Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4

Search results for: Eleonore Frohlich

4 Comparative and Combined Toxicity of NiO and Mn₃O₄ Nanoparticles as Assessed in vitro and in vivo

Authors: Ilzira A. Minigalieva, Tatiana V. Bushueva, Eleonore Frohlich, Vladimir Panov, Ekaterina Shishkina, Boris A. Katsnelson

Abstract:

Background: The overwhelming majority of the experimental studies in the field of metal nanotoxicology have been performed on cultures of established cell lines, with very few researchers focusing on animal experiments, while a juxtaposition of conclusions inferred from these two types of research is blatantly lacking. The least studied aspect of this problem relates to characterizing and predicting the combined toxicity of metallic nanoparticles. Methods: Comparative and combined toxic effects of purposefully prepared spherical NiO and Mn₃O₄ nanoparticles (mean diameters 16.7 ± 8.2 nm and 18.4 ± 5.4 nm respectively) were estimated on cultures of human cell lines: MRC-5 fibroblasts, THP-1 monocytes, SY-SY5Y neuroblastoma cells, as well as on the latter two lines differentiated to macrophages and neurons, respectively. The combined cytotoxicity was mathematically modeled using the response surface methodology. Results: The comparative assessment of the studied NPs unspecific toxicity previously obtained in vivo was satisfactorily reproduced by the present in vitro tests. However, with respect to manganese-specific brain damage which had been demonstrated by us in animal experiment with the same NPs, the testing on neuronall cell culture showed only a certain enhancing effect of Mn₃O₄-NPs on the toxic action of NiO-NPs, while the role of the latter prevailed. Conclusion: From the point of view of the preventive toxicology, the experimental modeling of metallic NPs combined toxicity on cell cultures can give non-reliable predictions of the in vivo action’s effects.

Keywords: Nanoparticles, manganese oxide, nickel oxide, in vitro toxicity

Procedia PDF Downloads 158
3 Statistical Pattern Recognition for Biotechnological Process Characterization Based on High Resolution Mass Spectrometry

Authors: S. Fröhlich, M. Herold, M. Allmer

Abstract:

Early stage quantitative analysis of host cell protein (HCP) variations is challenging yet necessary for comprehensive bioprocess development. High resolution mass spectrometry (HRMS) provides a high-end technology for accurate identification alongside with quantitative information. Hereby we describe a flexible HRMS assay platform to quantify HCPs relevant in microbial expression systems such as E. Coli in both up and downstream development by means of MVDA tools. Cell pellets were lysed and proteins extracted, purified samples not further treated before applying the SMART tryptic digest kit. Peptides separation was optimized using an RP-UHPLC separation platform. HRMS-MSMS analysis was conducted on an Orbitrap Velos Elite applying CID. Quantification was performed label-free taking into account ionization properties and physicochemical peptide similarities. Results were analyzed using SIEVE 2.0 (Thermo Fisher Scientific) and SIMCA (Umetrics AG). The developed HRMS platform was applied to an E. Coli expression set with varying productivity and the corresponding downstream process. Selected HCPs were successfully quantified within the fmol range. Analysing HCP networks based on pattern analysis facilitated low level quantification and enhanced validity. This approach is of high relevance for high-throughput screening experiments during upstream development, e.g. for titer determination, dynamic HCP network analysis or product characterization. Considering the downstream purification process, physicochemical clustering of identified HCPs is of relevance to adjust buffer conditions accordingly. However, the technology provides an innovative approach for label-free MS based quantification relying on statistical pattern analysis and comparison. Absolute quantification based on physicochemical properties and peptide similarity score provides a technological approach without the need of sophisticated sample preparation strategies and is therefore proven to be straightforward, sensitive and highly reproducible in terms of product characterization.

