Search results for: harsh environment
9130 Thermal Management of a Compact Electronic Device Subjected to Different Harsh Operating Conditions
Authors: Murat Parlak, Muhammed Çağlar Malyemez
Abstract:
In a harsh environment, it is crucialtoinvestigatethethermal problem systematically implement a reliableandeffectivecoolingtechniqueformilitaryequipment. In this study, an electronicaldevice has been designed to fit different boundary conditions. Manyfinalternatives can be possiblesolutionsforthethermal problem. Therefore, it is an important step to define an easyproduciblefindesignand a low power fan selection for the optimum unit-design satisfying IP68. The equipment is planned to serve at 71C environment conditions and it also can be screwedto a cold plate at +85C. In both conditions, it is intendedtousethesamechassiswithoutanymodifications. To optimize such a ruggeddevice, all CFD analysis has been done withAnsysFluent 2021®. Afterstudyingpinfins, it is seenthatthesurfacearea is not enough, hencethefin-type is changed to a straightrectangulartypewithforcedconvectioncooling. Finally, a verycompactproductthat can serve in a harsh environment is obtained.Keywords: electronic cooling, harsh environment, forced convection, compact design
Procedia PDF Downloads 1799129 Film Sensors for the Harsh Environment Application
Authors: Wenmin Qu
Abstract:
A capacitance level sensor with a segmented film electrode and a thin-film volume flow sensor with an innovative by-pass sleeve is presented as industrial products for the application in a harsh environment. The working principle of such sensors is well known; however, the traditional sensors show some limitations for certain industrial measurements. The two sensors presented in this paper overcome this limitation and enlarge the application spectrum. The problem is analyzed, and the solution is given. The emphasis of the paper is on developing the problem-solving concepts and the realization of the corresponding measuring circuits. These should give advice and encouragement, how we can still develop electronic measuring products in an almost saturated market.Keywords: by-pass sleeve, charge transfer circuit, fixed ΔT circuit, harsh environment, industrial application, segmented electrode
Procedia PDF Downloads 1219128 Special Single Mode Fiber Tests of Polarization Mode Dispersion Changes in a Harsh Environment
Authors: Jan Bohata, Stanislav Zvanovec, Matej Komanec, Jakub Jaros, David Hruby
Abstract:
Even though there is a rapid development in new optical networks, still optical communication infrastructures remain composed of thousands of kilometers of aging optical cables. Many of them are located in a harsh environment which contributes to an increased attenuation or induced birefringence of the fibers leading to the increase of polarization mode dispersion (PMD). In this paper, we report experimental results from environmental optical cable tests and characterization in the climate chamber. We focused on the evaluation of optical network reliability in a harsh environment. For this purpose, a special thermal chamber was adopted, targeting to the large temperature changes between -60 °C and 160 C° with defined humidity. Single mode optical cable 230 meters long, having six tubes and a total number of 72 single mode optical fibers was spliced together forming one fiber link, which was afterward tested in the climate chamber. The main emphasis was put to the polarization mode dispersion (PMD) changes, which were evaluated by three different PMD measuring methods (general interferometry technique, scrambled state-of-polarization analysis and polarization optical time domain reflectometer) in order to fully validate obtained results. Moreover, attenuation and chromatic dispersion (CD), as well as the PMD, were monitored using 17 km long single mode optical cable. Results imply a strong PMD dependence on thermal changes, imposing the exceeding 200 % of its value during the exposure to extreme temperatures and experienced more than 20 dB insertion losses in the optical system. The derived statistic is provided in the paper together with an evaluation of such as optical system reliability, which could be a crucial tool for the optical network designers. The environmental tests are further taken in context to our previously published results from long-term monitoring of fundamental parameters within an optical cable placed in a harsh environment in a special outdoor testbed. Finally, we provide a correlation between short-term and long-term monitoring campaigns and statistics, which are necessary for optical network safety and reliability.Keywords: optical fiber, polarization mode dispersion, harsh environment, aging
Procedia PDF Downloads 3859127 Polymer-Ceramic Composite Film Fabrication and Characterization for Harsh Environment Applications
Authors: Santiranjan Shannigrahi, Mohit Sharma, Ivan Tan Chee Kiang, Yong Anna Marie
Abstract:
Polymer-ceramics composites are gaining importance due to their high specific strength, corrosion resistance, and high mechanical properties, as well as low cost. As a result, polymer composites are suitable for various industrial applications, like automobiles, aerospace, and biomedical areas. The present work comprises the development of polymer-ceramic composite films and is tested for the harsh environment including weatherability and UV barrier property. The polymer composite films are kept in weather chamber for a fixed period of time followed by tested for their physical, mechanical and chemical properties. The composite films are fabricated using compounding followed by hot pressing. UV-visible spectroscopy results reveal that the pure polymer polyethylene (PE) films are transparent in the visible range and do not absorb UV. However, polymer ceramic composite films start absorbing UV completely even at very low filler loading amount of 5 wt.%. The changes in tensile properties of the various composite films before and after UV illuminations for 40 hrs at 60 degC are analyzed. The tensile strength of neat PE film has been observed 8% reduction, whereas the remarkable increase in tensile strength has been observed (18% improvement for 10 wt. % filled composites films). The UV exposure leads to strengthen the crosslinking among PE polymer chains in the filled composite films, which contributes towards the incremented tensile strength properties.Keywords: polymer ceramic composite, processing, harsh environment, mechanical properties
Procedia PDF Downloads 3839126 Effect of Atmospheric Turbulence on Hybrid FSO/RF Link Availability under Qatar's Harsh Climate
Authors: Abir Touati, Syed Jawad Hussain, Farid Touati, Ammar Bouallegue
Abstract:
Although there has been a growing interest in the hybrid free-space optical link and radio frequency FSO/RF communication system, the current literature is limited to results obtained in moderate or cold environment. In this paper, using a soft switching approach, we investigate the effect of weather inhomogeneities on the strength of turbulence hence the channel refractive index under Qatar harsh environment and their influence on the hybrid FSO/RF availability. In this approach, either FSO/RF or simultaneous or none of them can be active. Based on soft switching approach and a finite state Markov Chain (FSMC) process, we model the channel fading for the two links and derive a mathematical expression for the outage probability of the hybrid system. Then, we evaluate the behavior of the hybrid FSO/RF under hazy and harsh weather. Results show that the FSO/RF soft switching renders the system outage probability less than that of each link individually. A soft switching algorithm is being implemented on FPGAs using Raptor code interfaced to the two terminals of a 1Gbps/100 Mbps FSO/RF hybrid system, the first being implemented in the region. Experimental results are compared to the above simulation results.Keywords: atmospheric turbulence, haze, hybrid FSO/RF, outage probability, refractive index
Procedia PDF Downloads 4199125 Saudi Arabia Border Security Informatics: Challenges of a Harsh Environment
Authors: Syed Ahsan, Saleh Alshomrani, Ishtiaq Rasool, Ali Hassan
Abstract:
In this oral presentation, we will provide an overview of the technical and semantic architecture of a desert border security and critical infrastructure protection security system. Modern border security systems are designed to reduce the dependability and intrusion of human operators. To achieve this, different types of sensors are use along with video surveillance technologies. Application of these technologies in a harsh desert environment of Saudi Arabia poses unique challenges. Environmental and geographical factors including high temperatures, desert storms, temperature variations and remoteness adversely affect the reliability of surveillance systems. To successfully implement a reliable, effective system in a harsh desert environment, the following must be achieved: i) Selection of technology including sensors, video cameras, and communication infrastructure that suit desert environments. ii) Reduced power consumption and efficient usage of equipment to increase the battery life of the equipment. iii) A reliable and robust communication network with efficient usage of bandwidth. Also, to reduce the expert bottleneck, an ontology-based intelligent information systems needs to be developed. Domain knowledge unique and peculiar to Saudi Arabia needs to be formalized to develop an expert system that can detect abnormal activities and any intrusion.Keywords: border security, sensors, abnormal activity detection, ontologies
Procedia PDF Downloads 4819124 Analysis of the Degradation of the I-V Curve of the PV Module in a Harsh Environment: Estimation of the Site-Specific Factor (Installation Area)
Authors: Maibigue Nanglet, Arafat Ousman Béchir, Mahamat Hassan Béchir
Abstract:
The economy of Central African countries is growing very fast, and the demand for energy is increasing every day. As a result, insufficient power generation is one of the major problems slowing down development. This paper explores the factors of degradation of the I-V curve of the PV Generator (GPV) in harsh environments, taking the case of two locals: Mongo and Abeche. Its objective is to quantify the voltage leaks due to the different GPV installation areas; after using the Newton-Raphson numerical method of the solar cell, a survey of several experimental measurement points was made. The results of the simulation in MATLAB/Simulink show a relative power loss factor of 11.8765% on the GPVs installed in Mongo and 8.5463% on those installed in Abeche; these results allow us to say that the supports on which the modules are installed have an average impact of 10.2114% on their efficiency.Keywords: calculation, degradation, site, GPV, severe environment
Procedia PDF Downloads 369123 Compact Optical Sensors for Harsh Environments
Authors: Branislav Timotijevic, Yves Petremand, Markus Luetzelschwab, Dara Bayat, Laurent Aebi
Abstract:
Optical miniaturized sensors with remote readout are required devices for the monitoring in harsh electromagnetic environments. As an example, in turbo and hydro generators, excessively high vibrations of the end-windings can lead to dramatic damages, imposing very high, additional service costs. A significant change of the generator temperature can also be an indicator of the system failure. Continuous monitoring of vibrations, temperature, humidity, and gases is therefore mandatory. The high electromagnetic fields in the generators impose the use of non-conductive devices in order to prevent electromagnetic interferences and to electrically isolate the sensing element to the electronic readout. Metal-free sensors are good candidates for such systems since they are immune to very strong electromagnetic fields and given the fact that they are non-conductive. We have realized miniature optical accelerometer and temperature sensors for a remote sensing of the harsh environments using the common, inexpensive silicon Micro Electro-Mechanical System (MEMS) platform. Both devices show highly linear response. The accelerometer has a deviation within 1% from the linear fit when tested in a range 0 – 40 g. The temperature sensor can provide the measurement accuracy better than 1 °C in a range 20 – 150 °C. The design of other type of sensors for the environments with high electromagnetic interferences has also been discussed.Keywords: optical MEMS, temperature sensor, accelerometer, remote sensing, harsh environment
Procedia PDF Downloads 3679122 Characterization of Nano Coefficient of Friction through Lfm of Superhydrophobic/Oleophobic Coatings Applied on 316l Ss
Authors: Hamza Shams, Sajid Saleem, Bilal A. Siddiqui
Abstract:
