS), which dictates the flocs integrity. Accordingly, the adhesion of EPS to the membrane surface versus their role in forming firm, elastic, and mechanically stable flocs under the reactor’s hydraulic shear is critical for minimizing interactions between EPS and colloids originating from the MLSS flocs with the membrane. This study aims to gain insight and investigate the effect of MLSS flocs properties, EPS adhesion and viscoelasticity, viscoelastic properties of the sludge, and membrane fouling propensity. Experimental: As a working hypothesis, to alter the aforementioned flocs’ and EPS’s properties, the addition of either coagulant or surfactant was carried out during the AnMBR operation. In the AnMBR, two flat-sheet 300 kDa pore size polyether sulfone (PES) membranes with a total filtration area of 352 cm2 were immersed in the AnMBR system treating municipal wastewater of Midreshet Ben-Gurion village at the Negev highlands, Israel. The system temperature, pH, biogas recirculation, and hydraulic retention time were regulated. TMP fluctuations during a 30-day experiment were recorded under three operating conditions: Baseline (without the addition of coagulating or dispersing agent), coagulant addition (FeCl3), and surfactant addition (sodium dodecyl sulfate). At the end of each experiment, EPS were extracted from the MLSS and from the fouled membrane, characterized for their protein, polysaccharides, and DOC contents, and correlated with the fouling tendency of the submerged UF membrane. The EPS adherence and viscoelastic properties were revealed using QCM-D via the PES-coated gold sensor used as a membrane-mimicking surface providing a detailed real-time EPS adhesion. The associated shifts in the resonance frequency and dissipation at different overtones were further modeled using the Voigt-based viscoelastic model (using Dfind software, Q-Sense Biolin Scientific) in which the thickness, shear modulus, and shear viscosity values of the adsorbed EPS layers on the PES coated sensor were calculated. Results and discussion: The observations obtained from the QCM-D analysis indicate a greater decrease in the frequency shift for the elevated membrane fouling scenarios, likely due to an observed decrease in the calculated shear viscosity and shear modulus of the EPS adsorbed layer, coupled with an increase in EPS layer hydrated thickness and fluidity (ΔD/Δf slopes). Further analysis is being conducted for the three major operating conditions-analyzing their effects on sludge rheology, dewaterability (capillary suction time-CST) and settle ability (SVI). The biofouling layer is further characterized microscopically using a confocal laser scanning microscope (CLSM) and scanning electron microscope (SEM), for analyzing the consistency of the development of the biofouling layer with sludge characteristics, i.e., thicker biofouling layer on the membrane surface when operated with surfactant addition, due to flocs with reduced integrity and availability of EPS/colloids to the membrane. Conversely, a thinner layer when operated with coagulant compared to the baseline experiment, due to elevation in flocs integrity.

Keywords: viscoelasticity, biofouling, viscoelastic, AnMBR, EPS, elocintegrity

Procedia PDF Downloads 22
19452 Construction and Application of Zr-MCM41 Nanoreactors as Highly Active and Efficiently Catalyst in the Synthesis of Biginelli-Type Compounds

Authors: Zohreh Derikvand

Abstract:

Nanoreactors Zr-MCM-41were prepared via the reaction of ZrOCl2, Fumed silica, sodium hydroxide and cethyltrimethyl ammonium bromide under hydrothermal condition. The prepared nanoreactors were characterized by FT-IR spectroscopy, X-ray diffraction (XRD), Scanning electron micrographs (SEM) and nitrogen adsorption-desorption. The XRD pattern of Zr-MCM-41 exhibits a high-intensity (100) and two low-intensity reflections (110 and 200) which are characteristic of hexagonal structure, exhibiting the long-range order and good textural uniformity of mesoporous structure. Based on the green chemistry approach, we report an efficient and environmentally benign protocol to study the catalytic activity of Zr-MCM-41 in the Biginelli type reactions initially. Nanoreactors Zr-MCM-41 were used as highly recoverable and reusable catalyst for synthesis of 3,4-dihydropyrimidin-2(1H)-one, octahydroquinazolinone, benzimidazolo-quinazolineone and 4,6-diarylpyrimidin-2(1H)-one. The methodology offers several advantages such as short reaction time, high yields and simple operation. The catalyst was active up to three cycles.

