Search results for: exhaust and liner wall temperature
7911 A Numerical Simulation of Arterial Mass Transport in Presence of Magnetic Field-Links to Atherosclerosis
Authors: H. Aminfar, M. Mohammadpourfard, K. Khajeh
Abstract:
This paper has focused on the most important parameters in the LSC uptake; inlet Re number and Sc number in the presence of non-uniform magnetic field. The magnetic field is arising from the thin wire with electric current placed vertically to the arterial blood vessel. According to the results of this study, applying magnetic field can be a treatment for atherosclerosis by reducing LSC along the vessel wall. Homogeneous porous layer as a arterial wall has been regarded. Blood flow has been considered laminar and incompressible containing Ferro fluid (blood and 4 % vol. Fe₃O₄) under steady state conditions. Numerical solution of governing equations was obtained by using the single-phase model and control volume technique for flow field.Keywords: LDL surface concentration (LSC), magnetic field, computational fluid dynamics, porous wall
Procedia PDF Downloads 4087910 Entropy Generation of Unsteady Reactive Hydromagnetic Generalized Couette Fluid Flow of a Two-Step Exothermic Chemical Reaction Through a Channel
Authors: Rasaq Kareem, Jacob Gbadeyan
Abstract:
In this study, analysis of the entropy generation of an unsteady reactive hydromagnetic generalized couette fluid flow of a two-step exothermic chemical reaction through a channel with isothermal wall temperature under the influence of different chemical kinetics namely: Sensitized, Arrhenius and Bimolecular kinetics was investigated. The modelled nonlinear dimensionless equations governing the fluid flow were simplified and solved using the combined Laplace Differential Transform Method (LDTM). The effects of fluid parameters associated with the problem on the fluid temperature, entropy generation rate and Bejan number were discussed and presented through graphs.Keywords: couette, entropy, exothermic, unsteady
Procedia PDF Downloads 5157909 Numerical Analysis on the Effect of Abrasive Parameters on Wall Shear Stress and Jet Exit Kinetic Energy
Authors: D. Deepak, N. Yagnesh Sharma
Abstract:
Abrasive Water Jet (AWJ) machining is a relatively new nontraditional machine tool used in machining of fiber reinforced composite. The quality of machined surface depends on jet exit kinetic energy which depends on various operating and material parameters. In the present work the effect abrasive parameters such as its size, concentration and type on jet kinetic energy is investigated using computational fluid dynamics (CFD). In addition, the effect of these parameters on wall shear stress developed inside the nozzle is also investigated. It is found that for the same operating parameters, increase in the abrasive volume fraction (concentration) results in significant decrease in the wall shear stress as well as the jet exit kinetic energy. Increase in the abrasive particle size results in marginal decrease in the jet exit kinetic energy. Numerical simulation also indicates that garnet abrasives produce better jet exit kinetic energy than aluminium oxide and silicon carbide.Keywords: abrasive water jet machining, jet kinetic energy, operating pressure, wall shear stress, Garnet abrasive
Procedia PDF Downloads 3777908 Energy and Economic Analysis of Heat Recovery from Boiler Exhaust Flue Gas
Authors: Kemal Comakli, Meryem Terhan
Abstract:
In this study, the potential of heat recovery from waste flue gas was examined in 60 MW district heating system of a university, and fuel saving was aimed by using the recovered heat in the system as a source again. Various scenarios are intended to make use of waste heat. For this purpose, actual operation data of the system were taken. Besides, the heat recovery units that consist of heat exchangers such as flue gas condensers, economizers or air pre-heaters were designed theoretically for each scenario. Energy analysis of natural gas-fired boiler’s exhaust flue gas in the system, and economic analysis of heat recovery units to predict payback periods were done. According to calculation results, the waste heat loss ratio from boiler flue gas in the system was obtained as average 16%. Thanks to the heat recovery units, thermal efficiency of the system can be increased, and fuel saving can be provided. At the same time, a huge amount of green gas emission can be decreased by installing the heat recovery units.Keywords: heat recovery from flue gas, energy analysis of flue gas, economical analysis, payback period
Procedia PDF Downloads 2887907 Thermal Effects on Wellbore Stability and Fluid Loss in High-Temperature Geothermal Drilling
Authors: Mubarek Alpkiray, Tan Nguyen, Arild Saasen
Abstract:
Geothermal drilling operations contain numerous challenges that are encountered to increase the well cost and nonproductive time. Fluid loss is one of the most undesirable troublesome that can cause well abandonment in geothermal drilling. Lost circulation can be seen due to natural fractures, high mud weight, and extremely high formation temperatures. This challenge may cause wellbore stability problems and lead to expensive drilling operations. Wellbore stability is the main domain that should be considered to mitigate or prevent fluid loss into the formation. This paper describes the causes of fluid loss in the Pamukoren geothermal field in Turkey. A geomechanics approach integration and assessment is applied to help the understanding of fluid loss problems. In geothermal drillings, geomechanics is primarily based on rock properties, in-situ stress characterization, the temperature of the rock, determination of stresses around the wellbore, and rock failure criteria. Since a high-temperature difference between the wellbore wall and drilling fluid is presented, temperature distribution through the wellbore is estimated and implemented to the wellbore stability approach. This study reviewed geothermal drilling data to analyze temperature estimation along the wellbore, the cause of fluid loss and stored electric capacity of the reservoir. Our observation demonstrates the geomechanical approach's significant role in understanding safe drilling operations on high-temperature wells. Fluid loss is encountered due to thermal stress effects around the borehole. This paper provides a wellbore stability analysis for a geothermal drilling operation to discuss the causes of lost circulation resulting in nonproductive time and cost.Keywords: geothermal wells, drilling, wellbore stresses, drilling fluid loss, thermal stress
