World Academy of Science, Engineering and Technology
[Chemical and Molecular Engineering]
Online ISSN : 1307-6892
161 Physiological Action of Anthraquinone-Containing Preparations
Authors: Dmitry Yu. Korulkin, Raissa A. Muzychkina, Evgenii N. Kojaev
Abstract:
In review the generalized data about biological activity of anthraquinone-containing plants and specimens on their basis is presented. Data of traditional medicine, results of bioscreening and clinical researches of specimens are analyzed.Keywords: anthraquinones, physiologically active substances, phytopreparation, Ramon
Procedia PDF Downloads 379160 Covalent Functionalization of Graphene Oxide with Aliphatic Polyisocyanate
Authors: E. Changizi, E. Ghasemi, B. Ramezanzadeh, M. Mahdavian
Abstract:
In this study, the graphene oxide was functionalized with polyisocyanate (piGO). The functionalization was carried out at 45⁰C for 24 hrs under nitrogen atmosphere. The X-ray diffraction (XRD), scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FT-IR) and thermal gravimetric analysis (TGA) were utilized in order to evaluate the GO functionalization. The GO and piGO stability were then investigated in polar and nonpolar solvents. Results obtained showed that polyisocyanate was successfully grafted on the surface of graphen oxide sheets through covalent bonds formation. The surface nature of the graphen oxide was changed into the hydrophobic after functionalization. Moreover, the graphen oxide sheets interlayer distance increased after modification.Keywords: graphen oxide, functionalization, polyisocyanate, XRD, TGA, FTIR
Procedia PDF Downloads 447159 Fabrication of Highly Stable Low-Density Self-Assembled Monolayers by Thiolyne Click Reaction
Authors: Leila Safazadeh, Brad Berron
Abstract:
Self-assembled monolayers have tremendous impact in interfacial science, due to the unique opportunity they offer to tailor surface properties. Low-density self-assembled monolayers are an emerging class of monolayers where the environment-interfacing portion of the adsorbate has a greater level of conformational freedom when compared to traditional monolayer chemistries. This greater range of motion and increased spacing between surface-bound molecules offers new opportunities in tailoring adsorption phenomena in sensing systems. In particular, we expect low-density surfaces to offer a unique opportunity to intercalate surface bound ligands into the secondary structure of protiens and other macromolecules. Additionally, as many conventional sensing surfaces are built upon gold surfaces (SPR or QCM), these surfaces must be compatible with gold substrates. Here, we present the first stable method of generating low-density self assembled monolayer surfaces on gold for the analysis of their interactions with protein targets. Our approach is based on the 2:1 addition of thiol-yne chemistry to develop new classes of y-shaped adsorbates on gold, where the environment-interfacing group is spaced laterally from neighboring chemical groups. This technique involves an initial deposition of a crystalline monolayer of 1,10 decanedithiol on the gold substrate, followed by grafting of a low-packed monolayer on through a photoinitiated thiol-yne reaction in presence of light. Orthogonality of the thiol-yne chemistry (commonly referred to as a click chemistry) allows for preparation of low-density monolayers with variety of functional groups. To date, carboxyl, amine, alcohol, and alkyl terminated monolayers have been prepared using this core technology. Results from surface characterization techniques such as FTIR, contact angle goniometry and electrochemical impedance spectroscopy confirm the proposed low chain-chain interactions of the environment interfacing groups. Reductive desorption measurements suggest a higher stability for the click-LDMs compared to traditional SAMs, along with the equivalent packing density at the substrate interface, which confirms the proposed stability of the monolayer-gold interface. In addition, contact angle measurements change in the presence of an applied potential, supporting our description of a surface structure which allows the alkyl chains to freely orient themselves in response to different environments. We are studying the differences in protein adsorption phenomena