Search results for: in vitro activation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2314

Search results for: in vitro activation

2044 Investigation in Gassy Ozone Influence on Flaxes Made from Biologically Activated Whole Wheat Grains Quality Parameters

Authors: Tatjana Rakcejeva, Jelena Zagorska, Elina Zvezdina

Abstract:

The aim of the current research was to investigate the gassy ozone effect on quality parameters of flaxes made form whole biologically activated wheat grains. The research was accomplished on in year 2012 harvested wheat grains variety ′Zentos′. Grains were washed, wetted; grain biological activation was performed in the climatic chamber up to 24 hours. After biological activation grains was compressed; than flaxes was dried in convective drier till constant moisture content 9±1%. For grain treatment gassy ozone concentration as 0.0002% and treatment time – 6 min was used. In the processed flaxes the content of A and G tocopherol decrease by 23% and by 9%; content of B2 and B6 vitamins – by 11% and by 10%; elaidic acid – by 46%, oleic acid – by 29%; arginine (by 80%), glutamine (by 74%), asparagine and serine (by 68%), valine (by 62%), cysteine (by 54%) and tyrosine (by 47%).

Keywords: gassy ozone, flaxes, biologically activated grains, quality parameters, treatment

Procedia PDF Downloads 221
2043 Effect of Ramp Rate on the Preparation of Activated Carbon from Saudi Date Tree Fronds (Agro Waste) by Physical Activation Method

Authors: Muhammad Shoaib, Hassan M Al-Swaidan

Abstract:

Saudi Arabia is the major date producer in the world. In order to maximize the production from date tree, pruning of the date trees is required annually. Large amount of this agriculture waste material (palm tree fronds) is available in Saudi Arabia and considered as an ideal source as a precursor for production of activated carbon (AC). The single step procedure for the preparation of micro porous activated carbon (AC) from Saudi date tree fronds using mixture of gases (N2 and CO2) is carried out at carbonization/activation temperature at 850°C and at different ramp rates of 10, 20 and 30 degree per minute. Alloy 330 horizontal reactor is used for tube furnace. Flow rate of nitrogen and carbon dioxide gases are kept at 150 ml/min and 50 ml/min respectively during the preparation. Characterization results reveal that the BET surface area, pore volume, and average pore diameter of the resulting activated carbon generally decreases with the increase in ramp rate. The activated carbon prepared at a ramp rate of 10 degrees/minute attains larger surface area and can offer higher potential to produce activated carbon of greater adsorption capacity from agriculture wastes such as date fronds. The BET surface areas of the activated carbons prepared at a ramp rate of 10, 20 and 30 degree/minute after 30 minutes activation time are 1094, 1020 and 515 m2/g, respectively. Scanning electron microscopy (SEM) for surface morphology, and FTIR for functional groups was carried out that also verified the same trend. Moreover, by increasing the ramp rate from 10 and 20 degrees/min the yield remains same, i.e. 18%, whereas at a ramp rate of 30 degrees/min the yield increases from 18 to 20%. Thus, it is feasible to produce high-quality micro porous activated carbon from date frond agro waste using N2 carbonization followed by physical activation with CO2 and N2 mixture. This micro porous activated carbon can be used as adsorbent of heavy metals from wastewater, NOx SOx emission adsorption from ambient air and electricity generation plants, purification of gases, sewage treatment and many other applications.

Keywords: activated carbon, date tree fronds, agricultural waste, applied chemistry

Procedia PDF Downloads 262
2042 Identification of Synthetic Hybrids of 4-Thiazolidinone-Bromopyrrole Alkaloid as HIV-1 RT Inhibitors

Authors: Rajesh A. Rane, Shital S. Naphade, Rajshekhar Karpoormath

Abstract:

Thiozolidin-4-one, a mimic of thiazolobenzimidazole (TBZ) has drawn many attentions due to its potent and selective inhibition against the HIV-1 and low toxicity by binding to the allosteric site of the reverse transcriptase (RT) as a non-nucleoside RT inhibitor (NNRTI). Similarly, marine bromopyrrole alkaloids are well known for their diverse array of anti-infective properties. Hence, we have reported synthesis and in vitro HIV-1 RT inhibitory activity of a series of 4-thiazolidinone-bromopyrrole alkaloid hybrids tethered with amide linker. The results of in vitro HIV-1 RT kit assay showed that some of the compounds, such as 4c, 4d, and 4i could effectively inhibit RT activity. Among them, compounds 4c having 4-chlorophenyl substituted 4-thiazolidione ring was the best one with the IC50 value of 0.26 µM. The sturdy emerges with key structure-activity relationship that pyrrole-NH-free core benefited inhibition against HIV-1 RT inhibition. This study identified conjugate 4c with potent activity and selectivity as promising compound for further drug development to HIV.

Keywords: antiviral drugs, bromopyrrole alkaloids, HIV-1 RT inhibition, 4-thiazolidinone

Procedia PDF Downloads 436
2041 Acute Effects of Local Vibration on Muscle Activation, Metabolic and Hormone Responses

Authors: Zong Yan Cai, Wen-Chyuan Chen, Chih-Min Wu

Abstract:

The purpose of this study was to investigate the acute effects of local vibration on muscle activation, metabolic and hormone responses. Totally 12 healthy, physically inactive, male adults participated in this study and completed LV exercise session. During LV exercise session, four custom-made vibrations (diameter: 20 mm; thickness: 8 mm; weight: 0.022 g) were locally placed over the belly of the thigh of each subject’s non-dominant leg in supine lying position, and subjects received 10 sets for 1 min at the frequency of 35-40Hz, with 1–2 min of rest between sets. The surface electromyography (EMG) were obtained from the vastus medialis and rectus femoris, and the subjects’ rating of perceived exertion (RPE) and heart rate (HR) were measured. EMG data, RPE values as well as HR were obtained by averaging the results of 10 sets of each exercise session. Blood samples were drawn before exercise, immediately after exercise, and 15min and 30min after exercise in each session for analysis of lactic acid (LA), growth hormone (GH), testosterone (T) and cortisol (C). The results indicated that the HR did not increase after LV (63.18±3.5 to 63.25±2.58 beat/min, p > 0.05). The average RPE values during the LV exposure were at 2.86±0.39. The root mean square % EMG values from the vastus medialis and rectus femoris were 19.02±2.19 and 8.25±2.20 respectively. There were no significant differences after acute LV exercise among LA, GH and T values as compared with baseline values (LA: 0.68±0.11 to 0.7±0.1 mmol/L; GH: 0.06±0.05 to 0.57±0.27 ng/mL; T: 551.33±46.62 to 520.42±43.78 ng/dL, p>0.05). However, the LV treatment caused a significant decrease in C values after exercise (16.56±1.05 to 11.64±1.85 nmol/L, p<0.05). In conclusion, acute LV exercise only slightly increase muscle activation which may not cause effective exercise response. However, acute LV exercise reduces C level, which may reduce the catabolic response. The probable reason might partly due to the vibration rhythmically which massage on muscles.