Procedia PDF Downloads 1947906 Numerical Simulation of Urea Water Solution Evaporation Behavior inside the Diesel Selective Catalytic Reduction System
Authors: Kumaresh Selvakumar, Man Young Kim
Abstract:
Selective catalytic reduction (SCR) converts the nitrogen oxides with the aid of a catalyst by adding aqueous urea into the exhaust stream. In this work, the urea water droplets are sprayed over the exhaust gases by treating with Lagrangian particle tracking. The evaporation of ammonia from a single droplet of urea water solution is investigated computationally by convection-diffusion controlled model. The conversion to ammonia due to thermolysis of urea water droplets is measured downstream at different sections using finite rate/eddy dissipation model. In this paper, the mixer installed at the upstream enhances the distribution of ammonia over the entire domain which is calculated for different time steps. Calculations are made within the respective duration such that the complete decomposition of urea is possible at a much shorter residence time.Keywords: convection-diffusion controlled model, lagrangian particle tracking, selective catalytic reduction, thermolysis
Procedia PDF Downloads 4067905 Supplementation of Yeast Cell Wall on Growth Performance in Broiler Reared under High Ambient Temperature
Authors: Muhammad Shahzad Hussain
Abstract:
Two major problems are facing generally by conventional poultry farming that is disease outbreaks and poor performance, which results due to improper management. To enhance the growth performance and efficiency of feed and reduce disease outbreaks, antibiotic growth promoters (AGPs) which are antibiotics at sub-therapeutic levels, are extensively used in the poultry industry. European Union has banned the use of antibiotics due to their presence in poultry products, development of antibiotic-resistant pathogens, and disturbance of normal gut microbial ecology. These residues cause serious health concerns and produce antibiotic resistance in pathogenic microbes in human beings. These issues strengthen the need for the withdrawal of AGPs from poultry feed. Nowadays, global warming is a major issue, and it is more critical in tropical areas like Pakistan, where heat stress is already a major problem. Heat stress leads to poor production performance, high mortality, immuno-suppression, and concomitant diseases outbreak. The poultry feed industry in Pakistan, like other countries of the world, has been facing shortages and high prices of local as well as imported feed ingredients. Prebiotics are potential replacer for AGP as prebiotics has properties to enhance the production potential and reduce the growth of harmful bacteria as well as stimulate the growth/activity of beneficial bacteria. The most commonly used prebiotics in poultry includes mannan oligosaccharide (MOS). MOS is an essential component of the yeast cell wall (YCW) (Saccharomyces cerevisiae); therefore, the YCW wall possesses prebiotic properties. The use of distillery yeast wall (YCW) has the potential to replace conventional AGPs and to reduce mortality due to heat stress as well as to bind toxins in the feed. The dietary addition of YCW has not only positive effects on production performance in poultry during normal conditions but during stressful conditions. A total of 168-day-old broilers were divided into 6 groups, each of which has 28 birds with 4 replicates (n=7).Yeast cell wall (YCW) supplementation @ 0%, 1%, 1.5%, 2%, 2.5%, 3% from day 0 to 35. Heat stress was exposed from day 21 to 35 at 30±1.1ᵒC with relative humidity 65±5%. Zootechnical parameters like body weight, FCR, Organ development, and histomorphometric parameters were studied. A significant weight gain was observed at group C supplemented @ 1.5% YCW during the fifth week. Significant organ weight gain of Gizzard, spleen, small intestine, and cecum was observed at group C supplemented @ 1.5% YCW. According to morphometric indices Duodenum, Jejunum, and Ileum has significant villus height, while Jejunum and Ileum have also significant villus surface area in the group supplemented with 1.5% YCW. IEL count was only decreased in 1.5% YCW-fed group in jejunum and ileum, not in duodenum, that was less in 2% YCW-supplemented group. Dietary yeast cell wall of saccharomyces cerevisiae partially reduced the effects of high ambient temperature in terms of better growth and modified gut histology and components of mucosal immune response to better withstand heat stress in broilers.Keywords: antibiotics, AGPs, broilers, MOS, prebiotics, YCW
Procedia PDF Downloads 957904 Design and Analysis of Deep Excavations
Authors: Barham J. Nareeman, Ilham I. Mohammed
Abstract:
Excavations in urban developed area are generally supported by deep excavation walls such as; diaphragm wall, bored piles, soldier piles and sheet piles. In some cases, these walls may be braced by internal braces or tie back anchors. Tie back anchors are by far the predominant method for wall support, the large working space inside the excavation provided by a tieback anchor system has a significant construction advantage. This paper aims to analyze a deep excavation bracing system of contiguous pile wall braced by pre-stressed tie back anchors, which is a part of a huge residential building project, located in Turkey/Gaziantep province. The contiguous pile wall will be constructed with a length of 270 m that consists of 285 piles, each having a diameter of 80 cm, and a center to center spacing of 95 cm. The deformation analysis was carried out by a finite element analysis tool using PLAXIS. In the analysis, beam element method together with an elastic perfect plastic soil model and Soil Hardening Model was used to design the contiguous pile wall, the tieback anchor system, and the soil. The two soil clusters which are limestone and a filled soil were modelled with both Hardening soil and Mohr Coulomb models. According to the basic design, both soil clusters are modelled as drained condition. The simulation results show that the maximum horizontal movement of the walls and the maximum settlement of the ground are convenient with 300 individual case histories which are ranging between 1.2mm and 2.3mm for walls, and 15mm and 6.5mm for the settlements. It was concluded that tied-back contiguous pile wall can be satisfactorily modelled using Hardening soil model.Keywords: deep excavation, finite element, pre-stressed tie back anchors, contiguous pile wall, PLAXIS, horizontal deflection, ground settlement
