Search results for: Fang Gong
274 Soil Bearing Capacity of Shallow Foundation and Consolidation Settlement at Around the Prospective Area of Sei Gong Dam Batam
Authors: Andri Hidayat, Zufialdi Zakaria, Raden Irvan Sophian
Abstract:
Batam city within next five years are expected to experience water crisis. Sei Gong dam which is located in the Sijantung village, Galang District, Batam City, Riau Islands Province is one of 13 dams that will be built to solve the problems of raw water crisis in the Batam city. The purpose of this study are to determine the condition of engineering geology around Sei Gong Dam area, knowing the value of the soil bearing capacity and recommended pile foundation, and knowing the characteristics of the soil consolidation as one of the factors that affect the incidence of soil subsidence. Based on calculations for shallow foundation in general - soil shear condition and local - soil condition indicates that the highest value in ultimate soil bearing capacity (qu) for each depth was in the square foundations at two meters depth. The zonations of shallow foundation of the research area are divided into five zones, they are bearing capacity zone <10 ton/m2, bearing capacity zone 10-15 ton/m2, bearing capacity zone 15-20 ton/m2, bearing capacity zone 20-25 ton/m2, and bearing capacity zone >25 ton/m2. Based on the parameters of soil engineering analysis, Sei Gong Dam areas at the middle part has a higher value for land subsidence.Keywords: ultimate bearing capacity, type of foundation, consolidation, land subsidence, Batam
Procedia PDF Downloads 377273 Explaining the Changes in Contentious Politics of China: A Comparative Study of Falun Gong and 'Diaosi'
Authors: Larry Lai, Evans Leung
Abstract:
Falun gong is a self-proclaimed religious group that has been under crackdown by Beijing for more than two decades. Diaosi, on the other hand, is an emerging community with members loosely connected on the internet through different online social platforms, centering around the sharing of different hobbies and interests. Diaosi community has been transformed from a potential threat to the Chinese authority for different causes to a pro-government force. This paper seeks to explain the different strategies adopted by the People's Republic of China (PRC) regime in handling these two potential threatening communities. Both communities share some obvious similarities: (1) both have massive nation-wide participation; (2) both have attempted to challenge the PRC's authority through contentious means; (3) both have high level of mobility, online or offline; and (4) both have at first been unnoticed until the threat against the PRC have taken form. But the strategies the PRC endorsed against the communities were, in many ways, different. The question is: if the strategy against Falun Gong has been an effective one, why used other strategies against Diaosi? The authors argue that the main reason for using different strategies lies in the differences between the two communities in terms of (i) the nature of the groups, and (ii) the group dynamics. Lastly, based on this analysis, the authors attempt to explore the possible strategies that the PRC would adopt against the Hong Kong cyber-world political community in light of the latest national security law in Hong Kong.Keywords: contentious politics, Diaosi, Falun Gong, Hong Kong, People's Republic of China
Procedia PDF Downloads 146272 A Selection Approach: Discriminative Model for Nominal Attributes-Based Distance Measures
Authors: Fang Gong
Abstract:
Distance measures are an indispensable part of many instance-based learning (IBL) and machine learning (ML) algorithms. The value difference metrics (VDM) and inverted specific-class distance measure (ISCDM) are among the top-performing distance measures that address nominal attributes. VDM performs well in some domains owing to its simplicity and poorly in others that exist missing value and non-class attribute noise. ISCDM, however, typically works better than VDM on such domains. To maximize their advantages and avoid disadvantages, in this paper, a selection approach: a discriminative model for nominal attributes-based distance measures is proposed. More concretely, VDM and ISCDM are built independently on a training dataset at the training stage, and the most credible one is recorded for each training instance. At the test stage, its nearest neighbor for each test instance is primarily found by any of VDM and ISCDM and then chooses the most reliable model of its nearest neighbor to predict its class label. It is simply denoted as a discriminative distance measure (DDM). Experiments are conducted on the 34 University of California at Irvine (UCI) machine learning repository datasets, and it shows DDM retains the interpretability and simplicity of VDM and ISCDM but significantly outperforms the original VDM and ISCDM and other state-of-the-art competitors in terms of accuracy.Keywords: distance measure, discriminative model, nominal attributes, nearest neighbor