Keywords: cortisol, growth hormone, lactic acid, testosterone

Procedia PDF Downloads 257
2040 Investigating the Neural Heterogeneity of Developmental Dyscalculia

Authors: Fengjuan Wang, Azilawati Jamaludin

Abstract:

Developmental Dyscalculia (DD) is defined as a particular learning difficulty with continuous challenges in learning requisite math skills that cannot be explained by intellectual disability or educational deprivation. Recent studies have increasingly recognized that DD is a heterogeneous, instead of monolithic, learning disorder with not only cognitive and behavioral deficits but so too neural dysfunction. In recent years, neuroimaging studies employed group comparison to explore the neural underpinnings of DD, which contradicted the heterogenous nature of DD and may obfuscate critical individual differences. This research aimed to investigate the neural heterogeneity of DD using case studies with functional near-infrared spectroscopy (fNIRS). A total of 54 aged 6-7 years old of children participated in this study, comprising two comprehensive cognitive assessments, an 8-minute resting state, and an 8-minute one-digit addition task. Nine children met the criteria of DD and scored at or below 85 (i.e., the 16th percentile) on the Mathematics or Math Fluency subtest of the Wechsler Individual Achievement Test, Third Edition (WIAT-III) (both subtest scores were 90 and below). The remaining 45 children formed the typically developing (TD) group. Resting-state data and brain activation in the inferior frontal gyrus (IFG), superior frontal gyrus (SFG), and intraparietal sulcus (IPS) were collected for comparison between each case and the TD group. Graph theory was used to analyze the brain network under the resting state. This theory represents the brain network as a set of nodes--brain regions—and edges—pairwise interactions across areas to reveal the architectural organizations of the nervous network. Next, a single-case methodology developed by Crawford et al. in 2010 was used to compare each case’s brain network indicators and brain activation against 45 TD children’s average data. Results showed that three out of the nine DD children displayed significant deviation from TD children’s brain indicators. Case 1 had inefficient nodal network properties. Case 2 showed inefficient brain network properties and weaker activation in the IFG and IPS areas. Case 3 displayed inefficient brain network properties with no differences in activation patterns. As a rise above, the present study was able to distill differences in architectural organizations and brain activation of DD vis-à-vis TD children using fNIRS and single-case methodology. Although DD is regarded as a heterogeneous learning difficulty, it is noted that all three cases showed lower nodal efficiency in the brain network, which may be one of the neural sources of DD. Importantly, although the current “brain norm” established for the 45 children is tentative, the results from this study provide insights not only for future work in “developmental brain norm” with reliable brain indicators but so too the viability of single-case methodology, which could be used to detect differential brain indicators of DD children for early detection and interventions.

Keywords: brain activation, brain network, case study, developmental dyscalculia, functional near-infrared spectroscopy, graph theory, neural heterogeneity

Procedia PDF Downloads 39
2039 Cerium Salt Effect in 70s Bioactive Glass

Authors: Alessandra N. Santos, Max P. Ferreira, Alexandra R. P. Silva, Agda A. R. de Oliveira, Marivalda M. Pereira

Abstract:

The literature describes experiments, in which ceria nanoparticles in the bioactive glass significantly improve differentiation of stem cells into osteoblasts and increase production of collagen. It is not known whether this effect observed due to the presence of nanoceria can be also observed in the presence of cerium in the bioactive glass network. The effect of cerium into bioactive glasses using the sol–gel route is the focus of this work, with the goal to develop a material for tissue engineering with the potential to enhance osteogenesis. A bioactive glass composition based on 70% SiO2–30% CaO is produced with the addition of cerium. The analyses XRD, FTIR, SEM/EDS, BET/BJH, in vitro bioactivity test and the Cell viability assay were performed. The results show that cerium remains in the bioactive glass structure. The obtained material present in vitro bioactivity and promote the cell viability.

Keywords: bioactive glass, bioactivity, cerium salt, material characterization, sol-gel method

Procedia PDF Downloads 217
2038 Removal of Polycyclic Aromatic Hydrocarbons (PAHS) and the Response of Indigenous Bacteria in Highly Contaminated Aged Soil after Persulfate Oxidation

Authors: Yaling Gou, Sucai Yang, Pengwei Qiao

Abstract:

Integrated chemical-biological treatment is an attractive alternative to remove polycyclic aromatic hydrocarbons (PAHs) from contaminated soil; wherein indigenous bacteria is the key factor for the biodegradation of residual PAHs concentrations after the application of chemical oxidation. However, the systematical study on the impact of persulfate (PS) oxidation on indigenous bacteria as well as PAHs removal is still scarce. In this study, the influences of different PS dosages (1%, 3%, 6%, and 10% [w/w]), as well as various activation methods (native iron, H2O2, alkaline, ferrous iron, and heat) on PAHs removal and indigenous bacteria in highly contaminated aged soil were investigated. Apparent degradation of PAHs in the soil treated with PS oxidation was observed, and the removal efficiency of total PAHs in the soil ranged from 38.28% to 79.97%. The removal efficiency of total PAHs in the soil increased with increasing consumption of PS. However, the bacterial abundance in soil was negatively affected following oxidation for all of the treatments added with PS, with bacterial abundance in the soil decreased by 0.89~2.88 orders of magnitude compared to the untreated soil. Moreover, the number of total bacteria in the soil decreased as PS consumption increased. Different PS activation methods and PS dosages exhibited different influences on the bacterial community composition. Bacteria capable of degrading PAHs under anoxic conditions were composed predominantly by Proteobacteria and Firmicutes. The total amount of Proteobacteria and Firmicutes also decreased with increasing consumption of PS. The results of this study provide important insight into the design of PAHs contaminated soil remediation projects.

Keywords: activation method, chemical oxidation, indigenous bacteria, polycyclic aromatic hydrocarbon

Procedia PDF Downloads 105
2037 Optimization of Urea Water Solution Injector for NH3 Uniformity Improvement in Urea-SCR System

Authors: Kyoungwoo Park, Gil Dong Kim, Seong Joon Moon, Ho Kil Lee

Abstract:

The Urea-SCR is one of the most efficient technologies to reduce NOx emissions in diesel engines. In the present work, the computational prediction of internal flow and spray characteristics in the Urea-SCR system was carried out by using 3D-CFD simulation to evaluate NH3 uniformity index (NH3 UI) and its activation time according to the official New European Driving Cycle (NEDC). The number of nozzle and its diameter, two types of injection directions, and penetration length were chosen as the design variables. The optimal solutions were obtained by coupling the CFD analysis with Taguchi method. The L16 orthogonal array and small-the-better characteristics of the Taguchi method were used, and the optimal values were confirmed to be valid with 95% confidence and 5% significance level through analysis of variance (ANOVA). The results show that the optimal solutions for the NH3 UI and activation time (NH3 UI 0.22) are obtained by 0.41 and 0,125 second, respectively, and their values are improved by 85.0% and 10.7%, respectively, compared with those of the base model.

Keywords: computational fluid dynamics, NH3 uniformity index, optimization, Taguchi method, Urea-SCR system, UWS injector

Procedia PDF Downloads 250
2036 Preparation and Characterization of Water-in-Oil Nanoemulsion of 5-Fluorouracil to Enhance Skin Permeation for Treatment of Skin Diseases.