Procedia PDF Downloads 2547903 Effects of Different Climate Zones, Building Types, and Primary Fuel Sources for Energy Production on Environmental Damage from Four External Wall Technologies for Residential Buildings in Israel
Authors: Svetlana Pushkar, Oleg Verbitsky
Abstract:
The goal of the present study is to evaluate environmental damage from four wall technologies under the following conditions: four climate zones in Israel, two building (conventional vs. low-energy) types, and two types of fuel source [natural gas vs. photovoltaic (PV)]. The hierarchical ReCiPe method with a two-stage nested (hierarchical) ANOVA test is applied. It was revealed that in a hot climate in Israel in a conventional building fueled by natural gas, OE is dominant (90 %) over the P&C stage (10 %); in a mild climate in Israel in a low-energy building with PV, the P&C stage is dominant (85 %) over the OE stage (15 %). It is concluded that if PV is used in the building sector in Israel, (i) the P&C stage becomes a significant factor that influences the environment, (ii) autoclaved aerated block is the best external wall technology, and (iii) a two-stage nested mixed ANOVA can be used to evaluate environmental damage via ReCiPe when wall technologies are compared.Keywords: life cycle assessment (LCA), photovoltaic, ReCiPe method, residential buildings
Procedia PDF Downloads 2937902 Growth Model and Properties of a 3D Carbon Aerogel
Authors: J. Marx, D. Smazna, R. Adelung, B. Fiedler
Abstract:
Aerographite is a 3D interconnected carbon foam. Its tetrapodal morphology is based on the zinc oxide (ZnO) template structure, which is replicated in the chemical vapour deposition (CVD) into a hollow carbon structure. This replication process is analyzed in ex-situ studies via interrupted synthesis and the observation of the reaction progress by using scanning electron (SEM), transmission electron microscopy (TEM) and Raman spectroscopy techniques. Based on the epitaxial growth process, with a layer-by-layer growth behaviour of the wall thickness or number of layers and the catalytical graphitization of the deposited amorphous carbon into graphitic carbon by zinc, a growth model is created. The properties of aerographite, such as the electrical conductivity is dependent on the graphitization and number of layer (wall thickness). Wall thicknesses between 3 nm and 22 nm are achieved by a controlled stepwise reduction of the synthesis time on the basis of the developed growth model, and by a further thermal treatment at 1800 °C the graphitization of the presented carbon foam is modified. The variation of the wall thickness leads to an optimum defect density (ID/IG ratio) and the graphitization to an improvement in the electrical conductivity. Furthermore, a metallic conducting behaviour of untreated and 1800 °C treated aerographite can be observed. Due to these structural and defective modifications, a fundamental structural-property equation for the description of their influences on the electrical conductivity is developed.Keywords: electrical conductivity, electron microscopy (SEM/TEM), graphitization, wall thickness
Procedia PDF Downloads 1557901 Temperature Distribution Control for Baby Incubator System Using Arduino AT Mega 2560
Authors: W. Widhiada, D. N. K. P. Negara, P. A. Suryawan
Abstract:
The technological advances in the field of health to be very important, especially on the safety of the baby. In this case a lot of premature infants death caused by poorly managed health facilities. Mostly the death of premature baby caused by bacteria since the temperature around the baby is not normal. Related to this, the incubator equipment needs to be important, especially in how to control the temperature in incubator. On/Off controls is used to regulate the temperature distribution in the incubator so that the desired temperature is 36 °C to stay awake and stable. The authors have been observed and analyzed the data to determine the temperature distribution in the incubator using program of MATLAB/Simulink. The output temperature distribution is obtained at 36 °C in 400 seconds using an Arduino AT 2560. This incubator is able to maintain an ambient temperature and maintain the baby's body temperature within normal limits and keep the moisture in the air in accordance with the limit values required in infant incubator.Keywords: on/off control, distribution temperature, Arduino AT 2560, baby incubator
Procedia PDF Downloads 4997900 Hybrid Direct Numerical Simulation and Large Eddy Simulating Wall Models Approach for the Analysis of Turbulence Entropy
Authors: Samuel Ahamefula
Abstract:
Turbulent motion is a highly nonlinear and complex phenomenon, and its modelling is still very challenging. In this study, we developed a hybrid computational approach to accurately simulate fluid turbulence phenomenon. The focus is coupling and transitioning between Direct Numerical Simulation (DNS) and Large Eddy Simulating Wall Models (LES-WM) regions. In the framework, high-order fidelity fluid dynamical methods are utilized to simulate the unsteady compressible Navier-Stokes equations in the Eulerian format on the unstructured moving grids. The coupling and transitioning of DNS and LES-WM are conducted through the linearly staggered Dirichlet-Neumann coupling scheme. The high-fidelity framework is verified and validated based on namely, DNS ability for capture full range of turbulent scales, giving accurate results and LES-WM efficiency in simulating near-wall turbulent boundary layer by using wall models.Keywords: computational methods, turbulence modelling, turbulence entropy, navier-stokes equations
Procedia PDF Downloads 1007899 Investigation of Buddhology Reflected from Wall Paintings in Sri Lanka
Authors: R. G. D Jayawardena
Abstract:
The Buddha was known by great wise men from 6th century B.C up to date as a superhuman being born in the world beyond the omnipotent. The Buddha’s doctrinal descriptions reflect his deep enlightenment about imperial and metaphysical knowledge. Buddhology undertaken for this study is an unexposed subject in metaphysical points. The Buddhist wall painting in Sri Lanka depicts deep metaphysical meaning than its simple perspective of estheticism. Buddhology, in some perspectives, has been interpreted as a complete natural science discovered by the Buddha to teach the way of honorable living in perfect happiness and peace of mind till death. Such interpretations which emphasized are based on textual studies. The Buddhology conducted through literal tradition is depicted in wall paintings in Sri Lanka are in visual art with specific techniques rules. The Buddhology, which is investigated on wall paintings, portrays the Buddha in the form of a superhuman being and as an unparalleled person among the Devas, Brahmas, Yakshas, Maras, and humans. The Buddha concept is known to Sri Lankan Buddhists as a person attained to full awakening of wisdom. In personality, the Buddha is depicted as a supernormal person in the world and a rare birth. In brief, the paper will discuss and illustrate the Buddha’s transcendental position and the reality of what he experienced and its authenticity.Keywords: Buddhology, Metaphysic, Sri Lanka, paintings
Procedia PDF Downloads 2057898 Numerical Investigation of Al2O3/Water Nanofluid Heat Transfer in a Microtube with Viscous Dissipation Effect
Authors: Misagh Irandoost Shahrestani, Hossein Shokouhmand, Mohammad Kalteh, Behrang Hasanpour
Abstract:
In this paper, nanofluid conjugate heat transfer through a microtube with viscous dissipation effect is investigated numerically. The fluid flow is considered as a laminar regime. A constant heat flux is applied on the microtube outer wall and the two ends of its wall are considered adiabatic. Conjugate heat transfer problem is solved and investigated for this geometry. It is shown that viscous dissipation effect which is induced by shear stresses can not be neglected in microtubes. Viscous heating behaves as an energy source in the fluid and affects the temperature distribution. The effect of Reynolds number, particle volume fraction and the nanoparticles diameter on the energy source are investigated and an attempt on establishing suitable equations for assessing the value of the energy source based on Re, Dp and Φ is performed and they are depicted as 3D diagrams. Finally, the significance of viscous dissipation and the influence of these parameters on convective heat transfer coefficient are studied.Keywords: convective heat transfer coefficient, heat transfer, microtube, nanofluid, viscous dissipation
Procedia PDF Downloads 5127897 Concrete-Wall-Climbing Testing Robot
Authors: S. Tokuomi, K. Mori, Y. Tsuruzono
Abstract:
A concrete-wall-climbing testing robot, has been developed. This robot adheres and climbs concrete walls using two sets of suction cups, as well as being able to rotate by the use of the alternating motion of the suction cups. The maximum climbing speed is about 60 cm/min. Each suction cup has a pressure sensor, which monitors the adhesion of each suction cup. The impact acoustic method is used in testing concrete walls. This robot has an impact acoustic device and four microphones for the acquisition of the impact sound. The effectiveness of the impact acoustic system was tested by applying it to an inspection of specimens with artificial circular void defects. A circular void defect with a diameter of 200 mm at a depth of 50 mm was able to be detected. The weight and the dimensions of the robot are about 17 kg and 1.0 m by 1.3 m, respectively. The upper limit of testing is about 10 m above the ground due to the length of the power cable.Keywords: concrete wall, nondestructive testing, climbing robot, impact acoustic method
Procedia PDF Downloads 6597896 Improvement of Cross Range Resolution in Through Wall Radar Imaging Using Bilateral Backprojection
Authors: Rashmi Yadawad, Disha Narayanan, Ravi Gautam
Abstract:
Through Wall Radar Imaging is gaining increasing importance now a days in the field of Defense and one of the most important criteria that forms the basis for the image quality obtained is the Cross-Range resolution of the image. In this research paper, the Bilateral Back projection algorithm has been implemented for Through Wall Radar Imaging. The sole purpose is to enhance the resolution in the cross range direction of the obtained Back projection image. Synthetic Data is generated for two targets which are placed at various locations in a room of dimensions 8 m by 6m. Two algorithms namely, simple back projection and Bilateral Back projection have been implemented, images are obtained and the obtained images are compared. Numerical simulations have been coded in MATLAB and experimental results of the two algorithms have been shown. Based on the comparison between the two images, it can be clearly seen that the ringing effect and chess board effect have been heavily reduced in the bilaterally back projected image and hence promising results are obtained giving a relatively sharper image with relatively well defined edges.Keywords: through wall radar imaging, bilateral back projection, cross range resolution, synthetic data
Procedia PDF Downloads 3477895 Free Convection in a Darcy Thermally Stratified Porous Medium That Embeds a Vertical Wall of Constant Heat Flux and Concentration
Authors: Maria Neagu
Abstract:
This paper presents the heat and mass driven natural convection succession in a Darcy thermally stratified porous medium that embeds a vertical semi-infinite impermeable wall of constant heat flux and concentration. The scale analysis of the system determines the two possible maps of the heat and mass driven natural convection sequence along the wall as a function of the process parameters. These results are verified using the finite differences method applied to the conservation equations.Keywords: finite difference method, natural convection, porous medium, scale analysis, thermal stratification
Procedia PDF Downloads 3317894 Characterization of Coronary Artery Obstruction and Related Findings in Ischemic Heart Patients Using Cardiac Scintigraphy