between well packed and our loosely packed surfaces, and we expect this data will be ready to present at the GRC meeting. This work aims to contribute biotechnology science in the following manner: Molecularly imprinted polymers are a promising recognition mode with several advantages over natural antibodies in the recognition of small molecules. However, because of their bulk polymer structure, they are poorly suited for the rapid diffusion desired for recognition of proteins and other macromolecules. Molecularly imprinted monolayers are an emerging class of materials where the surface is imprinted, and there is not a bulk material to impede mass transfer. Further, the short distance between the binding site and the signal transduction material improves many modes of detection. My dissertation project is to develop a new chemistry for protein-imprinted self-assembled monolayers on gold, for incorporation into SPR sensors. Our unique contribution is the spatial imprinting of not only physical cues (seen in current imprinted monolayer techniques), but to also incorporate complementary chemical cues. This is accomplished through a photo-click grafting of preassembled ligands around a protein template. This conference is important for my development as a graduate student to broaden my appreciation of the sensor development beyond surface chemistry.Keywords: low-density self-assembled monolayers, thiol-yne click reaction, molecular imprinting
Procedia PDF Downloads 228158 TiN/TiO2 Nanostructure Coating on Glass Substrate
Authors: F. Dabir, R. Sarraf-Mamoory, N. Riahi-Noori
Abstract:
In this work, a nanostructured TiO2 layer was coated onto a FTO-less glass substrate using screen printing technique for back contact DSSC application. Then, titanium nitride thin film was applied on TiO2 layer by plasma assisted chemical vapor deposition (PACVD) as charge collector layer. The microstructure of prepared TiO2 layer was characterized by SEM. The sheet resistance, microstructure and elemental composition of titanium nitride thin films were analysed by four point probe, SEM, and EDS, respectively. TiO2 layer had porous nanostructure. The EDS analysis of TiN thin film showed presence of chlorine impurity. Sheet resistance of TiN thin film was 30 Ω/sq. With respect to the results, PACVD TiN can be a good candidate as a charge collector layer in back contacts DSSC.Keywords: TiO2, TiN, charge collector, DSSC
Procedia PDF Downloads 465157 The Effect of Fuel Type on Synthesis of CeO2-MgO Nano-Powder by Combustion Method
Authors: F. Ghafoori-Najafabadi, R. Sarraf-Mamoory, N. Riahi-Noori
Abstract:
In this study, nanocrystalline CeO2-MgO powders were synthesized by combustion reactions using citric acid, ethylene glycol, and glycine as different fuels and nitrate as an oxidant. The powders obtained with different kinds of fuels are characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The size and morphology of the particles and the extent of agglomeration in the powders were studied using SEM analysis. It is observed that the variation of fuel has an intense influence on the particle size and morphology of the resulting powder. X-ray diffraction revealed that any combined phases were observed, and that MgO and CeO2 phases were formed, separately.Keywords: nanoparticle, combustion synthesis, CeO2-MgO, nano-powder
Procedia PDF Downloads 414156 Optimization of Batch to Up-Scaling of Soy-Based Prepolymer Polyurethane
Authors: Flora Elvistia Firdaus
Abstract:
The chemical structure of soybean oils have to be chemically modified through its tryglyceride to attain resemblance properties with petrochemicals. Sulfur acid catalyst in peracetic acid co-reagent has good performance on modified soybean oil strucutures through its unsaturated fatty acid moiety to the desired hydroxyl functional groups. A series of screening reactions have indicated that the ratio of acetic/peroxide acid 1:7.25 (mol/mol) with temperature of 600°C for soy-epoxide synthesis are prevailed for up-scaling of bodied soybean into 10 and 20 folds from initials. A two-step process was conducted for the preparation of soy-polyol in designated temperatures.Keywords: soybean, polyol, up-scaling, polyurethane
Procedia PDF Downloads 366155 Enzymatic Synthesis of Olive-Based Ferulate Esters: Optimization by Response Surface Methodology