Authors: P. S. Rajinikanth, Shobana Mariappan, Jestin Chellian

Abstract:

The objective of the study was to prepare and characterize a water-in-oil nano emulsion of 5-Fluorouracil (5FU) to enhance the skin penetration. The present study describes a nano emulsion of 5FU using Capyrol PGMC, Transcutol HP and PEG 400 as oil, surfactant and co-surfactant, respectively. The optimized formulations were further evaluated for heating cooling cycle, centrifugation studies, freeze thaw cycling, particle size distribution and zeta potential in order to confirm the stability of the optimized nano emulsions. The in-vitro characterization results showed that the droplets of prepared formulation were ~100 nm with ± 15 zeta potential. In vitro skin permeation studies was conducted in albino mice skin. Significant increase in permeability parameters was also observed in nano emulsion formulations (P<0.05). The steady-state flux (Jss), enhancement ration and permeability coefficient (Kp) for optimized nano emulsion formulation (FU2, FU1, 1:1 S mix were found to be 24.21 ±2.45 μg/cm2/h, 3.28±0.87 & 19.52±1.87 cm/h, respectively), which were significant compared with conventional gel. The in vitro and in vivo skin deposition studies in rat indicated that the amount of drug deposited from the nano emulsion (292.45 µg/cm2) in skin was significant (P<0.05) an increased as compared to a conventional 5FU gel (121.42 µg/cm2). The skin irritation study using rat skin showed that the mean irritation index of the nano emulsion reduced significantly (P<0.05) as compared with conventional gel contain 1% 5FU. The results from this study suggest that a water-in-oil nano emulsion could be safely used to promote skin penetration of 5FU following topical application.

Keywords: nano emulsion, controlled release, 5 fluorouracil, skin penetration, skin irritation

Procedia PDF Downloads 487
2035 Mannosylated Oral Amphotericin B Nanocrystals for Macrophage Targeting: In vitro and Cell Uptake Studies

Authors: Rudra Vaghela, P. K. Kulkarni

Abstract:

The aim of the present research was to develop oral Amphotericin B (AmB) nanocrystals (Nc) grafted with suitable ligand in order to enhance drug transport across the intestinal epithelial barrier and subsequently, active uptake by macrophages. AmB Nc were prepared by liquid anti-solvent precipitation technique (LAS). Poloxamer 188 was used to stabilize the prepared AmB Nc and grafted with mannose for actively targeting M cells in Peyer’s patches. To prevent shedding of the stabilizer and ligand, N,N’-Dicyclohexylcarbodiimide (DCC) was used as a cross-linker. The prepared AmB Nc were characterized for particle size, PDI, zeta potential, X-ray diffraction (XRD) and surface morphology using scanning electron microscope (SEM) and evaluated for drug content, in vitro drug release and cell uptake studies using caco-2 cells. The particle size of stabilized AmB Nc grafted with WGA was in the range of 287-417 nm with negative zeta potential between -18 to -25 mV. XRD studies revealed crystalline nature of AmB Nc. SEM studies revealed that ungrafted AmB Nc were irregular in shape with rough surface whereas, grafted AmB Nc were found to be rod-shaped with smooth surface. In vitro drug release of AmB Nc was found to be 86% at the end of one hour. Cellular studies revealed higher invasion and uptake of AmB Nc towards caco-2 cell membrane when compared to ungrafted AmB Nc. Our findings emphasize scope on developing oral delivery system for passively targeting M cells in Peyer’s patches.

Keywords: leishmaniasis, amphotericin b nanocrystals, macrophage targeting, LAS technique

Procedia PDF Downloads 290
2034 Synthesis of High-Pressure Performance Adsorbent from Coconut Shells Polyetheretherketone for Methane Adsorption

Authors: Umar Hayatu Sidik

Abstract:

Application of liquid base petroleum fuel (petrol and diesel) for transportation fuel causes emissions of greenhouse gases (GHGs), while natural gas (NG) reduces the emissions of greenhouse gases (GHGs). At present, compression and liquefaction are the most matured technology used for transportation system. For transportation use, compression requires high pressure (200–300 bar) while liquefaction is impractical. A relatively low pressure of 30-40 bar is achievable by adsorbed natural gas (ANG) to store nearly compressed natural gas (CNG). In this study, adsorbents for high-pressure adsorption of methane (CH4) was prepared from coconut shells and polyetheretherketone (PEEK) using potassium hydroxide (KOH) and microwave-assisted activation. Design expert software version 7.1.6 was used for optimization and prediction of preparation conditions of the adsorbents for CH₄ adsorption. Effects of microwave power, activation time and quantity of PEEK on the adsorbents performance toward CH₄ adsorption was investigated. The adsorbents were characterized by Fourier transform infrared spectroscopy (FTIR), thermogravimetric (TG) and derivative thermogravimetric (DTG) and scanning electron microscopy (SEM). The ideal CH4 adsorption capacities of adsorbents were determined using volumetric method at pressures of 5, 17, and 35 bar at an ambient temperature and 5 oC respectively. Isotherm and kinetics models were used to validate the experimental results. The optimum preparation conditions were found to be 15 wt% amount of PEEK, 3 minutes activation time and 300 W microwave power. The highest CH4 uptake of 9.7045 mmol CH4 adsorbed/g adsorbent was recorded by M33P15 (300 W of microwave power, 3 min activation time and 15 wt% amount of PEEK) among the sorbents at an ambient temperature and 35 bar. The CH4 equilibrium data is well correlated with Sips, Toth, Freundlich and Langmuir. Isotherms revealed that the Sips isotherm has the best fit, while the kinetics studies revealed that the pseudo-second-order kinetic model best describes the adsorption process. In all scenarios studied, a decrease in temperature led to an increase in adsorption of both gases. The adsorbent (M33P15) maintained its stability even after seven adsorption/desorption cycles. The findings revealed the potential of coconut shell-PEEK as CH₄ adsorbents.

Keywords: adsorption, desorption, activated carbon, coconut shells, polyetheretherketone

Procedia PDF Downloads 55
2033 Preparation and Chemical Characterization of Eco-Friendly Activated Carbon Produced from Apricot Stones

Authors: Sabolč Pap, Srđana Kolaković, Jelena Radonić, Ivana Mihajlović, Dragan Adamović, Mirjana Vojinović Miloradov, Maja Turk Sekulić

Abstract:

Activated carbon is one of the most used and tested adsorbents in the removal of industrial organic compounds, heavy metals, pharmaceuticals and dyes. Different types of lignocellulosic materials were used as potential precursors in the production of low cost activated carbon. There are, two different processes for the preparation and production of activated carbon: physical and chemical. Chemical activation includes impregnating the lignocellulosic raw materials with chemical agents (H3PO4, HNO3, H2SO4 and NaOH). After impregnation, the materials are carbonized and washed to eliminate the residues. The chemical activation, which was used in this study, has two important advantages when compared to the physical activation. The first advantage is the lower temperature at which the process is conducted, and the second is that the yield (mass efficiency of activation) of the chemical activation tends to be greater. Preparation of activated carbon included the following steps: apricot stones were crushed in a mill and washed with distilled water. Later, the fruit stones were impregnated with a solution of 50% H3PO4. After impregnation, the solution was filtered to remove the residual acid. Subsequently impregnated samples were air dried at room temperature. The samples were placed in a furnace and heated (10 °C/min) to the final carbonization temperature of 500 °C for 2 h without the use of nitrogen. After cooling, the adsorbent was washed with distilled water to achieve acid free conditions and its pH was monitored until the filtrate pH value exceeded 4. Chemical characterizations of the prepared activated carbon were analyzed by FTIR spectroscopy. FTIR spectra were recorded with a (Thermo Nicolet Nexus 670 FTIR) spectrometer, from 400 to 4000 cm-1 wavenumbers, identifying the functional groups on the surface of the activated carbon. The FTIR spectra of adsorbent showed a broad band at 3405.91 cm-1 due to O–H stretching vibration and a peak at 489.00 cm-1 due to O–H bending vibration. Peaks between the range of 3700 and 3200 cm−1 represent the overlapping peaks of stretching vibrations of O–H and N–H groups. The distinct absorption peaks at 2919.86 cm−1 and 2848.24 cm−1 could be assigned to -CH stretching vibrations of –CH2 and –CH3 functional groups. The adsorption peak at 1566.38 cm−1 could be characterized by primary and secondary amide bands. The sharp bond within 1164.76 – 987.86 cm−1 is attributed to the C–O groups, which confirms the lignin structure of the activated carbon. The present study has shown that the activated carbons prepared from apricot stone have a functional group on their surface, which can positively affect the adsorption characteristics with this material.

Keywords: activated carbon, FTIR, H3PO4, lignocellulosic raw materials

Procedia PDF Downloads 235
2032 The Impact of Garlic and Citrus Extracts on Energy Retention and Methane Production in Ruminants in vitro

Authors: Michael Graz, Natasha Hurril, Andrew Shearer

Abstract:

Research on feed supplementation with natural compounds is currently being intensively pursued with a view to improving energy utilisation in ruminants and mitigating the production of methane by these animals. Towards this end, a novel combination of extracts from garlic and bitter orange was therefore selected for trials on the basis of their previously published in vitro anti-methanogenic potential. Three separate in vitro experiments were conducted to determine energy utilisation and greenhouse gas production. These included use of rumen fluid from fistulated cows and sheep in batch culture, the Hohenheim gas test, and the Rusitec technique. Experimental and control arms were utilised, with 5g extracts per kilogram of total dietary dry matter (0.05g/kg active compounds) being used to supplement or not supplement the in vitro systems. Respiratory measurements were conducted on experimental day 1 for the batch culture and Hohenheim gas test and on day 14-21 for the Rusitec Technique (in a 21-day trial). Measurements included methane (CH4) production, total volatile fatty acid (VFA) concentration, molar proportions of acetate, propionate and butyrate and degradation of organic matter (Rusitec). CH4 production was reduced by 82% (±16%), 68% (±11%) and 37% (±4%) in the batch culture, Hohenheim gas test and Rusitec, respectively. Total VFA production was reduced by 13% (±2%) and 2% (±0.1%) in the batch culture and Hohenheim gas test whilst it was increased by 8% (±2%) in the Rusitec. Total VFA production was reduced in all tests between 2 and 10%, whilst acetate production was reduced between 10% and 29%. Propionate production which is an indicator of weight gain was increased in all cases between 16% and 30%. Butyrate production which is considered an indicator of potential milk yield was increased by between 6 and 11%. Degradation of organic matter in the Rusitec experiments was improved by 10% (±0.1%). In conclusion, the study demonstrated the potential of the combination of garlic and citrus extracts to improve digestion, enhance body energy retention and limit CH4 formation in relation to feed intake.

Keywords: citrus, garlic, methane, ruminants

Procedia PDF Downloads 319
2031 Mechanical Activation of a Waste Material Used as Cement Replacement in Soft Soil Stabilisation

Authors: Hassnen M. Jafer, W. Atherton, F. Ruddock, E. Loffil

Abstract:

Waste materials or sometimes called by-product materials have been increasingly used as construction material to reduce the usage of cement in different construction projects. In the field of soil stabilisation, waste materials such as pulverised fuel ash (PFA), biomass fly ash (BFA), sewage sludge ash (SSA), etc., have been used since 1960s in last century. In this study, a particular type of a waste material (WM) was used in soft soil stabilisation as a cement replacement, as well as, the effect of mechanical activation, using grinding, on the performance of this WM was also investigated. The WM used in this study is a by-product resulted from the incineration processes between 1000 and 1200oc in domestic power generation plant using a fluidized bed combustion system. The stabilised soil in this study was an intermediate plasticity silty clayey soil with medium organic matter content. The experimental works were conducted first to find the optimum content of WM by carrying out Atterberg limits and unconfined compressive strength (UCS) tests on soil samples contained (0, 3, 6, 9, 12, and 15%) of WM by the dry weight of soil. The UCS test was carried out on specimens provided to different curing periods (zero, 7, 14, and 28 days). Moreover, the optimum percentage of the WM was subject to different periods of grinding (10, 20, 30, 40mins) using mortar and pestle grinder to find the effect of grinding and its optimum time by conducting UCS test. The results indicated that the WM used in this study improved the physical properties of the soft soil where the index of plasticity (IP) was decreased significantly from 21 to 13.10 with 15% of WM. Meanwhile, the results of UCS test indicated that 12% of WM was the optimum and this percentage developed the UCS value from 202kPa to 700kPa for 28 days cured samples. Along with the time of grinding, the results revealed that 10 minutes of grinding was the best for mechanical activation for the WM used in this study.

Keywords: soft soil stabilisation, waste materials, grinding, and unconfined compressive strength

Procedia PDF Downloads 263
2030 Origanum vulgare as a Possible Modulator of Testicular Endocrine Function in Mice

Authors: Eva Tvrdá, Barbora Babečková, Michal Ďuračka, Róbert Kirchner, Július Árvay

Abstract:

This study was designed to assess the in vitro effects of Origanum vulgare L. (oregano) extract on the testicular steroidogenesis. We focused on identifying major biomolecules present in the oregano extract, as well as to investigate its in vitro impact on the secretion of cholesterol, testosterone, dehydroepiandrosterone and androstenedione by murine testicular fragments. The extract was subjected to high performance liquid chromatography (HPLC) which identified cyranosid, daidzein, thymol, rosmarinic and trans-caffeic acid among the predominant biochemical components of oregano. For the in vitro experiments, testicular fragments from 20 sexually mature Institute of Cancer Research (ICR) mice were incubated in the absence (control group) or presence of the oregano extract at selected concentrations (10, 100 and 1000 μg/mL) for 24 h. Cholesterol levels were quantified using photometry and the hormones were assessed by ELISA (Enzyme-Linked Immunosorbent Assay). Our data revealed that the release of cholesterol and androstenedione (but not dehydroepiandrosterone and testosterone) by the testicular fragments was significantly impacted by the oregano extract in a dose-dependent fashion. Supplementation of the extract resulted in a significant decline of cholesterol (P < 0.05 in case of 100 μg/mL; P < 0.01 with respect 100 μg/mL extract), as well as androstenedione (P < 0.01 with respect to 100 and 1000 μg/mL extract). Our results suggest that the biomolecules present in Origanum vulgare L. could exhibit a dose-dependent impact on the secretion of male steroids, playing a role in the regulation of testicular steroidogenesis.

