How Western Donors Allocate Official Development Assistance: New Evidence From a Natural Language Processing Approach
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 88209
How Western Donors Allocate Official Development Assistance: New Evidence From a Natural Language Processing Approach

Authors: Daniel Benson, Yundan Gong, Hannah Kirk

Abstract:

Advancement in national language processing techniques has led to increased data processing speeds, and reduced the need for cumbersome, manual data processing that is often required when processing data from multilateral organizations for specific purposes. As such, using named entity recognition (NER) modeling and the Organisation of Economically Developed Countries (OECD) Creditor Reporting System database, we present the first geotagged dataset of OECD donor Official Development Assistance (ODA) projects on a global, subnational basis. Our resulting data contains 52,086 ODA projects geocoded to subnational locations across 115 countries, worth a combined $87.9bn. This represents the first global, OECD donor ODA project database with geocoded projects. We use this new data to revisit old questions of how ‘well’ donors allocate ODA to the developing world. This understanding is imperative for policymakers seeking to improve ODA effectiveness.

Keywords: international aid, geocoding, subnational data, natural language processing, machine learning

Procedia PDF Downloads 85