Keywords: Zr-MCM-41 nanoreactors, Biginelli like reactions, 3, 4-dihydropyrimidin-2(1H)-ones, ctahydroquinazolinones

Procedia PDF Downloads 206
19451 Influence of Low and Extreme Heat Fluxes on Thermal Degradation of Carbon Fibre-Reinforced Polymers

Authors: Johannes Bibinger, Sebastian Eibl, Hans-Joachim Gudladt

Abstract:

This study considers the influence of different irradiation scenarios on the thermal degradation of carbon fiber-reinforced polymers (CFRP). Real threats are simulated, such as fires with long-lasting low heat fluxes and nuclear heat flashes with short-lasting high heat fluxes. For this purpose, coated and uncoated quasi-isotropic samples of the commercially available CFRP HexPly® 8552/IM7 are thermally irradiated from one side by a cone calorimeter and a xenon short-arc lamp with heat fluxes between 5 and 175 W/cm² at varying time intervals. The specimen temperature is recorded on the front and backside as well as at different laminate depths. The CFRP is non-destructively tested with ultrasonic testing, infrared spectroscopy (ATR-FTIR), scanning electron microscopy (SEM), and micro-focused computed X-Ray tomography (μCT). Destructive tests are performed to evaluate the mechanical properties in terms of interlaminar shear strength (ILSS), compressive and tensile strength. The irradiation scenarios vary significantly in heat flux and exposure time. Thus, different heating rates, radiation effects, and temperature distributions occur. This leads to unequal decomposition processes, which affect the sensitivity of the strength type and damage behaviour of the specimens. However, with the use of surface coatings, thermal degradation of composite materials can be delayed.

Keywords: CFRP, one-sided thermal damage, high heat flux, heating rate, non-destructive and destructive testing

Procedia PDF Downloads 112
19450 Comparison of Iodine Density Quantification through Three Material Decomposition between Philips iQon Dual Layer Spectral CT Scanner and Siemens Somatom Force Dual Source Dual Energy CT Scanner: An in vitro Study

Authors: Jitendra Pratap, Jonathan Sivyer

Abstract:

Introduction: Dual energy/Spectral CT scanning permits simultaneous acquisition of two x-ray spectra datasets and can complement radiological diagnosis by allowing tissue characterisation (e.g., uric acid vs. non-uric acid renal stones), enhancing structures (e.g. boost iodine signal to improve contrast resolution), and quantifying substances (e.g. iodine density). However, the latter showed inconsistent results between the 2 main modes of dual energy scanning (i.e. dual source vs. dual layer). Therefore, the present study aimed to determine which technology is more accurate in quantifying iodine density. Methods: Twenty vials with known concentrations of iodine solutions were made using Optiray 350 contrast media diluted in sterile water. The concentration of iodine utilised ranged from 0.1 mg/ml to 1.0mg/ml in 0.1mg/ml increments, 1.5 mg/ml to 4.5 mg/ml in 0.5mg/ml increments followed by further concentrations at 5.0 mg/ml, 7mg/ml, 10 mg/ml and 15mg/ml. The vials were scanned using Dual Energy scan mode on a Siemens Somatom Force at 80kV/Sn150kV and 100kV/Sn150kV kilovoltage pairing. The same vials were scanned using Spectral scan mode on a Philips iQon at 120kVp and 140kVp. The images were reconstructed at 5mm thickness and 5mm increment using Br40 kernel on the Siemens Force and B Filter on Philips iQon. Post-processing of the Dual Energy data was performed on vendor-specific Siemens Syngo VIA (VB40) and Philips Intellispace Portal (Ver. 12) for the Spectral data. For each vial and scan mode, the iodine concentration was measured by placing an ROI in the coronal plane. Intraclass correlation analysis was performed on both datasets. Results: The iodine concentrations were reproduced with a high degree of accuracy for Dual Layer CT scanner. Although the Dual Source images showed a greater degree of deviation in measured iodine density for all vials, the dataset acquired at 80kV/Sn150kV had a higher accuracy. Conclusion: Spectral CT scanning by the dual layer technique has higher accuracy for quantitative measurements of iodine density compared to the dual source technique.

Keywords: CT, iodine density, spectral, dual-energy

Procedia PDF Downloads 119
19449 High-Yield Synthesis of Nanohybrid Shish-Kebab of Polyethylene on Carbon NanoFillers

Authors: Dilip Depan, Austin Simoneaux, William Chirdon, Ahmed Khattab

Abstract:

In this study, we present a novel approach to synthesize polymer nanocomposites with nanohybrid shish-kebab architecture (NHSK). For this low-density and high density polyethylene (PE) was crystallized on various carbon nano-fillers using a novel and convenient method to prepare high-yield NHSK. Polymer crystals grew epitaxially on carbon nano-fillers using a solution crystallization method. The mixture of polymer and carbon fillers in xylene was flocculated and precipitated in ethanol to improve the product yield. Carbon nanofillers of varying diameter were also used as a nucleating template for polymer crystallization. The morphology of the prepared nanocomposites was characterized scanning electron microscopy (SEM), while differential scanning calorimetry (DSC) was used to quantify the amount of crystalline polymer. Interestingly, whatever the diameter of the carbon nanofiller is, the lamellae of PE is always perpendicular to the long axis of nanofiller. Surface area analysis was performed using BET. Our results indicated that carbon nanofillers of varying diameter can be used to effectively nucleate the crystallization of polymer. The effect of molecular weight and concentration of the polymer was discussed on the basis of chain mobility and crystallization capability of the polymer matrix. Our work shows a facile, rapid, yet high-yield production method to form polymer nanocomposites to reveal application potential of NHSK architecture.