This paper investigates the coefficient of friction at nano-levels of commercially available superhydrophobic/oleophobic coatings when applied over 316L SS. 316L Stainless Steel or Marine Stainless Steel has been selected for its widespread uses in structures, marine and biomedical applications. The coatings were investigated in harsh sand-storm and sea water environments. The particle size of the sand during the procedure was carefully selected to simulate sand-storm conditions. Sand speed during the procedure was carefully modulated to simulate actual wind speed during a sand-storm. Sample preparation was carried out using prescribed methodology by the coating manufacturer. The coating’s adhesion and thickness was verified before and after the experiment with the use of Scanning Electron Microscopy (SEM). The value for nano-level coefficient of friction has been determined using Lateral Force Microscopy (LFM). The analysis has been used to formulate a value of friction coefficient which in turn is associative of the amount of wear the coating can bear before the exposure of the base substrate to the harsh environment. The analysis aims to validate the coefficient of friction value as marketed by the coating manufacturers and more importantly test the coating in real-life applications to justify its use. It is expected that the coating would resist exposure to the harsh environment for a considerable amount of time. Further, it would prevent the sample from getting corroded in the process.Keywords: 316L SS, scanning electron microscopy, lateral force microscopy, marine stainless steel, oleophobic coating, superhydrophobic coating
Procedia PDF Downloads 4869121 Harsh Discipline and Later Disruptive Behavior Disorder in Two Contexts
Authors: Olga Santesteban, Glorisa Canino, Hector R. Bird, Cristiane S. Duarte
Abstract:
Objective: To address whether harsh discipline is associated with disruptive behavior disorders (DBD) in Puerto Rican children over time. Background: Both cross-sectional and longitudinal studies report that rates of DBD vary by gender, age and other demographics, being more frequent among boys, later in life and among those who live in urban areas. Also, the literature supports the direct, positive association between harsh discipline and externalizing behaviors. Nevertheless, scholars have underscored the important role of race and ethnicity in understanding discipline effects on children. The impact of harsh discipline in a Puerto Rican population remains to be studied. Methods: Sample: This is a secondary analysis of the Boricua Youth Study which assessed yearly (3 times) Puerto Rican children aged 5-15 in two different sites: San Juan (Puerto Rico) and the South Bronx (NY), N=2951. Participants that did not have scores of harsh discipline in the 3 waves were excluded for this analysis (N=2091). Main Measures: a) Harsh Discipline (Parent report) was measured using 6 items from the “Parental Discipline Scale” that measures various forms of punishment, including physical and verbal abuse, and withholding affection; b) Disruptive Behavior Disorder (Parent report): Parent version of the Diagnostic Interview Schedule for Children-IV (DISC-IV) was used to asses children’s conduct disorders; c) Demographic factors: Child gender, child age, family income, marital status; d) Parental factors: parental psychopathology, parental monitoring, familism, parent support; e) Children characteristics: Controlling for any diagnostic at wave 1 (internalizing or externalizing). Data Analysis: Logistic regression was carried out relating the likelihood of DBD to harsh discipline along waves controlling for potential confounders as demographics, child and parent characteristics. Results: There were no significant differences in harsh discipline by site in wave 1 and wave 2 but there was a significant difference in wave 3. Also, there were no significant differences in DBD by site in wave 1 and wave 2 but there was a significant difference in wave 3. There was a significant difference of discipline by gender and age in all the waves. We calculated unadjusted (OR) and adjusted (AOD) and 95% confidence intervals (95%CI) showing the relation between harsh discipline at wave 1 and the presence of child disruptive behavior disorder at wave 3 for both South Bronx and Puerto Rico. There was an association between harsh discipline and the likelihood of having DBD in The Bronx (AOR=1.76; 95%CI=1.13-2.74, p.013) and in Puerto Rico (AOR=2.17; 95%CI=1.28-3.67, p.004) having controlled for demographic, parental and individual factors. Conclusions: Context may be an important differential factor shaping the potential risk of harsh discipline toward DBD for Puerto Rican children.Keywords: disruptive behavior disorders, harsh discipline, puerto rican, psychological education
Procedia PDF Downloads 4729120 Reliability-Based Codified Design of Concrete Structures
Authors: Naser Alenezi, Ibrahim Alsakkaf, Osama Eid
Abstract:
The main objective of this study is to develop an independent reliability based code for reinforced concrete (R/C) structural components and elements solely for the State of Kuwait and its neighboring countries. The proposed code will take into account the harsh Kuwait’s harsh environment, loading conditions and material strengths. The method for developing such a code is based on structural reliability theory that takes into accounts the specific geographical and the various prescribed societal environment of the Kuwait region. These methods were developed according to the following four components: (1) loads, (2) structural strength, (3) reliability analysis, and (4) achieving target reliability levels (reliability index ’s ). The final product from this study will be a design code for R/C structural elements that include beams and columns, and some other structural members. This reliability-based LRFD design code will provide appropriate, easy, fast, and economical approach for designing R/C structural elements such as, beams and columns, for both houses and bridges, and other concrete structures. In addition, this reliability-based codified design of R/C beams, columns, and, possibly, concrete slabs will improve the design and serviceability of R/C bridge and building systems in Kuwait and neighboring GCC countries. Also, it has the potential to reduce the cost of new concrete structures, as fewer materials are used with more design efficiency.Keywords: live laod, design, evaluation, structural building
Procedia PDF Downloads 3469119 Design with Nature: Vernacular Buildings Adaptation to Sand Landforms in Sahara Desert
Authors: Mohammed Sherzad
Abstract:
The Sahara desert covers third of the total surface of Africa with a quarter of this area within the national boundaries of Algeria. Sand drift and deposition is considered one of the major factors of the desertification process in the area. It is estimated that a third of the world's hot arid lands are covered by aeolian sand deposits, forming extensive sand bedforms. The Gourrara region in the Grand Erg Occidental (west of Algerian Sahara) and the region of Souf in the Grand Erg Oriental (east of Algerian Sahara) have been chosen as case studies. These were significant cultural and trading centers for many centuries despite their remote location and their harsh desert environment particularly solar radiation and sand drift and deposition. The architecture of the sustained vernacular settlements in each of the two regions has unique design features for this environment. So do the irrigation systems used - palm groves and the foggara system for capturing and distributing groundwater. However, the ecological balance which enabled the Saharans to live with the desert has been upset. New buildings often use technology based on models imported or imposed from areas that climatically have little in common. These make the inhabitants live ‘in the desert’ rather than ‘with the desert’. This paper will describe the qualities of the vernacular architecture and demonstrate its effectiveness and adaptability to the region’s harsh desert environment in comparison with contemporary buildings. Developing design guides and approaches based on lessons from the traditional architecture is important to ensure sustained livelihoods of the inhabitants in these areas.Keywords: vernacular architecture, desert architecture, hot climate, aeolian sand deposition
Procedia PDF Downloads 4659118 Simulation-Based Control Module for Offshore Single Point Mooring System
Authors: Daehyun Baek, Seungmin Lee, Minju Kim Jangik Park, Hyeong-Soon Moon
Abstract:
SPM (Single Point Mooring) is one of the mooring buoy facilities installed on a coast near oil and gas terminal which is not able to berth FPSO or large oil tankers under the condition of high draft due to geometrical limitation. Loading and unloading of crude oil and gas through a subsea pipeline can be carried out between the mooring buoy, ships and onshore facilities. SPM is an offshore-standalone system which has to withstand the harsh marine environment with harsh conditions such as high wind, current and so on. Therefore, SPM is required to have high stability, reliability and durability. Also, SPM is comprised to be integrated systems which consist of power management, high pressure valve control, sophisticated hardware/software and a long distance communication system. In order to secure required functions of SPM system, a simulation model for the integrated system of SPM using MATLAB Simulink and State flow tool has been developed. The developed model consists of configuration of hydraulic system for opening and closing of PLEM (Pipeline End Manifold) valves and control system logic. To verify functions of the model, an integrated simulation model for overall systems of SPM was also developed by considering handshaking variables between individual systems. In addition to the dynamic model, a self-diagnostic function to determine failure of the system was configured, which enables the SPM system itself to alert users about the failure once a failure signal comes to arise. Controlling and monitoring the SPM system is able to be done by a HMI system which is capable of managing the SPM system remotely, which was carried out by building a communication environment between the SPM system and the HMI system.Keywords: HMI system, mooring buoy, simulink simulation model, single point mooring, stateflow
Procedia PDF Downloads 4179117 Numerical Modeling of a Molten Salt Power Tower Configuration Adaptable for Harsh Winter Climate
Authors: Huiqiang Yang, Domingo Santana
Abstract:
This paper proposes a novel configuration which introduces a natural draft dry cooling tower system in a molten salt power tower. A three-dimensional numerical modeling was developed based on the novel configuration. A plan of building 20 new concentrating solar power plants has been announced by Chinese government in September 2016, and among these 20 new plants, most of them are located in regions with long winter and harsh winter climate. The innovative configuration proposed includes an external receiver concrete tower at the center, a natural draft dry cooling tower which is surrounding the external receiver concrete tower and whose shell is fixed on the external receiver concrete tower, and a power block (including a steam generation system, a steam turbine system and hot/cold molten salt tanks, and water treatment systems) is covered by the roof of the natural draft dry cooling tower. Heat exchanger bundles are vertically installed at the furthest edge of the power block. In such a way, all power block equipment operates under suitable environmental conditions through whole year operation. The monthly performance of the novel configuration is simulated as compared to a standard one. The results show that the novel configuration is much more efficient in each separate month in a typical meteorological year. Moreover, all systems inside the power block have less thermal losses at low ambient temperatures, especially in harsh winter climate. It is also worthwhile mentioning that a photovoltaic power plant can be installed on the roof of the cooling tower to reduce the parasites of the molten salt power tower.Keywords: molten salt power tower, natural draft dry cooling, commercial scale, power block, harsh winter climate
Procedia PDF Downloads 3419116 Pollution-Sources, Controls, and Impact Analysis
Authors: Aditi Acharya
Abstract:
Environmental pollution is threatening the environmental and human health in the most drastic way. This paper provides insight about the affects of environmental pollution in the perspective of water pollution. Sewage in drinking water, the increasing contamination of water bodies and water resources and the human beings are the major contributors, increasing the harsh activities of pollution. The research presents information about the sources of pollution, its impacts and control activities to be undertaken to make our environment free from water pollution.Keywords: environmental pollution, water pollution, nanotechnology, nanomaterials
Procedia PDF Downloads 3639115 A Design Research Methodology for Light and Stretchable Electrical Thermal Warm-Up Sportswear to Enhance the Performance of Athletes against Harsh Environment
Authors: Chenxiao Yang, Li Li
Abstract:
In this decade, the sportswear market rapidly expanded while numerous sports brands are conducting fierce competitions to hold their market shares and trying to act as a leader in professional competition sports areas to set the trends. Thus, various advancing sports equipment is being deeply explored to improving athletes’ performance in fierce competitions. Although there is plenty protective equipment such as cuff, running legging, etc., on the market, there is still blank in the field of sportswear during prerace warm-up this important time gap, especially for those competitions host in cold environment. Because there is always time gaps between warm-up and race due to event logistics or unexpected weather factors. Athletes will be exposed to chilly condition for an unpredictable long period of time. As a consequence, the effects of warm-up will be negated, and the competition performance will be degraded. However, reviewing the current market, there is none effective sports equipment provided to help athletes against this harsh environment or the rare existing products are so blocky or heavy to restrict the actions. An ideal thermal-protective sportswear should be light, flexible, comfort and aesthetic at the same time. Therefore, this design research adopted the textile circular knitting methodology to integrate soft silver-coated conductive yarns (ab. SCCYs), elastic nylon yarn and polyester yarn to develop the proposed electrical, thermal sportswear, with the strengths aforementioned. Meanwhile, the relationship between heating performance, stretch load, and energy consumption were investigated. Further, a simulation model was established to ensure providing sufficient warm and flexibility at lower energy cost and with an optimized production, parameter determined. The proposed circular knitting technology and simulation model can be directly applied to instruct prototype developments to cater different target consumers’ needs and ensure prototypes’’ safety. On the other hand, high R&D investment and time consumption can be saved. Further, two prototypes: a kneecap and an elbow guard, were developed to facilitate the transformation of research technology into an industrial application and to give a hint on the blur future blueprint.Keywords: cold environment, silver-coated conductive yarn, electrical thermal textile, stretchable
Procedia PDF Downloads 2699114 Use of Simultaneous Electron Backscatter Diffraction and Energy Dispersive X-Ray Spectroscopy Techniques to Characterize High-Temperature Oxides Formed on Nickel-Based Superalloys Exposed to Super-Critical Water Environment
Authors: Mohsen Sanayei, Jerzy Szpunar, Sami Penttilä
Abstract:
Exposure of Nickel-based superalloys to high temperature and harsh environment such as Super-Critical Water (SCW) environment leads to the formation of oxide scales composed of multiple and complex phases that are difficult to differentiate with conventional analysis techniques. In this study, we used simultaneous Electron Backscatter Diffraction (EBSD) and Energy Dispersive X-ray Spectroscopy (EDS) to analyze the complex oxide scales formed on several Nickel-based Superalloys exposed to high temperature SCW. Multi-layered structures of Iron, Nickel, Chromium and Molybdenum oxides and spinels were clearly identified using the simultaneous EBSD-EDS analysis technique. Furthermore, the orientation relationship between the oxide scales and the substrate has been investigated.Keywords: electron backscatter diffraction, energy dispersive x-ray spectroscopy, superalloy, super-critical water
Procedia PDF Downloads 3179113 From Protection of Sacrificial Self, to Critical Turning Points and Growth: Nurses’ Experiences of Caring for Patients on the Frontline in Ireland during the COVID-19 Pandemic
Authors: Sinead Creedon, Anna Trace
Abstract:
Nurses were the most exposed of all frontline healthcare workers during the COVID-19 pandemic. Mainly female nurses working in the acute hospital sector formed the frontline defence in the Irish health service. They faced it with resilience and courage despite exposure to risk of burnout and threats to their mental health and wellbeing. Gaining an understanding of the nurses’ journey in adapting to this harsh climate could inform positive psychology interventions and / or support staff such as senior hospital managers in an adverse work situation. Furthermore, it would strengthen our insight and theoretical understanding on the use of positive psychology interventions in adverse work conditions. An interpretative phenomenological analysis was carried out to gain insight into how nurses adapted to the changing work environment during the pandemic. Online semi-structured interviews were done with six experienced female nurses who were all redeployed to the frontline from their own roles. The three themes representing the nurses’ journey were the Protection of Sacrificial Self, The Fortifying Effect of Us, and Critical Turning Points & Growth. Nurses revitalised themselves by creating a sense of ‘us’ to help them face a harsh climate against others, which enabled additional critical turning points. This study further enriches our understanding of personal growth and trauma in adverse work conditions by including an exploration of what sacrificial commitment adds to our understanding of physical and moral courage.Keywords: COVID-19, nurses, positive psychology, resilience, sacrificial commitment, supports
Procedia PDF Downloads 1479112 Synthesis of MIPs towards Precursors and Intermediates of Illicit Drugs and Their following Application in Sensing Unit
Authors: K. Graniczkowska, N. Beloglazova, S. De Saeger
Abstract:
The threat of synthetic drugs is one of the most significant current drug problems worldwide. The use of drugs of abuse has increased dramatically during the past three decades. Among others, Amphetamine-Type Stimulants (ATS) are globally the second most widely used drugs after cannabis, exceeding the use of cocaine and heroin. ATS are potent central nervous system (CNS) stimulants, capable of inducing euphoric static similar to cocaine. Recreational use of ATS is widespread, even though warnings of irreversible damage of the CNS were reported. ATS pose a big problem and their production contributes to the pollution of the environment by discharging big volumes of liquid waste to sewage system. Therefore, there is a demand to develop robust and sensitive sensors that can detect ATS and their intermediates in environmental water samples. A rapid and simple test is required. Analysis of environmental water samples (which sometimes can be a harsh environment) using antibody-based tests cannot be applied. Therefore, molecular imprinted polymers (MIPs), which are known as synthetic antibodies, have been chosen for that approach. MIPs are characterized with a high mechanical and thermal stability, show chemical resistance in a broad pH range and various organic or aqueous solvents. These properties make them the preferred type of receptors for application in the harsh conditions imposed by environmental samples. To the best of our knowledge, there are no existing MIPs-based sensors toward amphetamine and its intermediates. Also not many commercial MIPs for this application are available. Therefore, the aim of this study was to compare different techniques to obtain MIPs with high specificity towards ATS and characterize them for following use in a sensing unit. MIPs against amphetamine and its intermediates were synthesized using a few different techniques, such as electro-, thermo- and UV-initiated polymerization. Different monomers, cross linkers and initiators, in various ratios, were tested to obtain the best sensitivity and polymers properties. Subsequently, specificity and selectivity were compared with commercially available MIPs against amphetamine. Different linkers, such as lipoic acid, 3-mercaptopioponic acid and tyramine were examined, in combination with several immobilization techniques, to select the best procedure for attaching particles on sensor surface. Performed experiments allowed choosing an optimal method for the intended sensor application. Stability of MIPs in extreme conditions, such as highly acidic or basic was determined. Obtained results led to the conclusion about MIPs based sensor applicability in sewage system testing.Keywords: amphetamine type stimulants, environment, molecular imprinted polymers, MIPs, sensor