Authors: S. Mat Radzi, N. J. Abd Rahman, H. Mohd Noor, N. Ariffin
Abstract:
Ferulic acid has widespread industrial potential by virtue of its antioxidant properties. However, it is partially soluble in aqueous media, limiting their usefulness in oil-based processes in food, cosmetic, pharmaceutical, and material industry. Therefore, modification of ferulic acid should be made by producing of more lipophilic derivatives. In this study, a preliminary investigation of lipase-catalyzed trans-esterification reaction of ethyl ferulate and olive oil was investigated. The reaction was catalyzed by immobilized lipase from Candida antarctica (Novozym 435), to produce ferulate ester, a sunscreen agent. A statistical approach of Response surface methodology (RSM) was used to evaluate the interactive effects of reaction temperature (40-80°C), reaction time (4-12 hours), and amount of enzyme (0.1-0.5 g). The optimum conditions derived via RSM were reaction temperature 60°C, reaction time 2.34 hours, and amount of enzyme 0.3 g. The actual experimental yield was 59.6% ferulate ester under optimum condition, which compared well to the maximum predicted value of 58.0%.Keywords: ferulic acid, enzymatic synthesis, esters, RSM
Procedia PDF Downloads 334154 Microwave Assisted Rapid Synthesis of Nano-Binder from Renewable Resource and Their Application in Textile Printing
Authors: K. Haggag, N. S. Elshemy
Abstract:
Due to limited fossil resource and an increased need for environmentally friendly, sustainable technologies, the importance of using renewable feed stocks in textile industry area will increase in the decades to come. This research highlights some of the perspectives in this area. Alkyd resins for high characterization and reactive properties, completely based on commercially available renewable resources (sunflower and/or soybean oil) were prepared and characterized. In this work, we present results on the synthesis of various alkyd resins according to the alcoholysis – polyesterification process under different preparation conditions using a microwave synthesis as energy source to determine suitable reaction conditions. Effects of polymerization parameters, such as catalyst ratio, reaction temperature and microwave power level have been studied. The prepared binder was characterized via FT-IR, scanning electron microscope (SEM) and transmission electron microscope (TEM), in addition to acid value (AV), iodine value (IV), water absorbance, weight loss, and glass transition temperature. The prepared binder showed high performance physico-mechanical properties. TEM analysis showed that the polymer latex nanoparticle within range of 20–200 nm. The study involved the application of the prepared alkyd resins as binder for pigment printing process onto cotton fabric by using a flat screen technique and the prints were dried and thermal cured. The optimum curing conditions were determined, color strength and fastness properties of pigment printed areas to light, washing, perspiration and crocking were evaluated. The rheological properties and apparent viscosity of prepared binders were measured in addition roughness of the prints was also determined.Keywords: nano-binder, microwave heating, renewable resource, alkyd resins, sunflower oil, soybean oil
Procedia PDF Downloads 376153 Preparation of Alumina (Al2O3) Particles and MMCS of (Al-7% Si– 0.45% Mg) Alloy Using Vortex Method
Authors: Abdulmagid A. Khattabi
Abstract:
The aim of this research is to study the manner of alumina (Al2O3) particles dispersion with (2-10) mm size in (Al-7%Si-0.45% Mg) base of alloy melt employing of classical casting method. The mechanism of particles diffusions by melt turning and stirring that makes vortexes help the particles entrance in the matrix of base alloy also has been studied. The samples of metallic composites (MMCs) with dispersed particles percentages (4% - 6% - 8% - 10% - 15% and 20%) are prepared. The effect of the particles dispersion on the mechanical properties of produced samples were carried out by tension & hardness tests. It is found that the ultimate tensile strength of the produced composites can be increased by increasing the percentages of alumina particles in the matrix of the base alloy. It becomes (232 Mpa) at (20%) of added particles. The results showed that the average hardness of prepared samples increasing with increases the alumina content. Microstructure study of prepared samples was carried out. The results showed particles location and distribution of it in the matrix of base alloy. The dissolution of Alumina particles into liquid base alloy was clear in some cases.Keywords: base alloy, matrix, hardness, thermal properties, base metal MMCs