Authors: Yousif Mohamed Y. Abdallah, Eltayeb Wagi Allah Eltayeb, Mohamed E. Gar-elnabi, Mohamed Ahmed Ali
Abstract:
To characterize coronary artery obstruction and related findings in ischemic heart patients using cardiac scintigraphy for the identification of myocardial ischemia, 146 patients were studied at basal conditions and also asked for fasting after night till the intravenous injection of the radiopharmaceutical. After the injection time about 15 to 20 minutes, the patient should eat a fatty meal and chocolate for the good excretion of the gall bladder, to evaluate the performance and regional wall motion of the left ventricle (LV). The results showed that the body mass index percentage in this sample was in range of 43.05 to 61.05. The number of patients who were catheter candidates were 56 with 43% and the patients that were not candidate to cathode were 74 patients with 57% of all patients. For the group of patients where type of ischemia was assessed, 29.5% of patients had reversible posterior and inferior wall, 15.1% of patients had fixed large from apex to base, 9.6% of patients had mild basal inferior wall, 4.8 % of patients had mild anterior wall, 6.2% of patients had antro-septal and 34.9% of patients had moderate ischemia.Keywords: myocardial ischemia, myocardial scintigraphy, contrast ventriculography, coronary artery obstruction
Procedia PDF Downloads 5857893 The Impact of Diesel Exhaust Particles on Tight Junction Proteins on Nose and Lung in a Mouse Model
Authors: Kim Byeong-Gon, Lee Pureun-Haneul, Hong Jisu, Jang An-Soo
Abstract:
Background: Diesel exhaust particles (DEPs) lead to trigger airway hyperresponsiveness (AHR) and airway dysfunction or inflammation in respiratory systems. Whether tight junction protein changes can contribute to development or exacerbations of airway diseases remain to be clarified. Objective: The aim of this study was to observe the effect of DEP on tight junction proteins in one airway both nose and lung in a mouse model. Methods: Mice were treated with saline (Sham) and exposed to 100 μg/m³ DEPs 1 hour a day for 5 days a week for 4 weeks and 8 weeks in a closed-system chamber attached to a ultrasonic nebulizer. Airway hyperresponsiveness (AHR) was measured and bronchoalveolar lavage (BAL) fluid, nasal lavage (NAL) fluid, lung and nasal tissue was collected. The effects of DEP on tight junction proteins were estimated using western blot, immunohistochemical in lung and nasal tissue. Results: Airway hyperresponsiveness and number of inflammatory cells were higher in DEP exposure group than in control group, and were higher in 4 and 8 weeks model than in control group. The expression of tight junction proteins CLND4, -5, and -17 in both lung and nasal tissue were significantly increased in DEP exposure group than in the control group. Conclusion: These results suggesting that CLDN4, -5 and -17 may be involved in the airway both nose and lung, suggesting that air pollutants cause to disruption of epithelial and endothelial cell barriers. Acknowledgment: This research was supported by Korea Ministry of Environment (MOE) as 'The Environmental Health Action Program' (2016001360009) and Soonchunhyang University Research Fund.Keywords: diesel exhaust particles, air pollutant, tight junction, Claudin, Airway inflammation
Procedia PDF Downloads 1447892 Case Study: Hybrid Mechanically Stabilized Earth Wall System Built on Basal Reinforced Raft
Authors: S. Kaymakçı, D. Gündoğdu, H. Özçelik
Abstract:
The truck park of a warehouse for a chain of supermarket was going to be constructed on a poor ground. Rather than using a piled foundation, the client was convinced that a ground improvement using a reinforced foundation raft also known as “basal reinforcement” shall work. The retaining structures supporting the truck park area were designed using a hybrid structure made up of the Terramesh® Wall System and MacGrid™ high strength geogrids. The total wall surface area is nearly 2740 sq.m , reaching a maximum height of 13.00 meters. The area is located in the first degree seismic zone of Turkey and the design seismic acceleration is high. The design of walls has been carried out using pseudo-static method (limit equilibrium) taking into consideration different loading conditions using Eurocode 7. For each standard approach stability analysis in seismic condition were performed. The paper presents the detailed design of the reinforced soil structure, basal reinforcement and the construction methods; advantages of using such system for the project are discussed.Keywords: basal reinforcement, geogrid, reinforced soil raft, reinforced soil wall, soil reinforcement
Procedia PDF Downloads 3027891 Childhood Respiratory Diseases Related to Indoor and Outdoor Air Temperature in Shanghai, China
Authors: Chanjuan Sun, Shijie Hong, Jialing Zhang, Yuchao Guo, Zhijun Zou, Chen Huang
Abstract:
Background: Studies on associations between air temperature and childhood respiratory diseases are lack in China. Objectives: We aim to analyze the relationship between air temperature and childhood respiratory diseases. Methods: We conducted the on-site inspection into 454 residences and questionnaires survey. Indoor air temperature were from field inspection and outdoor air temperature were from website. Multiple logistic regression analyses were used to investigate the associations. Results: Indoor extreme hot air temperature was positively correlated with duration of a common cold (>=2 weeks), and outdoor extreme hot air temperature was also positively related with pneumonia among children. Indoor and outdoor extreme cold air temperature was a risk factor for rhinitis among children. The biggest indoor air temperature difference (indoor maximum air temperature minus indoor minimum air temperature) (Imax minus Imin) (the 4th quartile, >4 oC) and outdoor air temperature difference (outdoor maximum air temperature minus outdoor minimum air temperature) (Omax minus Omin) (the 4th quartile, >8oC) were positively related to pneumonia among children. Meanwhile, indoor air temperature difference (Imax minus Imin) (the 4th quartile, >4 oC) was positively correlated with diagnosed asthma among children. Air temperature difference between indoor and outdoor was negatively related with the most childhood respiratory diseases. This may be partly related to the avoidance behavior. Conclusions: Improper air temperature may affect the respiratory diseases among children.Keywords: air temperature, extreme air temperature, air temperature difference, respiratory diseases, children