Procedia PDF Downloads 115271 Methanation Catalyst for Low CO Concentration
Authors: Hong-Fang Ma, Cong-yi He, Hai-Tao Zhang, Wei-Yong Ying, Ding-Ye Fang
Abstract:
A Ni-based catalyst supported by γ-Al2O3 was prepared by impregnation method, and the catalyst was used in a low CO and CO2 concentration methanation system. The effect of temperature, pressure and space velocity on the methanation reaction was investigated in an experimental fixed-bed reactor. The methanation reaction was operated at the conditions of 190-240°C, 3000-24000ml•g-1•h-1 and 1.5-3.5MPa. The results show that temperature and space velocity play important role on the reaction. With the increase of reaction temperature the CO and CO2 conversion increase and the selectivity of CH4 increase. And with the increase of the space velocity the conversion of CO and CO2 and the selectivity of CH4 decrease sharply.Keywords: coke oven gas, methanntion, catalyst, fixed bed, performance
Procedia PDF Downloads 402270 Performance Evaluation of Distributed Deep Learning Frameworks in Cloud Environment
Authors: Shuen-Tai Wang, Fang-An Kuo, Chau-Yi Chou, Yu-Bin Fang
Abstract:
2016 has become the year of the Artificial Intelligence explosion. AI technologies are getting more and more matured that most world well-known tech giants are making large investment to increase the capabilities in AI. Machine learning is the science of getting computers to act without being explicitly programmed, and deep learning is a subset of machine learning that uses deep neural network to train a machine to learn features directly from data. Deep learning realizes many machine learning applications which expand the field of AI. At the present time, deep learning frameworks have been widely deployed on servers for deep learning applications in both academia and industry. In training deep neural networks, there are many standard processes or algorithms, but the performance of different frameworks might be different. In this paper we evaluate the running performance of two state-of-the-art distributed deep learning frameworks that are running training calculation in parallel over multi GPU and multi nodes in our cloud environment. We evaluate the training performance of the frameworks with ResNet-50 convolutional neural network, and we analyze what factors that result in the performance among both distributed frameworks as well. Through the experimental analysis, we identify the overheads which could be further optimized. The main contribution is that the evaluation results provide further optimization directions in both performance tuning and algorithmic design.Keywords: artificial intelligence, machine learning, deep learning, convolutional neural networks
Procedia PDF Downloads 212269 A Study of Anoxic - Oxic Microbiological Technology for Treatment of Heavy Oily Refinery Wastewater
Authors: Di Wang, Li Fang, Shengyu Fang, Jianhua Li, Honghong Dong, Zhongzhi Zhang
Abstract:
Heavy oily refinery wastewater with the characteristics of high concentration of toxic organic pollutant, poor biodegradability and complicated dissolved recalcitrant compounds is intractable to be degraded. In order to reduce the concentrations of COD and total nitrogen pollutants which are the major pollutants in heavy oily refinery wastewater, the Anoxic - Oxic microbiological technology relies mainly on anaerobic microbial reactor which works with methanogenic archaea mainly that can convert organic pollutants to methane gas, and supplemented by aerobic treatment. The results of continuous operation for 2 months with a hydraulic retention time (HRT) of 60h showed that, the COD concentration from influent water of anaerobic reactor and effluent water from aerobic reactor were 547.8mg/L and 93.85mg/L, respectively. The total removal rate of COD was up to 84.9%. Compared with the 46.71mg/L of total nitrogen pollutants in influent water of anaerobic reactor, the concentration of effluent water of aerobic reactor decreased to 14.11mg/L. In addition, the average removal rate of total nitrogen pollutants reached as high as 69.8%. Based on the data displayed, Anoxic - Oxic microbial technology shows a great potential to dispose heavy oil sewage in energy saving and high-efficiency of biodegradation.Keywords: anoxic - oxic microbiological technology, COD, heavy oily refinery wastewater, total nitrogen pollutant
Procedia PDF Downloads 495268 Pushover Experiment of Traditional Dieh-Dou Timber Frame