Procedia PDF Downloads 2509111 Verification Protocols for the Lightning Protection of a Large Scale Scientific Instrument in Harsh Environments: A Case Study
Authors: Clara Oliver, Oibar Martinez, Jose Miguel Miranda
Abstract:
This paper is devoted to the study of the most suitable protocols to verify the lightning protection and ground resistance quality in a large-scale scientific facility located in a harsh environment. We illustrate this work by reviewing a case study: the largest telescopes of the Northern Hemisphere Cherenkov Telescope Array, CTA-N. This array hosts sensitive and high-speed optoelectronics instrumentation and sits on a clear, free from obstacle terrain at around 2400 m above sea level. The site offers a top-quality sky but also features challenging conditions for a lightning protection system: the terrain is volcanic and has resistivities well above 1 kOhm·m. In addition, the environment often exhibits humidities well below 5%. On the other hand, the high complexity of a Cherenkov telescope structure does not allow a straightforward application of lightning protection standards. CTA-N has been conceived as an array of fourteen Cherenkov Telescopes of two different sizes, which will be constructed in La Palma Island, Spain. Cherenkov Telescopes can provide valuable information on different astrophysical sources from the gamma rays reaching the Earth’s atmosphere. The largest telescopes of CTA are called LST’s, and the construction of the first one was finished in October 2018. The LST has a shape which resembles a large parabolic antenna, with a 23-meter reflective surface supported by a tubular structure made of carbon fibers and steel tubes. The reflective surface has 400 square meters and is made of an array of segmented mirrors that can be controlled individually by a subsystem of actuators. This surface collects and focuses the Cherenkov photons into the camera, where 1855 photo-sensors convert the light in electrical signals that can be processed by dedicated electronics. We describe here how the risk assessment of direct strike impacts was made and how down conductors and ground system were both tested. The verification protocols which should be applied for the commissioning and operation phases are then explained. We stress our attention on the ground resistance quality assessment.Keywords: grounding, large scale scientific instrument, lightning risk assessment, lightning standards and safety
Procedia PDF Downloads 1239110 Cooperation and Conflict in Child Rearing Practices among Parents in Indian Context
Authors: Jilly John
Abstract:
The paper reports one of the study conducted to explore the dimensions of child rearing practice and effects of power difference among parents on child rearing practices adopted in the families. The first objective investigated dimensions of child rearing practices (a) overprotection (b) disciplinarian, (c) esteem building, (d) normal, (e) harsh (f) ridicule, and (g) rejection. The second objective investigated difference among father and mother on child rearing practices. The results of the study revealed that dimensions of child rearing practices are crucial variables which resulted in form of major deviations in distribution of parents in the seven dimensions. Analysis of objective two revealed that harsh and ridicule dimensions of child rearing practices are significantly different among father and mother. The dimensions are also different when the parents are employed and according to the type of families. Thus the results of the study present the possibility of changed child rearing practices among Indian families in relation to prevalent sociodemographic changes and indicate the necessity to re-examine culture-based explanations on child rearing practices.Keywords: child rearing practices, dimensions of child rearing, difference among parents, Indian families
Procedia PDF Downloads 4049109 University Students Sport’s Activities Assessment in Harsh Weather Conditions
Authors: Ammar S. M. Moohialdin, Bambang T. Suhariadi, Mohsin Siddiqui
Abstract:
This paper addresses the application of physiological status monitoring (PSM) for assessing the impact of harsh weather conditions on sports activities in universities in Saudi Arabia. Real sports measurement was conducted during sports activities such that the physiological status (HR and BR) of five students were continuously monitored by using Zephyr BioHarnessTM 3.0 sensors in order to identify the physiological bonds and zones. These bonds and zones were employed as indicators of the associated physiological risks of the performed sports activities. Furthermore, a short yes/no questionnaire was applied to collect information on participants’ health conditions and opinions of the applied PSM sensors. The results show the absence of a warning system as a protective aid for the hazardous levels of extremely hot and humid weather conditions that may cause dangerous and fatal circumstances. The applied formulas for estimating maximum HR provides accurate estimations for Maximum Heart Rate (HRmax). The physiological results reveal that the performed activities by the participants are considered the highest category (90–100%) in terms of activity intensity. This category is associated with higher HR, BR and physiological risks including losing the ability to control human body behaviors. Therefore, there is a need for immediate intervention actions to reduce the intensity of the performed activities to safer zones. The outcomes of this study assist the safety improvement of sports activities inside universities and athletes performing their sports activities. To the best of our knowledge, this is the first paper to represent a special case of the application of PSM technology for assessing sports activities in universities considering the impacts of harsh weather conditions on students’ health and safety.Keywords: physiological status monitoring (PSM), heart rate (HR), breathing rate (BR), Arabian Gulf