Procedia PDF Downloads 357152 DFT Study of Half Sandwich of Vanadium (IV) Cyclopentadienyl Complexes
Authors: Salem El-Tohami Ashoor
Abstract:
A novel new vanadium (IV) complexes incorporating the chelating diamido cyclopentadienyl {ArN(CH2)3NAr)}2-((ηn-Cp)Cp)} (Ar = 2,6-Pri2C6H3)(Cp = C5H5 and n = 1,2,3,4 and 5) have been studied with calculation of the properties of species involved in various of cyclopentadienyl reaction. These were carried out under investigation of density functional theory (DFT) calculation, and comparing together. Other methods, explicitly including electron correlation, are necessary for more accurate calculations; MB3LYP (Becke) (Lee–Yang–Parr) level of theory often being used to obtain more exact results. These complexes were estimated of electronic energy for molecular system, because it accounts for all electron correlation interactions. The optimised of [V(ArN(CH2)3NAr)2Cl(η5-Cp)] (Ar = 2,6-Pri2C6H3 and Cp= C5H5) was found to be thermally more stable than others of vanadium cyclopentadienyl. In the meantime the complex [V(ArN(CH2)3NAr)2Cl(η1-Cp)] (Ar = 2,6-Pri2C6H3 and Cp= C5H5) which is showed a low thermal stability in case of the just one carbon of cyclopentadienyl can be insertion with vanadium metal centre. By using Dewar-Chatt-Duncanson model, as a basis of the molecular orbital (MO) analysis and showed the highest occupied molecular orbital (HOMO) and lowest occupied molecular orbital LUMO.Keywords: vanadium (IV) cyclopentadienyl complexes, DFT, MO, HOMO, LUMO
Procedia PDF Downloads 414151 Role of NaCl and Temperature in Glycerol Mediated Rapid Growth of Silver Nanostructures
Authors: L. R. Shobin, S. Manivannan
Abstract:
One dimensional silver nanowires and nanoparticles gained more interest in developing transparent conducting films, catalysis, biological and chemical sensors. Silver nanostructures can be synthesized by varying reaction conditions such as the precursor concentration, molar ratio of the surfactant, injection speed of silver ions, etc. in the polyol process. However, the reaction proceeds for greater than 2 hours for the formation of silver nanowires. The introduction of etchant in the medium promotes the growth of silver nanowires from silver nanoparticles along the [100] direction. Rapid growth of silver nanowires is accomplished using the Cl- ions from NaCl and polyvinyl pyrrolidone (PVP) as surfactant. The role of Cl- ion was investigated in the growth of the nanostructured silver. Silver nanoparticles (<100 nm) were harvested from glycerol medium in the absence of Cl- ions. Trace amount of Cl- ions (2.5 mM -NaCl) produced the edge joined nanowires of length upto 2 μm and width ranging from 40 to 65 nm. Formation and rapid growth (within 25 minutes) of long, uniform silver nanowires (upto 5 μm) with good yield were realized in the presence of 5 mM NaCl at 200ºC. The growth of nanostructures was monitored by UV-vis-NIR spectroscopy. Scanning and transmission electron microscopes reveal the morphology of the silver nano harvests. The role of temperature in the reduction of silver ions, growth mechanism for nanoparticles, edge joined and straight nanowires will be discussed.Keywords: silver nanowires, glycerol mediated polyol process, scanning electron microscopy, UV-Vis- NIR spectroscopy, transmission electron microscopy
Procedia PDF Downloads 305150 Polymer Nanostructures Based Catalytic Materials for Energy and Environmental Applications
Authors: S. Ghosh, L. Ramos, A. N. Kouamé, A.-L. Teillout, H. Remita
Abstract:
Catalytic materials have attracted continuous attention due to their promising applications in a variety of energy and environmental applications including clean energy, energy conversion and storage, purification and separation, degradation of pollutants and electrochemical reactions etc. With the advanced synthetic technologies, polymer nanostructures and nanocomposites can be directly synthesized through soft template mediated approach using swollen hexagonal mesophases and modulate the size, morphology, and structure of polymer nanostructures. As an alternative to conventional catalytic materials, one-dimensional PDPB polymer nanostructures shows high photocatalytic activity under visible light for the degradation of pollutants. These photocatalysts are very stable with cycling. Transmission electron microscopy (TEM), and AFM-IR characterizations reveal that the morphology and structure of the polymer nanostructures do not change after photocatalysis. These stable and cheap polymer nanofibers and metal polymer nanocomposites are easy to process and can be reused without appreciable loss of activity. The polymer nanocomposites formed via one pot chemical redox reaction with 3.4 nm Pd nanoparticles on poly(diphenylbutadiyne) (PDPB) nanofibers (30 nm). The reduction of Pd (II) ions is accompanied by oxidative polymerization leading to composites materials. Hybrid Pd/PDPB nanocomposites used as electrode materials for the electrocatalytic oxidation of ethanol without using support of proton exchange Nafion membrane. Hence, these conducting polymer nanofibers and nanocomposites offer the perspective of developing a new generation of efficient photocatalysts for environmental protection and in electrocatalysis for fuel cell applications.Keywords: conducting polymer, swollen hexagonal mesophases, solar photocatalysis, electrocatalysis, water depollution
Procedia PDF Downloads 389149 Functionalization of Carboxylated Single-Walled Carbon Nanotubes with 2-En 4-Hydroxy Cyclo 1-Octanon and Toxicity Investigation
Authors: D. ChobfroushKhoei, S. K. Heidari , Sh. Dariadel
Abstract:
Carbon nanotubes were used in medical sciences especially in drug delivery system and cancer therapy. In this study, we functionalized carboxylated single-wall carbon nanotubes (SWNT-COOH) with 2-en 4-hydroxy cyclo 1-octanon. Synthesized sample was characterized by FT-IR, Raman spectroscopy, SEM, TGA and cellular investigations. The results showed well formation of SWNT-Ester. Cell viability assay results and microscopic observations demonstrated that cancerous cells were killed in the sample. The synthesized sample can be used as a toxic material for cancer therapy.Keywords: MWNT-COOH, functionalization, phenylisocyanate, phenylisothiocyanate, 1, 4-phenylendiamine, toxicity investigation
Procedia PDF Downloads 456148 Microwave Assisted Extraction (MAE) of Castor Oil from Castor Bean
Authors: Ghazi Faisal Najmuldeen, Rosli Mohd Yunus, Nurfarahin Bt Harun, Mardhiana Binti Ismail
Abstract:
The microwave extraction has attracted great interest among the researchers. The main virtue of the microwave technique is cost-effective, time saving and simple handling procedure. Castor beans was chosen because of its high content in fatty acid, especially ricinoleic acid. The purpose of this research is to extract the castor oil by using the microwave assisted extraction (MAE) using ethanol as solvent and to investigate the influence of extraction time on castor oil yield and to characterize the main composition of the produced castor oil by using the GC-MS. It was found that there is a direct dependence between the oil yield and the time of extraction as it increases from 45% to 58% as the time increase from 10 min to 60 min. The major components of castor oil detected by GC-MS were ricinoleic acid, linoleic acid and oleic acid.Keywords: microwave assisted extraction (MAE), castor oil, ricinoleic acid, linoleic acid
Procedia PDF Downloads 511147 Functionalized Nanoparticles as Sorbents for Removal of Toxic Species
Authors: Jerina Majeed, Jayshree Ramkumar, S. Chandramouleeswaran, A. K. Tyagi
Abstract:
Removal of various toxic species from aqueous streams is of great importance. Sorption is one of the important remediation procedures as it involves the use of cheap and easily available materials. Also the advantage of regeneration of the sorbent involves the possibility of using novel sorbents. Nanosorbents are very important as the removal is based on the surface phenomena and this is greatly affected by surface charge and area. Functionalization has been very important to bring about the removal of metal ions with greater selectivity.Keywords: mercury, lead, thiol functionalization, ZnO NPs