Keywords: mice, Origanum vulgare L., steroidogenesis, testes

Procedia PDF Downloads 147
2029 Induction of G1 Arrest and Apoptosis in Human Cancer Cells by Panaxydol

Authors: Dong-Gyu Leem, Ji-Sun Shin, Sang Yoon Choi, Kyung-Tae Lee

Abstract:

In this study, we focused on the anti-proliferative effects of panaxydol, a C17 polyacetylenic compound derived from Panax ginseng roots, against various human cancer cells. We treated with panaxydol to various cancer cells and panaxydol treatment was found to significantly inhibit the proliferation of human lung cancer cells (A549) and human pancreatic cancer cells (AsPC-1 and MIA PaCa-2), of which AsPC-1 cells were most sensitive to its treatment. DNA flow cytometric analysis indicated that panaxydol blocked cell cycle progression at the G1 phase in A549 cells, which accompanied by a parallel reduction of protein expression of cyclin-dependent kinase (CDK) 2, CDK4, CDK6, cyclin D1 and cyclin E. CDK inhibitors (CDKIs), such as p21CIP1/WAF1 and p27KIP1, were gradually upregulated after panaxydol treatment at the protein levels. Furthermore, panaxydol induced the activation of p53 in A549 cells. In addition, panaxydol also induced apoptosis of AsPC-1 and MIA PaCa-2 cells, as shown by accumulation of subG1 and apoptotic cell populations. Panaxydol triggered the activation of caspase-3, -8, -9 and the cleavage of poly (ADP-ribose) polymerase (PARP). Reduction of mitochondrial transmembrane potential by panaxydol was determined by staining with dihexyloxacarbocyanine iodide. Furthermore, panaxydol suppressed the levels of anti-apoptotic proteins, XIAP and Bcl-2, and increased the levels of proapoptotic proteins, Bax and Bad. In addition, panaxydol inhibited the activation of Akt and extracellular signal-regulated kinase (ERK) and activated the p38 mitogen-activated protein kinase kinase (MAPK). Our results suggest that panaxydol is an anti-tumor compound that causes p53-mediated cell cycle arrest and apoptosis via mitochondrial apoptotic pathway in various cancer cells.

Keywords: apoptosis, cancer, G1 arrest, panaxydol

Procedia PDF Downloads 307
2028 Neutronic Calculations for Central Test Loop in Heavy Water Research Reactor

Authors: Hadi Shamoradifar, Behzad Teimuri, Parviz Parvaresh, Saeed Mohammadi

Abstract:

One of the experimental facilities of the heavy water research reactor is the central test loop (C.T.L). It is located along the central axial line of the vessel, and therefore will highly affect the neutronic parameters of the reactor, so from the neutronics point of view, C.T.L is the most important facility. It is mainly designed for fuel testing, thought other applications such as radioisotope production and neutron activation, can be imagine for it. All of the simulations were performed by MCNPX2.6. As a first step towards C.T.L analysis, the effect of D2O-filled, H2O-filled, and He-filled C.T.L on the effective multiplication factor (Keff.), have been evaluated. According to results, H2O-filled C.T.L has a higher thermal neutron, while He-filled C.T.L includes more resonance neutrons. In the next step thermal and total axial neutron fluxes, were calculated and used as the comparison parameters. The core without C.T.L (C.T.L replaced by heavy water) is selected as the reference case, and the effect of all other cases is calculated according to that.

Keywords: heavy water reactor, neutronic calculations, central test loop, neutron activation

Procedia PDF Downloads 349
2027 Comparative and Combined Toxicity of NiO and Mn₃O₄ Nanoparticles as Assessed in vitro and in vivo

Authors: Ilzira A. Minigalieva, Tatiana V. Bushueva, Eleonore Frohlich, Vladimir Panov, Ekaterina Shishkina, Boris A. Katsnelson

Abstract:

Background: The overwhelming majority of the experimental studies in the field of metal nanotoxicology have been performed on cultures of established cell lines, with very few researchers focusing on animal experiments, while a juxtaposition of conclusions inferred from these two types of research is blatantly lacking. The least studied aspect of this problem relates to characterizing and predicting the combined toxicity of metallic nanoparticles. Methods: Comparative and combined toxic effects of purposefully prepared spherical NiO and Mn₃O₄ nanoparticles (mean diameters 16.7 ± 8.2 nm and 18.4 ± 5.4 nm respectively) were estimated on cultures of human cell lines: MRC-5 fibroblasts, THP-1 monocytes, SY-SY5Y neuroblastoma cells, as well as on the latter two lines differentiated to macrophages and neurons, respectively. The combined cytotoxicity was mathematically modeled using the response surface methodology. Results: The comparative assessment of the studied NPs unspecific toxicity previously obtained in vivo was satisfactorily reproduced by the present in vitro tests. However, with respect to manganese-specific brain damage which had been demonstrated by us in animal experiment with the same NPs, the testing on neuronall cell culture showed only a certain enhancing effect of Mn₃O₄-NPs on the toxic action of NiO-NPs, while the role of the latter prevailed. Conclusion: From the point of view of the preventive toxicology, the experimental modeling of metallic NPs combined toxicity on cell cultures can give non-reliable predictions of the in vivo action’s effects.

Keywords: manganese oxide, nickel oxide, nanoparticles, in vitro toxicity

Procedia PDF Downloads 282
2026 Metal-Based Anticancer Agents: In vitro DNA Binding, Cleavage and Cytotoxicity

Authors: Mala Nath, Nagamani Kompelli, Partha Roy, Snehasish Das

Abstract:

Two new metal-based anticancer chemotherapeutic agents, [(Ph2Sn)2(HGuO)2(phen)Cl2] 1 and [(Ph3Sn)(HGuO)(phen)]- Cl.CH3OH.H2O 2, were designed, prepared and characterized by analytical and spectral (IR, ESI-Mass, 1H, 13C and 119Sn NMR) techniques. The proposed geometry of Sn(IV) in 1 and 2 is distorted octahedral and distorted trigonal-bipyramidal, respectively. Both 1 and 2 exhibit potential cytotoxicity in vitro against MCF-7, HepG-2 and DU-145 cell lines. The intrinsic binding constant (Kb) values of 1 (2.33 × 105 M-1) and 2 (2.46 × 105 M-1) evaluated from UV-Visible absorption studies suggest non-classical electrostatic mode of interaction via phosphate backbone of DNA double helix. The Stern-Volmer quenching constant (Ksv) of 1 (9.74 × 105 M-1) and 2 (2.9 × 106 M-1) determined by fluorescence studies suggests the groove binding and intercalation mode for 1 and 2, respectively. Effective cleavage of pBR322 DNA is induced by 1. Their interaction with DNA of cancer cells may account for potency.