Procedia PDF Downloads 1999108 Effect of On-Road Vehicular Traffic on Noise Pollution in Bhubaneswar City, Eastern India
Authors: Dudam Bharath Kumar, Harsh Kumar, Naveed Ahmed
Abstract:
Vehicular traffic on the road-side plays a significant role in affecting the noise pollution in most of the cities over the world. To assess the correlation of the road-traffic on noise pollution in the city environment, continuous measurements were carried out in an entire daytime starting from 8:00 AM IST to 6:00 PM IST at a single point for each 5 minutes (8:00-8:05, 9:00-9:05, 10:00-10:05 AM, ...) near the KIIT University campus road. Noise levels were observed using a mobile operated app of android cell phone and a handheld noise meter. Calibration analysis shows high correlation about 0.89 for the study location for the day time period. Results show diurnal variability of atmospheric noise pollution levels go hand-in and with the vehicular number which pass through a point of observation. The range of noise pollution levels in the daytime period is observed as 55 to 75 dB(A). As a day starts, sudden upsurge of noise levels is observed from 65 to 71 dB(A) in the early morning, 64 dB(A) in late morning, regains the same quantity 68-71 dB(A) in the afternoon, and rises 70 dB(A) in the early evening. Vehicular number of the corresponding noise levels exhibits 115-120, 150-160, and 140-160, respectively. However, this preliminary study suggests the importance of vehicular traffic on noise pollution levels in the urban environment and further to study population exposed to noise levels. Innovative approaches help curb the noise pollution through modelling the traffic noise pollution spatially and temporally over the city environments.Keywords: noise pollution, vehicular traffic, urban environment, noise meter
Procedia PDF Downloads 2979107 Management Challenges and Product Quality of Fish Farms in Greece
Authors: S. Anastasiou, C. Nathanailides, S. Logothetis, G. Kanlis
Abstract:
The Greek aquaculture industry is second most important economic sector for the growth of the Greek Economy. The purpose of the present work is to present some data for the management challenges that the Aquaculture industry in Greece is currently facing. Currently the Greek aquaculture industry is going through a series of mergers and restructure. The financial status of the different aquaculture companies, the working conditions and management practices may vary according to lending exposure, market mix, company size, and technological parameters of the different fish farm units and rearing systems. Frequently, the aquaculture personnel are exposed to harsh environmental conditions and to occupational risk. Furthermore, there is pressure on the personnel of fish farms to constantly improve their production efficiency and to enhance their work skills to the new methods and practices which are adopted by the aquaculture industry. There is some data to suggest the existence of gender inequality in the workforce of Greek fish farms. Women are paid less, frequently absent higher managerial positions and most of the male workmates consider the job to harsh for women. Nevertheless, high level of job satisfaction was observed in both men and women. This high level of job satisfaction of the aquaculture personnel can be attributed, at least partially, to the nature of the work which has a very distinct working environment but most of the staff has very positive experiences with the interaction with their workmates and the satisfaction of being in a business which always exceeds its production target. Indeed, there is some evidence to suggest that the Greek aquaculture industry is always exceeding its production targets, while it is rapidly adopting and improving new technology, constantly improving of human resources management practices, which include constant training of the staff, very good communication channels between management and the personnel and reducing the risk of occupational hazard to the aquaculture personnel. All these parameters of management may have a determining role for the volume and quality of the production and future of this sector in Greece.Keywords: aquaculture, fish quality, management, production targets
Procedia PDF Downloads 4429106 The Importance of Right Speech in Buddhism and Its Relevance Today
Authors: Gautam Sharda
Abstract:
The concept of right speech is the third stage of the noble eightfold path as prescribed by the Buddha and followed by millions of practicing Buddhists. The Buddha lays a lot of importance on the notion of right speech (Samma Vacca). In the Angutara Nikaya, the Buddha mentioned what constitutes right speech, which is basically four kinds of abstentions; namely abstaining from false speech, abstaining from slanderous speech, abstaining from harsh or hateful speech and abstaining from idle chatter. The Buddha gives reasons in support of his view as to why abstaining from these four kinds of speeches is favourable not only for maintaining the peace and equanimity within an individual but also within a society. It is a known fact that when we say something harsh or slanderous to others, it eventually affects our individual peace of mind too. We also know about the many examples of hate speeches which have led to senseless cases of violence and which are well documented within our country and the world. Also, indulging in false speech is not a healthy sign for individuals within a group as this kind of a social group which is based on falsities and lies cannot really survive for long and will eventually lead to chaos. Buddha also told us to refrain from idle chatter or gossip as generally we have seen that idle chatter or gossip does more harm than any good to the individual and the society. Hence, if most of us actually inculcate this third stage (namely, right speech) of the noble eightfold path of the Buddha in our daily life, it would be highly beneficial both for the individual and for the harmony of the society.Keywords: Buddhism, speech, individual, society
Procedia PDF Downloads 2649105 Comparative Analysis of Pit Composting and Vermicomposting in a Tropical Environment
Authors: E. Ewemoje Oluseyi, T. A. Ewemoje, A. A. Adedeji
Abstract:
Biodegradable solid waste disposal and management has been a major problem in Nigeria and indiscriminate dumping of this waste either into watercourses or drains has led to environmental hazards affecting public health. The study investigated the nutrients level of pit composting and vermicomposting. Wooden bins 60 cm × 30 cm × 30 cm3 in size were constructed and bedding materials (sawdust, egg shell, paper and grasses) and red worms (Eisenia fetida) introduced to facilitate the free movement and protection of the worms against harsh weather. A pit of 100 cm × 100 cm × 100 cm3 was dug and worms were introduced into the pit, which was turned every two weeks. Food waste was fed to the red worms in the bin and pit, respectively. The composts were harvested after 100 days and analysed. The analyses gave: nitrogen has average value 0.87 % and 1.29 %; phosphorus 0.66 % and 1.78 %; potassium 4.35 % and 6.27 % for the pit and vermicomposting, respectively. Higher nutrient status of vermicomposting over pit composting may be attributed to the secretions in the intestinal tracts of worms which are more readily available for plant growth. However, iron and aluminium were more in the pit compost than the vermin compost and this may be attributed to the iron and aluminium already present in the soil before the composting took place. Other nutrients in ppm concentrations were aluminium 4,999.50 and 3,989.33; iron 2,131.83 and 633.40 for the pit and vermicomposting, respectively. These nutrients are only needed by plants in small quantities. Hence, vermicomposting has the higher concentration of essential nutrients necessary for healthy plant growth.Keywords: food wastes, pit composting, plant nutrient status, tropical environment, vermicomposting
Procedia PDF Downloads 3409104 Energy Efficient Firefly Algorithm in Wireless Sensor Network
Authors: Wafa’ Alsharafat, Khalid Batiha, Alaa Kassab
Abstract:
Wireless sensor network (WSN) is comprised of a huge number of small and cheap devices known as sensor nodes. Usually, these sensor nodes are massively and deployed randomly as in Ad-hoc over hostile and harsh environment to sense, collect and transmit data to the needed locations (i.e., base station). One of the main advantages of WSN is that the ability to work in unattended and scattered environments regardless the presence of humans such as remote active volcanoes environments or earthquakes. In WSN expanding network, lifetime is a major concern. Clustering technique is more important to maximize network lifetime. Nature-inspired algorithms are developed and optimized to find optimized solutions for various optimization problems. We proposed Energy Efficient Firefly Algorithm to improve network lifetime as long as possible.Keywords: wireless network, SN, Firefly, energy efficiency
Procedia PDF Downloads 3899103 The Mechanical Response of a Composite Propellant under Harsh Conditions
Authors: Xin Tong, Jin-sheng Xu, Xiong Chen, Ya Zheng
Abstract:
The aim of this paper is to study the mechanical properties of HTPB (Hydroxyl-terminated polybutadiene) composite propellant under harsh conditions. It describes two tests involving uniaxial tensile tests of various strain rates (ranging from 0.0005 s-1 to 1.5 s-1), temperatures (ranging from 223 K to 343 K) and high-cycle fatigue tests under low-temperature (223 K, frequencies were set at 50, 100, 150 Hz) using DMA (Dynamic Mechanical Analyzer). To highlight the effect of small pre-strain on fatigue properties of HTPB propellant, quasi-static stretching was carried out before fatigue loading, and uniaxial tensile tests at constant strain rates were successively applied. The results reveal that flow stress of propellant increases with reduction in temperature and rise in strain rate, and the strain rate-temperature equivalence relationship could be described by TTSP (time-temperature superposition principle) incorporating a modified WLF equation. Moreover, the rate of performance degradations and damage accumulation of propellant during fatigue tests increased with increasing strain amplitude and loading frequencies, while initial quasi-static loading has a negative effect on fatigue properties by comparing stress-strain relations after fatigue tests.Keywords: fatigue, HTPB propellant, tensile properties, time-temperature superposition principle
Procedia PDF Downloads 2949102 Evaluation of High Temperature Wear Performance of as Cladded and Tig Re-Melting Stellite 6 Cladded Overlay on Aisi-304L Using SMAW Process
Authors: Manjit Singha, Sandeep Singh Sandhu, A. S. Shahi
Abstract:
Stellite 6 is cobalt based superalloy used for protective coatings. It is used to improve the wear performance of stainless steel engineering components subjected to harsh environmental conditions. This paper reports the high temperature wear analysis of satellite 6 cladded on AISI 304 L substrate using SMAW process. Bead on plate experiment was carried out by varying current and electrode manipulation techniques to optimize the dilution and hardness. 80 Amp current and weaving technique was found to be the optimum set of parameters for overlaying which were further used for multipass multilayer cladding on two plates of AISI 304 L substrate. On the first plate, seven layers seven passes of stellite 6 was overlaid which was used in as cladded form and the second plate was overlaid with five layers five passes of satellite 6 with further TIG remelting. The wear performance was examined for normal temperature environmental condition and harsh temperature environmental condition. The satellite 6 coating with TIG remelting was found to be better in both the conditions even with lesser metal deposition due to its finer grain structure.Keywords: surfacing, stellite 6, dilution, overlay, SMAW, high-temperature frictional wear, micro-structure, micro-hardness
Procedia PDF Downloads 2939101 Sustainable Traditional Urban Design of the Old City of Ghadames
Authors: Hazem Bunkheila
Abstract:
Ghadames is an oasis on the edge of the Sahara Desert in southwestern Libya at the border with Algeria and Tunisia. It is the oldest oasis in the world that provides a fascinating example of traditional urban in the desert environment. The urban of the small city is considered a genuine adaptation to the harsh desert climate. The historic city of Ghadames remained unaffected by the rapid after oil changes. That makes it a good field to study sustainable, vernacular, earth architecture and urban design. The aim of this paper is to investigate the urban structure, concept, and fabric of the old oasis. The research also surveys the environmental considerations in the city that shades the sustainable features in this traditional residential area. In addition, the paper addresses the modern applications in the new city of Ghadams and sides of success and failure compared to the traditional urban fabric.Keywords: dessert climate design, Ghadames, sustainable urban design, traditional urban design
Procedia PDF Downloads 362