Procedia PDF Downloads 346146 Synthesis of New Bio-Based Solid Polymer Electrolyte Polyurethane-Liclo4 via Prepolymerization Method: Effect of NCO/OH Ratio on Their Chemical, Thermal Properties and Ionic Conductivity
Authors: C. S. Wong, K. H. Badri, N. Ataollahi, K. P. Law, M. S. Su’ait, N. I. Hassan
Abstract:
Novel bio-based polymer electrolyte was synthesized with LiClO4 as the main source of charge carrier. Initially, polyurethane-LiClO4 polymer electrolytes were synthesized via polymerization method with different NCO/OH ratios and labelled as PU1, PU2, PU3, and PU4. Subsequently, the chemical, thermal properties and ionic conductivity of the films produced were determined. Fourier transform infrared (FTIR) analysis indicates the co-ordination between Li+ ion and polyurethane in PU1 due to the greatest amount of hard segment of polyurethane in PU1 as proven by soxhlet analysis. The structures of polyurethanes were confirmed by 13 nuclear magnetic resonance spectroscopy (13C NMR) and FTIR spectroscopy. Differential scanning calorimetry (DSC) analysis indicates PU 1 has the highest glass transition temperature (Tg) corresponds to the most abundant urethane group which is the hard segment in PU1. Scanning electron microscopy (SEM) of the PU-LiClO4 shows the good miscibility between lithium salt and the polymer. The study found that PU1 possessed the greatest ionic conductivity (1.19 × 10-7 S.cm-1 at 298 K and 5.01 × 10-5 S.cm-1 at 373 K) and the lowest activation energy, Ea (0.32 eV) due to the greatest amount of hard segment formed in PU 1 induces the coordination between lithium ion and oxygen atom of carbonyl group in polyurethane. All the polyurethanes exhibited linear Arrhenius variations indicating ion transport via simple lithium ion hopping in polyurethane. This research proves the NCO content in polyurethane plays an important role in affecting the ionic conductivity of this polymer electrolyte.Keywords: ionic conductivity, palm kernel oil-based monoester-OH, polyurethane, solid polymer electrolyte
Procedia PDF Downloads 430145 Olefin and Paraffin Separation Using Simulations on Extractive Distillation
Authors: Muhammad Naeem, Abdulrahman A. Al-Rabiah
Abstract:
Technical mixture of C4 containing 1-butene and n-butane are very close to each other with respect to their boiling points i.e. -6.3°C for 1-butene and -1°C for n-butane. Extractive distillation process is used for the separation of 1-butene from the existing mixture of C4. The solvent is the essential of extractive distillation, and an appropriate solvent shows an important role in the process economy of extractive distillation. Aspen Plus has been applied for the separation of these hydrocarbons as a simulator; moreover NRTL activity coefficient model was used in the simulation. This model indicated that the material balances in this separation process were accurate for several solvent flow rates. Mixture of acetonitrile and water used as a solvent and 99 % pure 1-butene was separated. This simulation proposed the ratio of the feed to solvent as 1 : 7.9 and 15 plates for the solvent recovery column, previously feed to solvent ratio was more than this and the proposed plates were 30, which can economize the separation process.Keywords: extractive distillation, 1-butene, Aspen Plus, ACN solvent
Procedia PDF Downloads 449144 Dependence of the Electro-Stimulation of Saccharomyces cerevisiae by Pulsed Electric Field at the Yeast Growth Phase
Authors: Jessy Mattar, Mohamad Turk, Maurice Nonus, Nikolai Lebovka, Henri El Zakhem, Eugene Vorobiev
Abstract:
The effects of electro-stimulation of S. cerevisiae cells in colloidal suspension by Pulsed Electric Fields (PEF) with electric field strength E = 20 – 2000 V.cm-1 and effective PEF treatment time tPEF = 10^−5 – 1 s were investigated. The applied experimental procedure includes variations in the preliminary fermentation time and electro-stimulation by PEF-treatment. Plate counting was performed. At relatively high electric fields (E ≥ 1000 V.cm-1) and moderate PEF treatment time (tPEF > 100 µs), the extraction of ionic components from yeast was observed by conductivity measurements, which can be related to electroporation of cell membranes. Cell counting revealed a dependency of the colonies’ size on the time of preliminary fermentation tf and the power consumption W, however no dependencies were noticeable by varying the initial yeast concentration in the treated suspensions.Keywords: intensification, yeast, fermentation, electroporation, biotechnology