Keywords: Pattern Recognition, Mass Spectrometry, Process Analytical Technology, process characterization, MVDA

Procedia PDF Downloads 118
2 Big Data for Local Decision-Making: Indicators Identified at International Conference on Urban Health 2017

Authors: Dana R. Thomson, Catherine Linard, Sabine Vanhuysse, Jessica E. Steele, Michal Shimoni, Jose Siri, Waleska Caiaffa, Megumi Rosenberg, Eleonore Wolff, Tais Grippa, Stefanos Georganos, Helen Elsey

Abstract:

The Sustainable Development Goals (SDGs) and Urban Health Equity Assessment and Response Tool (Urban HEART) identify dozens of key indicators to help local decision-makers prioritize and track inequalities in health outcomes. However, presentations and discussions at the International Conference on Urban Health (ICUH) 2017 suggested that additional indicators are needed to make decisions and policies. A local decision-maker may realize that malaria or road accidents are a top priority. However, s/he needs additional health determinant indicators, for example about standing water or traffic, to address the priority and reduce inequalities. Health determinants reflect the physical and social environments that influence health outcomes often at community- and societal-levels and include such indicators as access to quality health facilities, access to safe parks, traffic density, location of slum areas, air pollution, social exclusion, and social networks. Indicator identification and disaggregation are necessarily constrained by available datasets – typically collected about households and individuals in surveys, censuses, and administrative records. Continued advancements in earth observation, data storage, computing and mobile technologies mean that new sources of health determinants indicators derived from 'big data' are becoming available at fine geographic scale. Big data includes high-resolution satellite imagery and aggregated, anonymized mobile phone data. While big data are themselves not representative of the population (e.g., satellite images depict the physical environment), they can provide information about population density, wealth, mobility, and social environments with tremendous detail and accuracy when combined with population-representative survey, census, administrative and health system data. The aim of this paper is to (1) flag to data scientists important indicators needed by health decision-makers at the city and sub-city scale - ideally free and publicly available, and (2) summarize for local decision-makers new datasets that can be generated from big data, with layperson descriptions of difficulties in generating them. We include SDGs and Urban HEART indicators, as well as indicators mentioned by decision-makers attending ICUH 2017.

Keywords: Remote Sensing, Satellite Imagery, mobile phone, health determinant, health outcome, SDG, urban HEART

Procedia PDF Downloads 71
1 Fort Conger: A Virtual Museum and Virtual Interactive World for Exploring Science in the 19th Century

Authors: Richard Levy, Peter Dawson

Abstract:

Ft. Conger, located in the Canadian Arctic was one of the most remote 19th-century scientific stations. Established in 1881 on Ellesmere Island, a wood framed structure established a permanent base from which to conduct scientific research. Under the charge of Lt. Greely, Ft. Conger was one of 14 expeditions conducted during the First International Polar Year (FIPY). Our research project “From Science to Survival: Using Virtual Exhibits to Communicate the Significance of Polar Heritage Sites in the Canadian Arctic” focused on the creation of a virtual museum website dedicated to one of the most important polar heritage site in the Canadian Arctic. This website was developed under a grant from Virtual Museum of Canada and enables visitors to explore the fort’s site from 1875 to the present, http://fortconger.org. Heritage sites are often viewed as static places. A goal of this project was to present the change that occurred over time as each new group of explorers adapted the site to their needs. The site was first visited by British explorer George Nares in 1875 – 76. Only later did the United States government select this site for the Lady Franklin Bay Expedition (1881-84) with research to be conducted under the FIPY (1882 – 83). Still later Robert Peary and Matthew Henson attempted to reach the North Pole from Ft. Conger in 1899, 1905 and 1908. A central focus of this research is on the virtual reconstruction of the Ft. Conger. In the summer of 2010, a Zoller+Fröhlich Imager 5006i and Minolta Vivid 910 laser scanner were used to scan terrain and artifacts. Once the scanning was completed, the point clouds were registered and edited to form the basis of a virtual reconstruction. A goal of this project has been to allow visitors to step back in time and explore the interior of these buildings with all of its artifacts. Links to text, historic documents, animations, panorama images, computer games and virtual labs provide explanations of how science was conducted during the 19th century. A major feature of this virtual world is the timeline. Visitors to the website can begin to explore the site when George Nares, in his ship the HMS Discovery, appeared in the harbor in 1875. With the emergence of Lt Greely’s expedition in 1881, we can track the progress made in establishing a scientific outpost. Still later in 1901, with Peary’s presence, the site is transformed again, with the huts having been built from materials salvaged from Greely’s main building. Still later in 2010, we can visit the site during its present state of deterioration and learn about the laser scanning technology which was used to document the site. The Science and Survival at Fort Conger project represents one of the first attempts to use virtual worlds to communicate the historical and scientific significance of polar heritage sites where opportunities for first-hand visitor experiences are not possible because of remote location.

Keywords: Virtual Reality, Multimedia, Arctic

Procedia PDF Downloads 248