Authors: Ren Zuo Wang
Abstract:
In this paper, in order to investigate the joint behaviors of the Dieh-Dou structure. A pushover experiment of Dieh-Dou Jia-Dong is implemented. NDI, LVDT and image measurement system are used to measure displacements of joints and deformations of Dieh-Dou Jia-Dong. In addition, joint rotation-moment relationships of column restoring force, purlin-supporting, Dou-Shu, Dou-Gong brackets, primary beam-Gua Tong, secondary beam-Gua Tong, Tertiary beam are builied. From Jia-Dong experiments, formulations of joint rotation are proposed.Keywords: pushover experiment, Dieh-Dou timber frame, image measurement system, joint rotation-moment relationships
Procedia PDF Downloads 444267 New Moment Rotation Model of Single Web Angle Connections
Authors: Zhengyi Kong, Seung-Eock Kim
Abstract:
Single angle connections, which are bolted to the beam web and the column flange, are studied to investigate moment-rotation behavior. Elastic–perfectly plastic material behavior is assumed. ABAQUS software is used to analyze the nonlinear behavior of a single angle connection. The same geometric and material conditions with Yanglin Gong’s test are used for verifying finite element models. Since Kishi and Chen’s Power model and Lee and Moon’s Log model are accurate only for a limited range, simpler and more accurate hyperbolic function models are proposed. The equation for calculating rotation at ultimate moment is first proposed.Keywords: finite element method, moment and rotation, rotation at ultimate moment, single-web angle connections
Procedia PDF Downloads 432266 Exploring Chinese Nurses’ Views on Alternative Medicine
Authors: Hui Chen, Huping Gong, Yalin Mao
Abstract:
This paper mainly focuses on the Chinese registered nurses as the research object, and studies the role of Chinese registered nurses in the cognition and application experience of alternative medicine. In this study, nurses were interviewed, focusing on their views and exchanging experiences on the use of alternative medicine in their work. The researchers will use Colaizzi to analyze the collected data. Four main themes emerged from the interviews, namely: 1) the current state of alternative medicine in China, 2) Challenges faced by nurses, 3) How nurses overcome various difficulties, 4) Development of alternative medicine in China. Through the exchange of knowledge and practical experience of alternative medicine, registered nurses in China are not only participants in the application of alternative medicine but also play an active role in promoting its development.Keywords: traditional Chinese medicine, alternative medicine, nurse, qualitative research
Procedia PDF Downloads 23265 Examining the Attitude and Behavior Towards Household Waste in China With the Theory of Planned Behavior and PEST Analysis
Authors: Yuxuan Liu, Jianli Hao, Ruoyu Zhang, Lin Lin, Nelsen Andreco Muljadi, Yu Song, Guobin Gong
Abstract:
With the increased municipal waste of China, household waste management (HWM) has become a key issue for sustainable development. In this study, an online survey questionnaire was conducted with the aim of assessing the current attitudes and behaviors of the households in China towards waste separationand recycling practices. Related influential factors are also determined within the context of the theory of planned behavior and PEST analysis. The survey received a total of 551 valid respondents. Results showed that the sample has an overall positive attitudes and behavior toward participating in HWM, but only 16.3% of themregularly segregate their waste. Society and policy are also found to be the two most impactful factors.Keywords: householde waste management, theory of planned behavior, attitude, behavior
Procedia PDF Downloads 201264 Refractometric Optical Sensing by Using Photonics Mach–Zehnder Interferometer
Authors: Gong Zhang, Hong Cai, Bin Dong, Jifang Tao, Aiqun Liu, Dim-Lee Kwong, Yuandong Gu
Abstract:
An on-chip refractive index sensor with high sensitivity and large measurement range is demonstrated in this paper. The sensing structures are based on Mach-Zehnder interferometer configuration, built on the SOI substrate. The wavelength sensitivity of the sensor is estimated to be 3129 nm/RIU. Meanwhile, according to the interference pattern period changes, the measured period sensitivities are 2.9 nm/RIU (TE mode) and 4.21 nm/RIU (TM mode), respectively. As such, the wavelength shift and the period shift can be used for fine index change detection and larger index change detection, respectively. Therefore, the sensor design provides an approach for large index change measurement with high sensitivity.Keywords: Mach-Zehnder interferometer, nanotechnology, refractive index sensing, sensors