Procedia PDF Downloads 472143 2D PbS Nanosheets Synthesis and Their Applications as Field Effect Transistors or Solar Cells
Authors: T. Bielewicz, S. Dogan, C. Klinke
Abstract:
Two-dimensional, solution-processable semiconductor materials are interesting for low-cost electronic applications [1]. We demonstrate the synthesis of lead sulfide nanosheets and how their size, shape and height can be tuned by varying concentrations of pre-cursors, ligands and by varying the reaction temperature. Especially, the charge carrier confinement in the nanosheets’ height adjustable from 2 to 20 nm has a decisive impact on their electronic properties. This is demonstrated by their use as conduction channel in a field effect transistor [2]. Recently we also showed that especially thin nanosheets show a high carrier multiplication (CM) efficiency [3] which could make them, through the confinement induced band gap and high photoconductivity, very attractive for application in photovoltaic devices. We are already able to manufacture photovoltaic devices out of single nanosheets which show promising results.Keywords: physical sciences, chemistry, materials, chemistry, colloids, physics, condensed-matter physics, semiconductors, two-dimensional materials
Procedia PDF Downloads 303142 On the Mathematical Modelling of Aggregative Stability of Disperse Systems
Authors: Arnold M. Brener, Lesbek Tashimov, Ablakim S. Muratov
Abstract:
The paper deals with the special model for coagulation kernels which represents new control parameters in the Smoluchowski equation for binary aggregation. On the base of the model the new approach to evaluating aggregative stability of disperse systems has been submitted. With the help of this approach the simple estimates for aggregative stability of various types of hydrophilic nano-suspensions have been obtained.Keywords: aggregative stability, coagulation kernels, disperse systems, mathematical model
Procedia PDF Downloads 315141 A Simple, Precise and Cost Effective PTFE Container Design Capable to Work in Domestic Microwave Oven
Authors: Mehrdad Gholami, Shima Behkami, Sharifuddin B. Md. Zain, Firdaus A. B. Kamaruddin
Abstract:
Starting from the first application of a microwave oven for sample preparation in 1975 for the purpose of wet ashing of biological samples using a domestic microwave oven, many microwave-assisted dissolution vessels have been developed. The advanced vessels are armed with special safety valve that release the excess of pressure while the vessels are in critical conditions due to applying high power of microwave. Nevertheless, this releasing of pressure may cause lose of volatile elements. In this study Teflon bottles are designed with relatively thicker wall compared to commercial ones and a silicone based polymer was used to prepare an O-ring which plays the role of safety valve. In this design, eight vessels are located in an ABS holder to keep them stable and safe. The advantage of these vessels is that they need only 2 mL of HNO3 and 1mL H2O2 to digest different environmental samples, namely, sludge, apple leave, peach leave, spinach leave and tomato leave. In order to investigate the performance of this design an ICP-MS instrument was applied for multi elemental analysis of 20 elements on the SRM of above environmental samples both using this design and a commercial microwave digestion design. Very comparable recoveries were obtained from this simple design with the commercial one. Considering the price of ultrapure chemicals and the amount of them which normally is about 8-10 mL, these simple vessels with the procedures that will be discussed in detail are very cost effective and very suitable for environmental studies.Keywords: inductively coupled plasma mass spectroscopy (ICP-MS), PTFE vessels, Teflon bombs, microwave digestion, trace element
Procedia PDF Downloads 344140 Investigation of Mechanical Properties of Epoxy-Nanocomposite Reinforced with Copper Coated MWCNTs