Keywords: carbon nanotubes, polyethylene, nanohybrid shish-kebab, crystallization, morphology

Procedia PDF Downloads 329
19448 Development and Characterization of Mesoporous Silica Nanoparticles of Quercetin in Skin Cancer

Authors: Khusboo Agrawal, S. Saraf

Abstract:

Quercetin, a flavonol provides a cellular protection against UV induced oxidative damages due to its excellent free radical scavenging activity and direct pro-apoptopic effect on tumor cells. However, its topical use is limited due to its unfavorable physicochemical properties. The present study was aimed to evaluate the potential of mesoporous silica nanoparticles as topical carrier system for quercetin delivery. Complexes of quercetin with mesoporous silica was prepared with different weight ratios and characterized by thermo gravimetric analysis, X-ray diffraction, high resolution TEM, FT-IR spectroscopy, zeta potential measurements and differential scanning calorimetry The protective effect of this vehicle on UV-induced degradation of the quercetin was investigated revealing a certain positive influence of the inclusion on the photostability over time. Epidermal accumulation and transdermal permeation of this molecule were ex vivo evaluated by using Franz diffusion cells. The immobilization of Quercetin in mesoporous silica nanoparticles (MSNs) increased the stability without undermining the antioxidant efficacy.

Keywords: cancer, MSNs, quercetin, topical delivery

Procedia PDF Downloads 308
19447 Density Based Traffic System Using Pic Microcontroller

Authors: Tatipamula Samiksha Goud, .A.Naveena, M.sresta

Abstract:

Traffic congestion is a major issue in many cities throughout the world, particularly in urban areas, and it is past time to switch from a fixed timer mode to an automated system. The current traffic signalling system is a fixed-time system that is inefficient if one lane is more functional than the others. A structure for an intelligent traffic control system is being designed to address this issue. When traffic density is higher on one side of a junction, the signal's green time is extended in comparison to the regular time. This study suggests a technique in which the signal's time duration is assigned based on the amount of traffic present at the time. Infrared sensors can be used to do this.

Keywords: infrared sensors, micro-controllers, LEDs, oscillators

Procedia PDF Downloads 142
19446 Deformation of Metallic Foams with Closed Cell at High Temperatures

Authors: Emrah Ersoy, Yusuf Ozcatalbas

Abstract:

The aim of this study is to investigate formability of Al based closed cell metallic foams at high temperature. The foam specimens with rectangular section were produced from AlMg1Si0.6TiH20.8 alloy preform material. Bending and free bending tests based on gravity effect were applied to foam specimens at high temperatures. During the tests, the time-angular deformation relationships with various temperatures were determined. Deformation types formed in cell walls were investigated by means of Scanning Electron Microscopy (SEM) and optical microscopy. Bending deformation about 90° was achieved without any defect at high temperatures. The importance of a critical temperature and deformation rate was emphasized in maintaining the deformation. Significant slip lines on surface of cell walls at tensile zones of bending specimen were observed. At high strain rates, the microcrack formation in boundaries of elongated grains was determined.

Keywords: Al alloy, Closed cell, Hot deformation, Metallic foam

Procedia PDF Downloads 368
19445 Role of NaCl and Temperature in Glycerol Mediated Rapid Growth of Silver Nanostructures

Authors: L. R. Shobin, S. Manivannan

Abstract:

One dimensional silver nanowires and nanoparticles gained more interest in developing transparent conducting films, catalysis, biological and chemical sensors. Silver nanostructures can be synthesized by varying reaction conditions such as the precursor concentration, molar ratio of the surfactant, injection speed of silver ions, etc. in the polyol process. However, the reaction proceeds for greater than 2 hours for the formation of silver nanowires. The introduction of etchant in the medium promotes the growth of silver nanowires from silver nanoparticles along the [100] direction. Rapid growth of silver nanowires is accomplished using the Cl- ions from NaCl and polyvinyl pyrrolidone (PVP) as surfactant. The role of Cl- ion was investigated in the growth of the nanostructured silver. Silver nanoparticles (<100 nm) were harvested from glycerol medium in the absence of Cl- ions. Trace amount of Cl- ions (2.5 mM -NaCl) produced the edge joined nanowires of length upto 2 μm and width ranging from 40 to 65 nm. Formation and rapid growth (within 25 minutes) of long, uniform silver nanowires (upto 5 μm) with good yield were realized in the presence of 5 mM NaCl at 200ºC. The growth of nanostructures was monitored by UV-vis-NIR spectroscopy. Scanning and transmission electron microscopes reveal the morphology of the silver nano harvests. The role of temperature in the reduction of silver ions, growth mechanism for nanoparticles, edge joined and straight nanowires will be discussed.