Keywords: anticancer agents, DNA binding studies, NMR spectroscopy, organotin

Procedia PDF Downloads 241
2025 Effect of Auraptene on the Enzymatic Glutathione Redox-System in Nrf2 Knockout Mice

Authors: Ludmila A. Gavriliuc, Jerry McLarty, Heather E. Kleiner, J. Michael Mathis

Abstract:

Abstract -- Background: The citrus coumarine Auraptene (Aur) is an effective chemopreventive agent, as manifested in many models of diseases and cancer. Nuclear factor erythroid 2-related factor (Nrf2) is an important regulator of genes induced by oxidative stress, such as glutathione S-transferases, heme oxygenase-1, and peroxiredoxin 1, by activating the antioxidant response element (ARE). Genetic and biochemical evidence has demonstrated that glutathione (GSH) and glutathione-dependent enzymes, glutathione reductase (GR), glutathione peroxidases (GPs), glutathione S-transferases (GSTs) are responsible for the control of intracellular reduction-oxidation status and participate in cellular adaptation to oxidative stress. The effect of Aur on the activity of GR, GPs (Se-GP and Se-iGP), and content of GSH in the liver, kidney, and spleen is insufficiently explored. Aim: Our goal was the examination of the Aur influence on the redox-system of GSH in Nrf2 wild type and Nrf2 knockout mice via activation of Nrf2 and ARE. Methods: Twenty female mice, 10 Nrf2 wild-type (WT) and 10 Nrf2 (-/-) knockout (KO), were bred and genotyped for our study. The activity of GR, Se-GP, Se-iGP, GST, G6PD, CytP450 reductase, catalase (Cat), and content of GSH were analyzed in the liver, kidney, and spleen using Spectrophotometry methods. The results of the specific activity of enzymes and the amount of GSH were analyzed with ANOVA and Spearman statistical methods. Results: Aur (200 mg/kg) treatment induced hepatic GST, GR, Se-GP activity and inhibited their activity in the spleen of mice, most likely via activation of the ARE through Nrf2. Activation in kidney Se-GP and G6PD by Aur is also controlled, apparently through Nrf2. Results of the non-parametric Spearman correlation analysis indicated the strong positive correlation between GR and G6PD only in the liver in WT control mice (r=+0.972; p < 0.005) and in the kidney KO control mice (r=+0.958; p < 0.005). The observed low content of GSH in the liver of KO mice indicated an increase in its participation in the neutralization of toxic substances with the absence of induction of GSH-dependent enzymes, such as GST, GR, Se-GP, and Se-iGP. Activation of CytP450 in kidney and spleen and Cat in the liver in KO mice probably revealed another regulatory mechanism for these enzymes. Conclusion: Thereby, obtained results testify that Aur can modulate the activity of genes and antioxidant enzymatic redox-system of GSH, responsible for the control of intracellular reduction-oxidation status.

Keywords: auraptene, glutathione, GST, Nrf2

Procedia PDF Downloads 133
2024 Novel EGFR Ectodomain Mutations and Resistance to Anti-EGFR and Radiation Therapy in H&N Cancer

Authors: Markus Bredel, Sindhu Nair, Hoa Q. Trummell, Rajani Rajbhandari, Christopher D. Willey, Lewis Z. Shi, Zhuo Zhang, William J. Placzek, James A. Bonner

Abstract:

Purpose: EGFR-targeted monoclonal antibodies (mAbs) provide clinical benefit in some patients with H&N squamous cell carcinoma (HNSCC), but others progress with minimal response. Missense mutations in the EGFR ectodomain (ECD) can be acquired under mAb therapy by mimicking the effect of large deletions on receptor untethering and activation. Little is known about the contribution of EGFR ECD mutations to EGFR activation and anti-EGFR response in HNSCC. Methods: We selected patient-derived HNSCC cells (UM-SCC-1) for resistance to mAb Cetuximab (CTX) by repeated, stepwise exposure to mimic what may occur clinically and identified two concurrent EGFR ECD mutations (UM-SCC-1R). We examined the competence of the mutants to bind EGF ligand or CTX. We assessed the potential impact of the mutations through visual analysis of space-filling models of the native sidechains in the original structures vs. their respective side-chain mutations. We performed CRISPR in combination with site-directed mutagenesis to test for the effect of the mutants on ligand-independent EGFR activation and sorting. We determined the effects on receptor internalization, endocytosis, downstream signaling, and radiation sensitivity. Results: UM-SCC-1R cells carried two non-synonymous missense mutations (G33S and N56K) mapping to domain I in or near the EGF binding pocket of the EGFR ECD. Structural modeling predicted that these mutants restrict the adoption of a tethered, inactive EGFR conformation while not permitting association of EGFR with the EGF ligand or CTX. Binding studies confirmed that the mutant, untethered receptor displayed a reduced affinity for both EGF and CTX but demonstrated sustained activation and presence at the cell surface with diminished internalization and sorting for endosomal degradation. Single and double-mutant models demonstrated that the G33S mutant is dominant over the N56K mutant in its effect on EGFR activation and EGF binding. CTX-resistant UM-SCC-1R cells demonstrated cross-resistance to mAb Panitumuab but, paradoxically, remained sensitive to the reversible receptor tyrosine kinase inhibitor Erlotinib. Conclusions: HNSCC cells can select for EGFR ECD mutations under EGFR mAb exposure that converge to trap the receptor in an open, constitutively activated state. These mutants impede the receptor’s competence to bind mAbs and EGF ligand and alter its endosomal trafficking, possibly explaining certain cases of clinical mAb and radiation resistance.

Keywords: head and neck cancer, EGFR mutation, resistance, cetuximab

Procedia PDF Downloads 74
2023 In vitro Clonal Multiplication and Acclimatization of Large Cardamom (Amomum subulatum Roxb.)

Authors: Krishna Poudel, Tahar Katuwal, Sujan Karki

Abstract:

A rapid propagation and acclimatization method of large cardamom was optimized in this study. Sprouted rhizome buds were collected. The excised rhizome bud explants were cultured on semi solid culture media. The explants were cultured on Murashige and Skoog’s (MS) medium supplemented with different concentration and combinations of BAP (6-Benzyl-amino-purine) and IBA (Indole-3-butyric acid) for shoot and root induction. Explants cultured on MS basal medium supplemented with 1.0 mg/l BAP + 0.5 gm/l IBA showed the highest rate of shoot multiplication. In vitro shoots were rooted on to the half-strength MS basal media supplemented with 0.5 mg/l IBA. Rooted shoots were transplanted in the screen house for hardening process. These hardened plants were subsequently shifted into the netted nursery for further multiplication process.