Procedia PDF Downloads 1737890 Anatomy Study of Seeds of Calligonium comosum in Vitro
Authors: Abobkar Saad, Qasmia Abdalla, Fatma Emhemed
Abstract:
Eighty-four of Calligonum comosum were cultured on Murashige and Skoog medium on every combination supplemented with different concentrations of IAA, BA, Zeatin, and GA3. When 84 seeds were inoculated on MS free hormones, different types of cells contain dense cytoplasm were observed ater 23 days and long thick wall cells arranged in layers. In case of using MS +BA(0.5mg/L), different types and shapes of parenchyma cells contain dense cytoplasm were detected after four weeks. In the case of using MS + BA(1mg/L) + GA3 (3mg/L), thick wall parenchyma cells contain dense cytoplasm after 19 days, but many layers of parenchyma cells contain dense cytoplasm after 28 days. When MS +kin(0.5mg/L) a thick cells wall as Sclereids were observed after 29 days. No any response were observed on Zeatin (0.5, 1 mg/L).Keywords: anatomy, Calligonum comosum, in vitro, aeeds
Procedia PDF Downloads 4187889 An Experimental Study on Greywater Reuse for Irrigating a Green Wall System
Authors: Mishadi Herath, Amin Talei, Andreas Hermawan, Clarina Chua
Abstract:
Green walls are vegetated structures on building’s wall that are considered as part of sustainable urban design. They are proved to have many micro-climate benefits such as reduction in indoor temperature, noise attenuation, and improvement in air quality. On the other hand, several studies have also been conducted on potential reuse of greywater in urban water management. Greywater is relatively clean when compared to blackwater; therefore, this study was aimed to assess the potential reuse of it for irrigating a green wall system. In this study, the campus of Monash University Malaysia located in Selangor state was considered as the study site where total 48 samples of greywater were collected from 7 toilets hand-wash and 5 pantries during 3 months period. The samples were tested to characterize the quality of greywater in the study site and compare it with local standard for irrigation water. PH and concentration of heavy metals, nutrients, Total Suspended Solids (TSS), Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand (COD), total Coliform and E.coli were measured. Results showed that greywater could be directly used for irrigation with minimal treatment. Since the effluent of the system was supposed to be drained to stormwater drainage system, the effluent needed to meet certain quality requirement. Therefore, a biofiltration system was proposed to host the green wall plants and also treat the greywater (which is used as irrigation water) to the required level. To assess the performance of the proposed system, an experimental setup consisting of Polyvinyl Chloride (PVC) soil columns with sand-based filter media were prepared. Two different local creeper plants were chosen considering several factors including fast growth, low maintenance requirement, and aesthetic aspects. Three replicates of each plants were used to ensure the validity of the findings. The growth of creeping plants and their survivability was monitored for 6 months while monthly sampling and testing of effluent was conducted to evaluate effluent quality. An analysis was also conducted to estimate the potential cost and benefit of such system considering water and energy saving in the system. Results showed that the proposed system can work efficiently throughout a long period of time with minimal maintenance requirement. Moreover, the biofiltration-green wall system was found to be successful in reusing greywater as irrigating water while the effluent was meeting all the requirements for being drained to stormwater drainage system.Keywords: biofiltration, green wall, greywater, sustainability
Procedia PDF Downloads 2147888 Probabilistic Fracture Evaluation of Reactor Pressure Vessel Subjected to Pressurized Thermal Shock
Authors: Jianguo Chen, Fenggang Zang, Yu Yang, Liangang Zheng
Abstract:
Reactor Pressure Vessel (RPV) is an important security barrier in nuclear power plant. Crack like defects may be produced on RPV during the whole operation lifetime due to the harsh operation condition and irradiation embrittlement. During the severe loss of coolant accident, thermal shock happened as the injection of emergency cooling water into RPV, which results in re-pressurization of the vessel and very high tension stress on the vessel wall, this event called Pressurized Thermal Shock (PTS). Crack on the vessel wall may propagate even penetrate the vessel, so the safety of the RPV would undergo great challenge. Many assumptions in structure integrity evaluation make the result of deterministic fracture mechanics very conservative, which affect the operation lifetime of the plant. Actually, many parameters in the evaluation process, such as fracture toughness and nil-ductility transition temperature, have statistical distribution characteristics. So it is necessary to assess the structural integrity of RPV subjected to PTS event by means of Probabilistic Fracture Mechanics (PFM). Structure integrity evaluation methods of RPV subjected to PTS event are summarized firstly, then evaluation method based on probabilistic fracture mechanics are presented by considering the probabilistic characteristics of material and structure parameters. A comprehensive analysis example is carried out at last. The results show that the probability of crack penetrates through wall increases gradually with the growth of fast neutron irradiation flux. The results give advice for reactor life extension.Keywords: fracture toughness, integrity evaluation, pressurized thermal shock, probabilistic fracture mechanics, reactor pressure vessel
Procedia PDF Downloads 2517887 On the Thermal Behavior of the Slab in a Reheating Furnace with Radiation
Authors: Gyo Woo Lee, Man Young Kim
Abstract:
A mathematical heat transfer model for the prediction of transient heating of the slab in a direct-fired walking beam type reheating furnace has been developed by considering the nongray thermal radiation with given furnace environments. The furnace is modeled as radiating nongray medium with carbon dioxide and water with five-zoned gas temperature and the furnace wall is considered as a constant temperature lower than furnace gas one. The slabs are moving with constant velocity depending on the residence time through the non-firing, charging, preheating, heating, and final soaking zones. Radiative heat flux obtained by considering the radiative heat exchange inside the furnace as well as convective one from the surrounding hot gases are introduced as boundary condition of the transient heat conduction within the slab. After validating thermal radiation model adopted in this work, thermal fields in both model and real reheating furnace are investigated in terms of radiative heat flux in the furnace and temperature inside the slab. The results show that the slab in the furnace can be more heated with higher slab emissivity and residence time.Keywords: reheating furnace, steel slab, radiative heat transfer, WSGGM, emissivity, residence time
Procedia PDF Downloads 2877886 Hydraulic Performance of Curtain Wall Breakwaters Based on Improved Moving Particle Semi-Implicit Method
Authors: Iddy Iddy, Qin Jiang, Changkuan Zhang
Abstract:
This paper addresses the hydraulic performance of curtain wall breakwaters as a coastal structure protection based on the particles method modelling. The hydraulic functions of curtain wall as wave barriers by reflecting large parts of incident waves through the vertical wall, a part transmitted and a particular part was dissipating the wave energies through the eddy flows formed beneath the lower end of the plate. As a Lagrangian particle, the Moving Particle Semi-implicit (MPS) method which has a robust capability for numerical representation has proven useful for design of structures application that concern free-surface hydrodynamic flow, such as wave breaking and overtopping. In this study, a vertical two-dimensional numerical model for the simulation of violent flow associated with the interaction between the curtain-wall breakwaters and progressive water waves is developed by MPS method in which a higher precision pressure gradient model and free surface particle recognition model were proposed. The wave transmission, reflection, and energy dissipation of the vertical wall were experimentally and theoretically examined. With the numerical wave flume by particle method, very detailed velocity and pressure fields around the curtain-walls under the action of waves can be computed in each calculation steps, and the effect of different wave and structural parameters on the hydrodynamic characteristics was investigated. Also, the simulated results of temporal profiles and distributions of velocity and pressure in the vicinity of curtain-wall breakwaters are compared with the experimental data. Herein, the numerical investigation of hydraulic performance of curtain wall breakwaters indicated that the incident wave is largely reflected from the structure, while the large eddies or turbulent flows occur beneath the curtain-wall resulting in big energy losses. The improved MPS method shows a good agreement between numerical results and analytical/experimental data which are compared to related researches. It is thus verified that the improved pressure gradient model and free surface particle recognition methods are useful for enhancement of stability and accuracy of MPS model for water waves and marine structures. Therefore, it is possible for particle method (MPS method) to achieve an appropriate level of correctness to be applied in engineering fields through further study.Keywords: curtain wall breakwaters, free surface flow, hydraulic performance, improved MPS method
Procedia PDF Downloads 1497885 Experimental Investigation on Cold-Formed Steel Foamed Concrete Composite Wall under Compression
Authors: Zhifeng Xu, Zhongfan Chen
Abstract:
A series of tests on cold-formed steel foamed concrete (CSFC) composite walls subjected to axial load were proposed. The primary purpose of the experiments was to study the mechanical behavior and identify the failure modes of CSFC composite walls. Two main factors were considered in this study: 1) specimen with pouring foamed concrete or without and 2) different foamed concrete density ranks (corresponding to different foamed concrete strength). The interior space between two pieces of straw board of the specimen W-2 and W-3 were poured foamed concrete, and the specimen W-1 does not have foamed concrete core. The foamed concrete density rank of the specimen W-2 was A05 grade, and that of the specimen W-3 was A07 grade. Results showed that the failure mode of CSFC composite wall without foamed concrete was distortional buckling of cold-formed steel (CFS) column, and that poured foamed concrete includes the local crushing of foamed concrete and local buckling of CFS column, but the former prior to the later. Compared with CSFC composite wall without foamed concrete, the ultimate bearing capacity of spec imens poured A05 grade and A07 grade foamed concrete increased 1.6 times and 2.2 times respectively, and specimen poured foamed concrete had a low vertical deformation. According to these results, the simplified calculation formula for the CSFC wall subjected to axial load was proposed, and the calculated results from this formula are in very good agreement with the test results.Keywords: cold-formed steel, composite wall, foamed concrete, axial behavior test
Procedia PDF Downloads 3377884 Cantilever Secant Pile Constructed in Sand: Numerical Comparative Study and Design Aids – Part II
Authors: Khaled R. Khater
Abstract:
All civil engineering projects include excavation work and therefore need some retaining structures. Cantilever secant pile walls are an economical supporting system up to 5.0-m depths. The parameters controlling wall tip displacement are the focus of this paper. So, two analysis techniques have been investigated and arbitrated. They are the conventional method and finite element analysis. Accordingly, two computer programs have been used, Excel sheet and Plaxis-2D. Two soil models have been used throughout this study. They are Mohr-Coulomb soil model and Isotropic Hardening soil models. During this study, two soil densities have been considered, i.e. loose and dense sand. Ten wall rigidities have been analyzed covering ranges of perfectly flexible to completely rigid walls. Three excavation depths, i.e. 3.0-m, 4.0-m and 5.0-m were tested to cover the practical range of secant piles. This work submits beneficial hints about secant piles to assist designers and specification committees. Also, finite element analysis, isotropic hardening, is recommended to be the fair judge when two designs conflict. A rational procedure using empirical equations has been suggested to upgrade the conventional method to predict wall tip displacement ‘δ’. Also, a reasonable limitation of ‘δ’ as a function of excavation depth, ‘h’ has been suggested. Also, it has been found that, after a certain penetration depth any further increase of it does not positively affect the wall tip displacement, i.e. over design and uneconomic.Keywords: design aids, numerical analysis, secant pile, Wall tip displacement
Procedia PDF Downloads 1897883 Hygrothermal Performance of Sheep Wool in Cold and Humid Climates
Authors: Yuchen Chen, Dehong Li, Bin Li, Denis Rodrigue, Xiaodong (Alice) Wang
Abstract:
When selecting insulation materials, not only should their thermal efficiency be considered, but also their impact on the environment. Compared to conventional insulation materials, bio-based materials not only have comparable thermal performance, but they also have a lower embodied energy. Sheep wool has the advantages of low negative health impact, high fire resistance, eco-friendliness, and high moisture resistance. However, studies on applying sheep wool insulation in cold and humid climates are still insufficient. The purpose of this study is to simulate the hygrothermal performance of sheep wool insulation for the Quebec City climate, as well as analyze the mold growth risks. The results show that a sheep wool wall has better thermal performance than a reference wall and that both meet the minimum requirements of the Quebec Code for the thermal performance of above-ground walls. The total water content indicates that the sheep wool wall can reach dynamic equilibrium in the Quebec climate and can dry out. At the same time, a delay of almost four months in the maximum total water content indicates that the sheep wool wall has high moisture absorption compared to the reference wall. The hygrothermal profiles show that the sheathing-insulation interface of both walls is at the highest risk for condensation. When the interior surface gypsum was replaced by stucco, the mold index significantly dropped.Keywords: sheep wool, water content, hygrothermal performance, mould growth risk
Procedia PDF Downloads 917882 Will My Home Remain My Castle? Tenants’ Interview Topics regarding an Eco-Friendly Refurbishment Strategy in a Neighborhood in Germany
Authors: Karin Schakib-Ekbatan, Annette Roser
Abstract:
According to the Federal Government’s plans, the German building stock should be virtually climate neutral by 2050. Thus, the “EnEff.Gebäude.2050” funding initiative was launched, complementing the projects of the Energy Transition Construction research initiative. Beyond the construction and renovation of individual buildings, solutions must be found at the neighborhood level. The subject of the presented pilot project is a building ensemble from the Wilhelminian period in Munich, which is planned to be refurbished based on a socially compatible, energy-saving, innovative-technical modernization concept. The building ensemble, with about 200 apartments, is part of the building cooperative. To create an optimized network and possible synergies between researchers and projects of the funding initiative, a Scientific Accompanying Research was established for cross-project analyses of findings and results in order to identify further research needs and trends. Thus, the project is characterized by an interdisciplinary approach that combines constructional, technical, and socio-scientific expertise based on a participatory understanding of research by involving the tenants at an early stage. The research focus is on getting insights into the tenants’ comfort requirements, attitudes, and energy-related behaviour. Both qualitative and quantitative methods are applied based on the Technology-Acceptance-Model (TAM). The core of the refurbishment strategy is a wall heating system intended to replace conventional radiators. A wall heating provides comfortable and consistent radiant heat instead of convection heat, which often causes drafts and dust turbulence. Besides comfort and health, the advantage of wall heating systems is an energy-saving operation. All apartments would be supplied by a uniform basic temperature control system (around perceived room temperature of 18 °C resp. 64,4 °F), which could be adapted to individual preferences via individual heating options (e. g. infrared heating). The new heating system would affect the furnishing of the walls, in terms of not allowing the wall surface to be covered too much with cupboards or pictures. Measurements and simulations of the energy consumption of an installed wall heating system are currently being carried out in a show apartment in this neighborhood to investigate energy-related, economical aspects as well as thermal comfort. In March, interviews were conducted with a total of 12 people in 10 households. The interviews were analyzed by MAXQDA. The main issue of the interview was the fear of reduced self-efficacy within their own walls (not having sufficient individual control over the room temperature or being very limited in furnishing). Other issues concerned the impact that the construction works might have on their daily life, such as noise or dirt. Despite their basically positive attitude towards a climate-friendly refurbishment concept, tenants were very concerned about the further development of the project and they expressed a great need for information events. The results of the interviews will be used for project-internal discussions on technical and psychological aspects of the refurbishment strategy in order to design accompanying workshops with the tenants as well as to prepare a written survey involving all households of the neighbourhood.Keywords: energy efficiency, interviews, participation, refurbishment, residential buildings
Procedia PDF Downloads 126