Procedia PDF Downloads 447263 Morphology of Cartographic Words: A Perspective from Chinese Characters
Authors: Xinyu Gong, Zhilin Li, Xintao Liu
Abstract:
Maps are a means of communication. Cartographic language involves established theories of natural language for understanding maps. “Cartographic words’, or “map symbols”, are crucial elements of cartographic language. Personalized mapping is increasingly popular, with growing demands for customized map-making by the general public. Automated symbol-making and customization play a key role in personalized mapping. However, formal representations for the automated construction of map symbols are still lacking. In natural language, the process of word and sentence construction can be formalized. Through the analogy between natural language and graphical language, formal representations of natural language construction can be used as a reference for constructing cartographic language. We selected Chinese character structures (i.e., SKeywords: personalized mapping, Chinese character, cartographic language, map symbols
Procedia PDF Downloads 177262 Static and Dynamic Analysis on a Buddhism Goddess Guanyin in Shuangyashan
Authors: Gong Kangming, Zhao Caiqi
Abstract:
High-rise special-shaped structure, such as main frame structure of the statues, is one of the structure forms in irregular structure widely used. Due to the complex shape of the statue structure, with a large aspect ratio, its wind load value and the overall mechanical properties are very different from the high-rise buildings with the general rules. The paper taking a certain 48 meters high main frame structure of the statue located in Shuangyashan City, Heilongjiang Province, static and dynamic properties are analyzed by the finite element software. Through static and dynamic analysis, it got a number of useful conclusions that have a certain reference value for the analysis and design of the future similar structure.Keywords: a Buddhism goddess Guanyin body, wind load, dynamic analysis, bolster, node design
Procedia PDF Downloads 467261 Research and Development of Net-Centric Information Sharing Platform
Authors: Wang Xiaoqing, Fang Youyuan, Zheng Yanxing, Gu Tianyang, Zong Jianjian, Tong Jinrong
Abstract:
Compared with traditional distributed environment, the net-centric environment brings on more demanding challenges for information sharing with the characteristics of ultra-large scale and strong distribution, dynamic, autonomy, heterogeneity, redundancy. This paper realizes an information sharing model and a series of core services, through which provides an open, flexible and scalable information sharing platform.Keywords: net-centric environment, information sharing, metadata registry and catalog, cross-domain data access control
Procedia PDF Downloads 570260 A Comparative Study of Mental Health and Well-Being between Qugong Practitioners and Non-Practitioners
Authors: Masoumeh Khosravi
Abstract:
Introduction: The complementary therapies and Qigong exercises is important in order to maintain physical and mental health. Objective: This study was done to compare and investigate well-being and mental health's state between practitioners of a Qigong practice (Falun Dafa) and non-practitioners. Method: It was a comparative study with 60 samples (30 practitioners of Falun Dafa, and 30 non-practitioners), who were selected by random sampling from Tehran city of Iran. Data were collected by mental health inventory (SCL90) and well-being questionnaire. Multivariate variance analyzing and t-test were used for analyzing data. Results: Results showed significant differences in most components of mental health including anxiety, aggressiveness, obsessive-compulsion, interpersonal sensitivity, somatization disorder, depression, phobia between practitioners and non-practitioners. Well-being was significantly higher in practitioners than non-practitioners. Conclusion: Accordingly, we concluded Falun Gong exercises have high impact on mental health and well-being in people.Keywords: mental health, well-being, Qigong, Falun Dafa
Procedia PDF Downloads 381259 Enhancing Fall Detection Accuracy with a Transfer Learning-Aided Transformer Model Using Computer Vision
Authors: Sheldon McCall, Miao Yu, Liyun Gong, Shigang Yue, Stefanos Kollias
Abstract:
Falls are a significant health concern for older adults globally, and prompt identification is critical to providing necessary healthcare support. Our study proposes a new fall detection method using computer vision based on modern deep learning techniques. Our approach involves training a trans- former model on a large 2D pose dataset for general action recognition, followed by transfer learning. Specifically, we freeze the first few layers of the trained transformer model and train only the last two layers for fall detection. Our experimental results demonstrate that our proposed method outperforms both classical machine learning and deep learning approaches in fall/non-fall classification. Overall, our study suggests that our proposed methodology could be a valuable tool for identifying falls.Keywords: healthcare, fall detection, transformer, transfer learning
Procedia PDF Downloads 150258 A Simple Fluid Dynamic Model for Slippery Pulse Pattern in Traditional Chinese Pulse Diagnosis
Authors: Yifang Gong
Abstract:
Pulse diagnosis is one of the most important diagnosis methods in traditional Chinese medicine. It is also the trickiest method to learn. It is known as that it can only to be sensed not explained. This becomes a serious threat to the survival of this diagnostic method. However, there are a large amount of experiences accumulated during the several thousand years of practice of Chinese doctors. A pulse pattern called 'Slippery pulse' is one of the indications of pregnancy. A simple fluid dynamic model is proposed to simulate the effects of the existence of a placenta. The placenta is modeled as an extra plenum in an extremely simplified fluid network model. It is found that because of the existence of the extra plenum, indeed the pulse pattern shows a secondary peak in one pulse period. As for the author’s knowledge, this work is the first time to show the link between Pulse diagnoses and basic physical principle. Key parameters which might affect the pattern are also investigated.Keywords: Chinese medicine, flow network, pregnancy, pulse
Procedia PDF Downloads 386257 Speedup Breadth-First Search by Graph Ordering
Abstract:
Breadth-First Search(BFS) is a core graph algorithm that is widely used for graph analysis. As it is frequently used in many graph applications, improve the BFS performance is essential. In this paper, we present a graph ordering method that could reorder the graph nodes to achieve better data locality, thus, improving the BFS performance. Our method is based on an observation that the sibling relationships will dominate the cache access pattern during the BFS traversal. Therefore, we propose a frequency-based model to construct the graph order. First, we optimize the graph order according to the nodes’ visit frequency. Nodes with high visit frequency will be processed in priority. Second, we try to maximize the child nodes overlap layer by layer. As it is proved to be NP-hard, we propose a heuristic method that could greatly reduce the preprocessing overheads. We conduct extensive experiments on 16 real-world datasets. The result shows that our method could achieve comparable performance with the state-of-the-art methods while the graph ordering overheads are only about 1/15.Keywords: breadth-first search, BFS, graph ordering, graph algorithm
Procedia PDF Downloads 138256 An Empirical Investigation of Uncertainty and the Lumpy Investment Channel of Monetary Policy
Authors: Min Fang, Jiaxi Yang
Abstract:
Monetary policy could be less effective at stimulating investment during periods of elevated volatility than during normal times. In this paper, we argue that elevated volatility leads to a decrease in extensive margin investment incentive so that nominal stimulus generates less aggregate investment. To do this, we first empirically document that high volatility weakens firms’ investment responses to monetary stimulus. Such effects depend on the lumpiness nature of the firm-level investment. The findings are that the channel exists for all of the physical investment, innovation investment, and organization investment.Keywords: investment, irreversibility, volatility, uncertainty, firm heterogeneity, monetary policy
Procedia PDF Downloads 107255 How Western Donors Allocate Official Development Assistance: New Evidence From a Natural Language Processing Approach
Authors: Daniel Benson, Yundan Gong, Hannah Kirk
Abstract:
Advancement in national language processing techniques has led to increased data processing speeds, and reduced the need for cumbersome, manual data processing that is often required when processing data from multilateral organizations for specific purposes. As such, using named entity recognition (NER) modeling and the Organisation of Economically Developed Countries (OECD) Creditor Reporting System database, we present the first geotagged dataset of OECD donor Official Development Assistance (ODA) projects on a global, subnational basis. Our resulting data contains 52,086 ODA projects geocoded to subnational locations across 115 countries, worth a combined $87.9bn. This represents the first global, OECD donor ODA project database with geocoded projects. We use this new data to revisit old questions of how ‘well’ donors allocate ODA to the developing world. This understanding is imperative for policymakers seeking to improve ODA effectiveness.Keywords: international aid, geocoding, subnational data, natural language processing, machine learning