Keywords: silver nanowires, glycerol mediated polyol process, scanning electron microscopy, UV-Vis- NIR spectroscopy, transmission electron microscopy

Procedia PDF Downloads 303
19444 Agenesis of the Corpus Callosum: The Role of Neuropsychological Assessment with Implications to Psychosocial Rehabilitation

Authors: Ron Dick, P. S. D. V. Prasadarao, Glenn Coltman

Abstract:

Agenesis of the corpus callosum (ACC) is a failure to develop corpus callosum - the large bundle of fibers of the brain that connects the two cerebral hemispheres. It can occur as a partial or complete absence of the corpus callosum. In the general population, its estimated prevalence rate is 1 in 4000 and a wide range of genetic, infectious, vascular, and toxic causes have been attributed to this heterogeneous condition. The diagnosis of ACC is often achieved by neuroimaging procedures. Though persons with ACC can perform normally on intelligence tests they generally present with a range of neuropsychological and social deficits. The deficit profile is characterized by poor coordination of motor movements, slow reaction time, processing speed and, poor memory. Socially, they present with deficits in communication, language processing, the theory of mind, and interpersonal relationships. The present paper illustrates the role of neuropsychological assessment with implications to psychosocial management in a case of agenesis of the corpus callosum. Method: A 27-year old left handed Caucasian male with a history of ACC was self-referred for a neuropsychological assessment to assist him in his employment options. Parents noted significant difficulties with coordination and balance at an early age of 2-3 years and he was diagnosed with dyspraxia at the age of 14 years. History also indicated visual impairment, hypotonia, poor muscle coordination, and delayed development of motor milestones. MRI scan indicated agenesis of the corpus callosum with ventricular morphology, widely spaced parallel lateral ventricles and mild dilatation of the posterior horns; it also showed colpocephaly—a disproportionate enlargement of the occipital horns of the lateral ventricles which might be affecting his motor abilities and visual defects. The MRI scan ruled out other structural abnormalities or neonatal brain injury. At the time of assessment, the subject presented with such problems as poor coordination, slowed processing speed, poor organizational skills and time management, and difficulty with social cues and facial expressions. A comprehensive neuropsychological assessment was planned and conducted to assist in identifying the current neuropsychological profile to facilitate the formulation of a psychosocial and occupational rehabilitation programme. Results: General intellectual functioning was within the average range and his performance on memory-related tasks was adequate. Significant visuospatial and visuoconstructional deficits were evident across tests; constructional difficulties were seen in tasks such as copying a complex figure, building a tower and manipulating blocks. Poor visual scanning ability and visual motor speed were evident. Socially, the subject reported heightened social anxiety, difficulty in responding to cues in the social environment, and difficulty in developing intimate relationships. Conclusion: Persons with ACC are known to present with specific cognitive deficits and problems in social situations. Findings from the current neuropsychological assessment indicated significant visuospatial difficulties, poor visual scanning and problems in social interactions. His general intellectual functioning was within the average range. Based on the findings from the comprehensive neuropsychological assessment, a structured psychosocial rehabilitation programme was developed and recommended.

Keywords: agenesis, callosum, corpus, neuropsychology, psychosocial, rehabilitation

Procedia PDF Downloads 276
19443 Microwave-Assisted Inorganic Salt Pretreatment of Sugarcane Leaf Waste

Authors: Preshanthan Moodley, E. B. Gueguim-Kana

Abstract:

The objective of this study was to develop a method to pretreat sugarcane leaf waste using microwave-assisted (MA) inorganic salt. The effects of process parameters of salt concentration, microwave power intensity and pretreatment time on reducing sugar yield from enzymatically hydrolysed sugarcane leaf waste were investigated. Pretreatment models based on MA-NaCl, MA-ZnCl2 and MA-FeCl3 were developed. Maximum reducing sugar yield of 0.406 g/g was obtained with 2 M FeCl3 at 700W for 3.5 min. Scanning electron microscopy (SEM) and Fourier Transform Infrared analysis (FTIR) showed major changes in lignocellulosic structure after MA-FeCl3 pretreatment with 71.5 % hemicellulose solubilization. This pretreatment was further assessed on sorghum leaves and Napier grass under optimal MA-FeCl3 conditions. A 2 fold and 3.1-fold increase in sugar yield respectively were observed compared to previous reports. This pretreatment was highly effective for enhancing enzymatic saccharification of lignocellulosic biomass.

Keywords: acid, pretreatment, salt, sugarcane leaves

Procedia PDF Downloads 452