Keywords: concentration, explants, hardening, rhizome

Procedia PDF Downloads 228
2022 Clinical Outcome after in Vitro Fertilization in Women Aged 40 Years and Above: Reasonable Cut-Off Age for Successful Pregnancy

Authors: Eun Jeong Yu, Inn Soo Kang, Tae Ki Yoon, Mi Kyoung Koong

Abstract:

Advanced female age is associated with higher cycle cancelation rates, lower clinical pregnancy rate, increased miscarriage and aneuploidy rates in IVF (In Vitro Fertilization) cycles. This retrospective cohort study was conducted at a Cha Fertility Center, Seoul Station. All fresh non-donor IVF cycles performed in women aged 40 years and above from January 2016 to December 2016 were reviewed. Donor/recipient treatment, PGD/PGS (Preimplantation Genetic Diagnosis/ Preimplantation Genetic Screening) were excluded from analysis. Of the 1,166 cycles from 753 women who completed ovulation induction, 1,047 were appropriate for the evaluation according to inclusion and exclusion criterion. IVF cycles were categorized according to age and grouped into the following 1-year age groups: 40, 41, 42, 43, 44, 45 and > 46. The mean age of patients was 42.4 ± 1.8 years. The median AMH (Anti-Mullerian Hormone) level was 1.2 ± 1.5 ng/mL. The mean number of retrieved oocytes was 4.9 ± 4.3. The clinical pregnancy rate and live birth rate in women > 40 years significantly decreased with each year of advancing age (p < 0.001). The clinical pregnancy rate decreased from 21% at the age of 40 years to 0% at ages above 45 years. Live birth rate decreased from 12.3% to 0%, respectively. There were no clinical pregnancy outcomes among 95 patients aged above 45 years of age. The overall miscarriage rate was 40.7% (range, 36.7%-70%). The transfer of at least one good quality embryo was associated with about 4-9% increased chance of a clinical pregnancy rate. Therefore, IVF in old age women less than 46 had a reasonable chance for successful pregnancy outcomes especially when good quality embryo is transferred.

Keywords: advanced maternal age, in vitro fertilization, pregnancy rate, live birth rate

Procedia PDF Downloads 132
2021 Theoretical and Experimental Study on the NO Reduction by H₂ over Char Decorated with Ni at low Temperatures

Authors: Kaixuan Feng, Ruixiang Lin, Yuyan Hu, Yuheng Feng, Dezhen Chen, Tongcheng Cao

Abstract:

In this study, we propose a reaction system for the low-temperature reduction of NO by H₂ on carbon-based materials decorated with 5%wt. Ni. This cost-effective catalyst system efficiently utilizes pyrolysis carbon-based materials and waste hydrogen. Additionally, it yields environmentally friendly products without requiring extra heat sources in practical SCR devices. Density functional theory elucidates the mechanism of NO heterogeneous reduction by H₂ on Ni-decorated char surfaces. Two distinct reaction paths were identified, one involving the intermediate product N₂O and the other not. These pathways exhibit different rate-determination steps and activation energies. Kinetic analysis indicates that the N₂O byproduct pathway has a lower activation energy. Experimental results corroborate the theoretical findings. Thus, this research enhances our mechanistic understanding of the NO-H₂ reaction over char and offers insights for optimizing catalyst design in low-temperature NO reduction.

Keywords: char-based catalysis, NO reduction, DFT study, heterogeneous reaction, low-temperature H₂-reduction

Procedia PDF Downloads 58
2020 In silico Designing and Insight into Antimalarial Potential of Chalcone-Quinolinylpyrazole Hybrids by Preclinical Study in Mice

Authors: Deepika Saini, Sandeep Jain, Ajay Kumar

Abstract:

The quinoline scaffold is one of the most widely studied in the discovery of derivatives with various heterocyclic moieties due to its potential antimalarial activities. In the present study, a chalcone series of quinoline derivatives clubbed with pyrazole were synthesized to evaluate their antimalarial property by in vitro schizont maturation inhibition assay against both chloroquine sensitive, 3D7 and chloroquine resistant, RKL9 strain of Plasmodium falciparum. Further, top five compounds were studied for in vivo preclinical study for antimalarial potential against P. berghei in Swiss albino mice. To understand the mechanism of synthesized analogues, they were screened computationally by molecular docking techniques. Compounds were docked into the active site of a protein receptor, Plasmodium falciparum Cysteine Protease Falcipain-2. The compounds were successfully synthesized, and structural confirmation was performed by FTIR, 1H-NMR, mass spectrometry and elemental analysis. In vitro study suggested that the compounds 5b, 5g, 5l, 5s and 5u possessed best antimalarial activity and further tested for in vivo screening. Compound 5u (CH₃ on both rings) with EC₅₀ 0.313 & 0.801 µg/ml against CQ-S & CQ-R strains of P. falciparum respectively and 78.01% suppression of parasitemia. The molecular docking studies of the compounds helped in understanding the mechanism of action against falcipain-2. The present study reveals the binding signatures of the synthesized ligands within the active site of the protein, and it explains the results from in vitro study in their EC₅₀ values and percentage parasitemia.

Keywords: antimalarial activity, chalcone, docking, quinoline

Procedia PDF Downloads 393
2019 In vitro α-Amylase and α-Glucosidase Inhibitory Activities of Bitter Melon (Momordica charantia) with Different Stage of Maturity

Authors: P. S. Percin, O. Inanli, S. Karakaya

Abstract:

Bitter melon (Momordica charantia) is a medicinal vegetable, which is used traditionally to remedy diabetes. Bitter melon contains several classes of primary and secondary metabolites. In traditional Turkish medicine bitter melon is used for wound healing and treatment of peptic ulcers. Nowadays, bitter melon is used for the treatment of diabetes and ulcerative colitis in many countries. The main constituents of bitter melon, which are responsible for the anti-diabetic effects, are triterpene, protein, steroid, alkaloid and phenolic compounds. In this study total phenolics, total carotenoids and β-carotene contents of mature and immature bitter melons were determined. In addition, in vitro α-amylase and α-glucosidase activities of mature and immature bitter melons were studied. Total phenolic contents of immature and mature bitter melon were 74 and 123 mg CE/g bitter melon respectively. Although total phenolics of mature bitter melon was higher than that of immature bitter melon, this difference was not found statistically significant (p > 0.05). Carotenoids, a diverse group of more than 600 naturally occurring red, orange and yellow pigments, play important roles in many physiological processes both in plants and humans. The total carotenoid content of mature bitter melon was 4.36 fold higher than the total carotenoid content of immature bitter melon. The compounds that have hypoglycaemic effect of bitter melon are steroidal saponins known as charantin, insulin-like peptides and alkaloids. α-Amylase is one of the main enzymes in human that is responsible for the breakdown of starch to more simple sugars. Therefore, the inhibitors of this enzyme can delay the carbohydrate digestion and reduce the rate of glucose absorption. The immature bitter melon extract showed α-amylase and α-glucosidase inhibitory activities in vitro. α-Amylase inhibitory activity was higher than that of α-glucosidase inhibitory activity when IC50 values were compared. In conclusion, the present results provide evidence that aqueous extract of bitter melon may have an inhibitory effect on carbohydrate breakdown enzymes.