Procedia PDF Downloads 79254 A Fourier Method for Risk Quantification and Allocation of Credit Portfolios
Authors: Xiaoyu Shen, Fang Fang, Chujun Qiu
Abstract:
Herewith we present a Fourier method for credit risk quantification and allocation in the factor-copula model framework. The key insight is that, compared to directly computing the cumulative distribution function of the portfolio loss via Monte Carlo simulation, it is, in fact, more efficient to calculate the transformation of the distribution function in the Fourier domain instead and inverting back to the real domain can be done in just one step and semi-analytically, thanks to the popular COS method (with some adjustments). We also show that the Euler risk allocation problem can be solved in the same way since it can be transformed into the problem of evaluating a conditional cumulative distribution function. Once the conditional or unconditional cumulative distribution function is known, one can easily calculate various risk metrics. The proposed method not only fills the niche in literature, to the best of our knowledge, of accurate numerical methods for risk allocation but may also serve as a much faster alternative to the Monte Carlo simulation method for risk quantification in general. It can cope with various factor-copula model choices, which we demonstrate via examples of a two-factor Gaussian copula and a two-factor Gaussian-t hybrid copula. The fast error convergence is proved mathematically and then verified by numerical experiments, in which Value-at-Risk, Expected Shortfall, and conditional Expected Shortfall are taken as examples of commonly used risk metrics. The calculation speed and accuracy are tested to be significantly superior to the MC simulation for real-sized portfolios. The computational complexity is, by design, primarily driven by the number of factors instead of the number of obligors, as in the case of Monte Carlo simulation. The limitation of this method lies in the "curse of dimension" that is intrinsic to multi-dimensional numerical integration, which, however, can be relaxed with the help of dimension reduction techniques and/or parallel computing, as we will demonstrate in a separate paper. The potential application of this method has a wide range: from credit derivatives pricing to economic capital calculation of the banking book, default risk charge and incremental risk charge computation of the trading book, and even to other risk types than credit risk.Keywords: credit portfolio, risk allocation, factor copula model, the COS method, Fourier method
Procedia PDF Downloads 168253 An Improved Photovolatic System Balancer Architecture
Authors: Chih-Chiang Hua, Yi-Hsiung Fang, Cyuan-Jyun Wong
Abstract:
An improved PV balancer for photovoltaic applications is proposed in this paper. The proposed PV balancer senses the voltage and current of PV module and adjusts the output voltage of converter. Thus, the PV system can implement maximum power point tracking (MPPT) independently for each module whether it is under shading, different irradiation or degradation of PV cell. In addition, the cost of PV balancer can be reduced due to the low power rating of converter. To assess the effectiveness of the proposed system, two PV balancers are designed and verified through simulation under different shading conditions. The proposed PV balancers can provide more energy than the traditional PV balancer.Keywords: MPPT, partial shading, PV System, converter
Procedia PDF Downloads 291252 Enhancing Inhibition on Phytopathogens by Complex Using Biogas Slurry
Authors: Fang-Bo Yu, Li-Bo Guan, Sheng-Dao Shan
Abstract:
Biogas slurry was mixed with six commercial fungicides and screening against 11 phytopathogens was carried out. Results showed that inhibition of biogas slurry was different for the test strains and no significant difference between treatments of Didymella bryoniae, Fusarium oxysporum f. sp. vasinfectum, Aspergillus niger, Rhizoctonia cerealis, F. graminearum and Septoria tritici was observed. However, significant differences were found among Penicillium sp., Botrytis cinerea, Alternaria sonali, F. oxysporum F. sp. melonis and Sclerotinia sclerotiorum. The approach described here presents a promising alternative to current manipulation although some issues still need further examination. This study could contribute to the development of sustainable agriculture and better utilization of biogas slurry.Keywords: anaerobic digestion, biogas slurry, phytopathogen, sustainable agriculture