Keywords: bitter melon, in vitro antidiabetic activity, total carotenoids, total phenols

Procedia PDF Downloads 230
2018 Design and Development of Buccal Delivery System for Atenolol Tablets by Using Different Bioadhesive Polymers

Authors: Venkatalakshmi Ranganathan, Ong Hsin Ju, Tan Yinn Ming, Lim Kien Sin, Wong Man Ting, Venkata Srikanth Meka

Abstract:

The mucoadhesive buccal tablet is an oral drug delivery system which attached to the buccal surface for direct drug absorption into the systemic circulation and the unidirectional drug release is ensured by formulating a hydrophobic backing layer. The objective of present study was to formulate mucoadhesive atenolol bilayer buccal tablets by using sodium alginate, hydroxyethyl cellulose, and xanthan gum as mucoadhesive polymer and the technique applied was direct compression method. Ethyl cellulose was used as backing layer of the tablet. FTIR and DSC analysis were carried out to identify the drug polymer interactions. The prepared tablets were evaluated for physicochemical parameters, ex vivo mucoadhesion time and in-vitro drug release. The formulated tablets showed the average surface pH 6-7 which is favourable for oral mucosa. The formulation containing sodium alginate showed more than 90 % of drug release at the end of the 7 hours in vitro dissolution studies. The formulation containing xanthan gum showed more than 8 hours of mucoadhesion time and all formulation exhibited non fickian release kinetics. The present study indicates enormous potential of erodible mucoadhesive buccal tablet containing atenolol for systemic delivery with an added advantage of circumventing the hepatic first pass metabolism.

Keywords: atenolol, mucoadhesion, in vitro drug release, direct compression, ethyl cellulose

Procedia PDF Downloads 605
2017 The Second Generation of Tyrosine Kinase Inhibitor Afatinib Controls Inflammation by Regulating NLRP3 Inflammasome Activation

Authors: Shujun Xie, Shirong Zhang, Shenglin Ma

Abstract:

Background: Chronic inflammation might lead to many malignancies, and inadequate resolution could play a crucial role in tumor invasion, progression, and metastases. A randomised, double-blind, placebo-controlled trial shows that IL-1β inhibition with canakinumab could reduce incident lung cancer and lung cancer mortality in patients with atherosclerosis. The process and secretion of proinflammatory cytokine IL-1β are controlled by the inflammasome. Here we showed the correlation of the innate immune system and afatinib, a tyrosine kinase inhibitor targeting epidermal growth factor receptor (EGFR) in non-small cell lung cancer. Methods: Murine Bone marrow derived macrophages (BMDMs), peritoneal macrophages (PMs) and THP-1 were used to check the effect of afatinib on the activation of NLRP3 inflammasome. The assembly of NLRP3 inflammasome was check by co-immunoprecipitation of NLRP3 and apoptosis-associated speck-like protein containing CARD (ASC), disuccinimidyl suberate (DSS)-cross link of ASC. Lipopolysaccharide (LPS)-induced sepsis and Alum-induced peritonitis were conducted to confirm that afatinib could inhibit the activation of NLRP3 in vivo. Peripheral blood mononuclear cells (PBMCs) from non-small cell lung cancer (NSCLC) patients before or after taking afatinib were used to check that afatinib inhibits inflammation in NSCLC therapy. Results: Our data showed that afatinib could inhibit the secretion of IL-1β in a dose-dependent manner in macrophage. Moreover, afatinib could inhibit the maturation of IL-1β and caspase-1 without affecting the precursors of IL-1β and caspase-1. Next, we found that afatinib could block the assembly of NLRP3 inflammasome and the ASC speck by blocking the interaction of the sensor protein NLRP3 and the adaptor protein ASC. We also found that afatinib was able to alleviate the LPS-induced sepsis in vivo. Conclusion: Our study found that afatinib could inhibit the activation of NLRP3 inflammasome in macrophage, providing new evidence that afatinib could target the innate immune system to control chronic inflammation. These investigations will provide significant experimental evidence in afatinib as therapeutic drug for non-small cell lung cancer or other tumors and NLRP3-related diseases and will explore new targets for afatinib.

Keywords: inflammasome, afatinib, inflammation, tyrosine kinase inhibitor

Procedia PDF Downloads 107
2016 Localized Treatment of Cutaneous Candidiasis through Cubosomes in vitro Evaluation

Authors: Aakanchha Jain, D. V. Kohli

Abstract:

Cubosomes are nanoparticles but instead of the solid particles, cubosomes are self-assembled liquid crystalline particles of certain surfactant with proper ratio of water with a microstructure that provides unique properties of practical interest. Cubosomes encapsulating Fluconazole were prepared by emulsification method and characterized for particle size, entrapment efficiency. The cubosomes prepared were 257.2±2.94 nm in size with drug entrapment efficiency of 66.2±2.69%. The optimized formulation characterized for shape and surface morphology by TEM and SEM analysis. SEM photograph showed the smooth surface of optimized cubosomes and TEM photograph revealed square somewhat circular intact shapes of cubosomes. MIC was determined by XTT based method and antifungal activity was determined in vitro. The cumulative percentage of Fnz from cubosomes permeated via dialysis membrane (MWCO 12-14 KD) showed a percent cumulative drug release of 76.86% while Fnz solution showed release up to 91.04% in 24 hours in PBS (pH 6.5)(p < 0.005).

Keywords: Candids albicans, cubosomes, fluconazole, topical delivery

Procedia PDF Downloads 285
2015 Immunoregulatory Cytokines and Chemokines Synthesis in Endurance Exercises

Authors: Roman Khanferyan

Abstract:

Endurance exercises and strenuous muscle activity are accompanied by multiple immune dysfunctions due to the activation of cytokines and chemokines synthesis. This study assesses changes in the synthesis of immune regulatory mediators in elite athletes during endurance sports activity. The concentrations of cytokines/chemokines (IL-2, IL-6, IL-8, IL-10, IL-18, MIP-1 beta, GRO-alpha, RANTES, SDF-1a, VEGF) in sera of hockey athletes (n=33) and in supernatants of 24-h cultivated peripheral blood mononuclear cells (PBMC) of boxers (n=6) assayed by ELISA and Luminex xMAP multiplex assays. Estimation of body composition studied by using bioimpedance technology. The dietary energy consumption per person has been estimated using an album of different sizes of portions of the most frequently consumed foods. It has been demonstrated that endurance sports activity enhances the secretions of most pro- and anti-inflammatory cytokines and chemokines in more than 2-6 fold. The study demonstrated that the high increase of more than 3-4 times in the concentration of IL-18 in sera of athletes (327.86 + 45.67 pg/ml) didn’t correlate with BMI (p=0.040) but demonstrated a low correlation with MMI (p=0.234) and BMR (p=0,231). The opposite impact on the concentration of IL-10 has been demonstrated in athletes. It has been shown a negative correlation between its concentration and BMI (p= - 0.251), MMI (p= - 0.327), and BMR (p= - 0.301). In vitro studies in boxers showed greater amounts of chemokines in the PBMC supernatants, including MIP-1β, GRO-α, RANTES, SDF-1α, and IL-8 (P<0.05). At the same time, healthy controls had greater supernatant levels of MCP-1, Eotaxin, and MIP-1α. The study demonstrated a high correlation between physical activity, usual athletes' diet, and consumption of specialized sports nutrition products.

Keywords: sport nutrition, cytokines, chemokines, endurace exercises

Procedia PDF Downloads 26