Procedia PDF Downloads 334251 Transfer Learning for Protein Structure Classification at Low Resolution
Authors: Alexander Hudson, Shaogang Gong
Abstract:
Structure determination is key to understanding protein function at a molecular level. Whilst significant advances have been made in predicting structure and function from amino acid sequence, researchers must still rely on expensive, time-consuming analytical methods to visualise detailed protein conformation. In this study, we demonstrate that it is possible to make accurate (≥80%) predictions of protein class and architecture from structures determined at low (>3A) resolution, using a deep convolutional neural network trained on high-resolution (≤3A) structures represented as 2D matrices. Thus, we provide proof of concept for high-speed, low-cost protein structure classification at low resolution, and a basis for extension to prediction of function. We investigate the impact of the input representation on classification performance, showing that side-chain information may not be necessary for fine-grained structure predictions. Finally, we confirm that high resolution, low-resolution and NMR-determined structures inhabit a common feature space, and thus provide a theoretical foundation for boosting with single-image super-resolution.Keywords: transfer learning, protein distance maps, protein structure classification, neural networks
Procedia PDF Downloads 138250 Changing New York Financial Clusters in the 2000s: Modeling the Impact and Policy Implication of the Global Financial Crisis
Authors: Silvia Lorenzo, Hongmian Gong
Abstract:
With the influx of research assessing the economic impact of the global financial crisis of 2007-8, a spatial analysis based on empirical data is needed to better understand the spatial significance of the financial crisis in New York, a key international financial center also considered the origin of the crisis. Using spatial statistics, the existence of financial clusters specializing in credit and securities throughout the New York metropolitan area are identified for 2000 and 2010, the time period before and after the height of the global financial crisis. Geographically Weighted Regressions are then used to examine processes underlying the formation and movement of financial geographies across state, county and ZIP codes of the New York metropolitan area throughout the 2000s with specific attention to tax regimes, employment, household income, technology, and transportation hubs. This analysis provides useful inputs for financial risk management and public policy initiatives aimed at addressing regional economic sustainability across state boundaries, while also developing the groundwork for further research on a spatial analysis of the global financial crisis.Keywords: financial clusters, New York, global financial crisis, geographically weighted regression
Procedia PDF Downloads 311249 Using Speech Emotion Recognition as a Longitudinal Biomarker for Alzheimer’s Diseases
Authors: Yishu Gong, Liangliang Yang, Jianyu Zhang, Zhengyu Chen, Sihong He, Xusheng Zhang, Wei Zhang
Abstract:
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that affects millions of people worldwide and is characterized by cognitive decline and behavioral changes. People living with Alzheimer’s disease often find it hard to complete routine tasks. However, there are limited objective assessments that aim to quantify the difficulty of certain tasks for AD patients compared to non-AD people. In this study, we propose to use speech emotion recognition (SER), especially the frustration level, as a potential biomarker for quantifying the difficulty patients experience when describing a picture. We build an SER model using data from the IEMOCAP dataset and apply the model to the DementiaBank data to detect the AD/non-AD group difference and perform longitudinal analysis to track the AD disease progression. Our results show that the frustration level detected from the SER model can possibly be used as a cost-effective tool for objective tracking of AD progression in addition to the Mini-Mental State Examination (MMSE) score.Keywords: Alzheimer’s disease, speech emotion recognition, longitudinal biomarker, machine learning
Procedia PDF Downloads 114248 A Genetic Algorithm for the Load Balance of Parallel Computational Fluid Dynamics Computation with Multi-Block Structured Mesh
Authors: Chunye Gong, Ming Tie, Jie Liu, Weimin Bao, Xinbiao Gan, Shengguo Li, Bo Yang, Xuguang Chen, Tiaojie Xiao, Yang Sun
Abstract:
Large-scale CFD simulation relies on high-performance parallel computing, and the load balance is the key role which affects the parallel efficiency. This paper focuses on the load-balancing problem of parallel CFD simulation with structured mesh. A mathematical model for this load-balancing problem is presented. The genetic algorithm, fitness computing, two-level code are designed. Optimal selector, robust operator, and local optimization operator are designed. The properties of the presented genetic algorithm are discussed in-depth. The effects of optimal selector, robust operator, and local optimization operator are proved by experiments. The experimental results of different test sets, DLR-F4, and aircraft design applications show the presented load-balancing algorithm is robust, quickly converged, and is useful in real engineering problems.Keywords: genetic algorithm, load-balancing algorithm, optimal variation, local optimization
Procedia PDF Downloads 185247 Bio-Electrochemical Process Coupled with MnO2 Nanowires for Wastewater Treatment
Authors: A. Giwa, S. M. Jung, W. Fang, J. Kong, S. W. Hasan
Abstract:
MnO2 nanowires were developed as filtration media for wastewater treatment that uniquely combines several advantages. The resulting material demonstrated strong capability to remove the pollution of heavy metal ions and organic contents in water. In addition, the manufacture process of such material is practical and economical. In this work, MnO2 nanowires were integrated with the state-of-art bio-electrochemical system for wastewater treatment, to overcome problems currently encountered with organic, inorganic, heavy metal, and microbe removal, and to minimize the unit footprint (land/space occupation) at low cost. Results showed that coupling the bio-electrochemical with MnO2 resulted in very encouraging results with higher removal efficiencies of such pollutants.Keywords: bio-electrochemical, nanowires, novel, wastewater
Procedia PDF Downloads 387246 Impact of Butt Joints on Flexural Properties of Nail Laminated Timber
Authors: Mohammad Mehdi Bagheri, Tianying Ma, Meng Gong
Abstract:
Nail laminated timber (NLT) is widely used for constructing timber bridge decks in North America. Butt joints usually exist due to the length limits of lumber, leading to concerns about the decrease of structural performance of NLT. This study aimed at investigating the provisions incorporated in Canadian highway bridge design code on the use of but joints in wooden bridge decks. Three and five layers NLT specimens with various configurations were tested under 3-point bending test. It was found that the standard equation is capable of predicting the bending stiffness reduction due to butt joints and 1-m band limit in which, one but joint in every three adjacent lamination is allowed, sounds reasonable. The strength reduction also followed a pattern similar to stiffness reduction. Also reinforcement of the butt joint through nails and steel side plates was attempted. It was found that nail reinforcement recovers the stiffness slightly. In contrast, reinforcing the butt joint through steel side plate improved the flexural performance significantly when compared to the nail reinforcement.Keywords: nail laminated timber, butt joint, bending stiffness, reinforcement
Procedia PDF Downloads 186245 Prediction of Extreme Precipitation in East Asia Using Complex Network
Authors: Feng Guolin, Gong Zhiqiang
Abstract:
In order to study the spatial structure and dynamical mechanism of extreme precipitation in East Asia, a corresponding climate network is constructed by employing the method of event synchronization. It is found that the area of East Asian summer extreme precipitation can be separated into two regions: one with high area weighted connectivity receiving heavy precipitation mostly during the active phase of the East Asian Summer Monsoon (EASM), and another one with low area weighted connectivity receiving heavy precipitation during both the active and the retreat phase of the EASM. Besides,a way for the prediction of extreme precipitation is also developed by constructing a directed climate networks. The simulation accuracy in East Asia is 58% with a 0-day lead, and the prediction accuracy is 21% and average 12% with a 1-day and an n-day (2≤n≤10) lead, respectively. Compare to the normal EASM year, the prediction accuracy is lower in a weak year and higher in a strong year, which is relevant to the differences in correlations and extreme precipitation rates in different EASM situations. Recognizing and identifying these effects is good for understanding and predicting extreme precipitation in East Asia.Keywords: synchronization, climate network, prediction, rainfall
Procedia PDF Downloads 444