Authors: M. Nazem Salimi, C. Abrinia, M. Baniassadi, M. Ehsani
Abstract:
Mechanical properties of epoxy based nanocomposites containing copper coated MWCNTs were investigated and a comparative study between nanocomposites containing functionalized MWCNTs and copper coated MWCNTs which are already functionalized was conducted. The MWCNTs was deposited with copper nanoparticles through electroless deposition process after accomplishment of "two-step" method as sensitization and activation procedures on oxidized MWCNTs. In addition, functionalization of MWCNTs was carried out through combination of two covalent and non-covalent funcionalization methods using HNO3 for acid solution of covalent treatment and Triton X100 as non-ionic surfactant of non-covalent treatment. The presence of functional groups and removal of impurities of MWCNTs were confirmed by FTIR and Raman spectroscopy, respectively. The layer of copper nanoparticles on the MWCNTs wall increasing its diameter was observed by SEM. Utilizing solution blending process, 0.1%, 0.5% and 1.5% wt loading of both copper coated MWCNTs and non-coated MWCNTs were used to prepare epoxy-based nanocomposites. The tensile, flexural and impact properties of nanocomposites were investigated. The results of tensile test demonstrated that nanocomposites containing copper coated MWCNTs exhibited brittle behavior compared to those reinforced with functionalized MWCNTs, whereas former one exhibited higher values of modulus than latter one for concentrations more than 0.4% wt. Presence of copper particles on MWCNTs surface decreased the tensile strength of nanocomposites. In comparison to pure epoxy, nanocomposites with treated-MWCNTs and Cu-MWCNTs loading of 0.1% wt showed an increase of 35% and 51.6% for flexural strength beside 20% and 30% increase in flexural modulus, respectively, whereas flexural properties of both naocomposites decreased with increasing of CNTs concentration. The results of impact strength of nanocomposites with Cu-CNTs demonstrated that impact properties decreased with increasing of filler content with a optimum value at 0.1% wt while in high concentrations impact properties of Cu-nanocomposites exhibited lower values than f-MWCNT nanocomposites.Keywords: epoxyresin, nanocomposite, functionalization, copper, electroless deposition process, mechanical properties
Procedia PDF Downloads 368139 Dynamic Response of Nano Spherical Shell Subjected to Termo-Mechanical Shock Using Nonlocal Elasticity Theory
Authors: J. Ranjbarn, A. Alibeigloo
Abstract:
In this paper, we present an analytical method for analysis of nano-scale spherical shell subjected to thermo-mechanical shocks based on nonlocal elasticity theory. Thermo-mechanical properties of nano shpere is assumed to be temperature dependent. Governing partial differential equation of motion is solved analytically by using Laplace transform for time domain and power series for spacial domain. The results in Laplace domain is transferred to time domain by employing the fast inverse Laplace transform (FLIT) method. Accuracy of present approach is assessed by comparing the the numerical results with the results of published work in literature. Furtheremore, the effects of non-local parameter and wall thickness on the dynamic characteristics of the nano-sphere are studied.Keywords: nano-scale spherical shell, nonlocal elasticity theory, thermomechanical shock, dynamic response
Procedia PDF Downloads 376138 Chemometric Determination of the Geographical Origin of Milk Samples in Malaysia
Authors: Shima Behkami, Nor Shahirul Umirah Idris, Sharifuddin Md. Zain, Kah Hin Low, Mehrdad Gholami, Nima A. Behkami, Ahmad Firdaus Kamaruddin
Abstract:
In this work, Inductively Coupled Plasma Mass Spectrometry (ICP-MS), Isotopic Ratio Mass Spectrometry (IRMS) and Ultrasound Milko Tester were used to study milk samples obtained from various geographical locations in Malaysia. ICP-MS was used to determine the concentration of trace elements in milk, water and soil samples obtained from seven dairy farms at different geographical locations in peninsular Malaysia. IRMS was used to analyze the milk samples for isotopic ratios of δ13C, 15N and 18O. Nutritional parameters in the milk samples were determined using an ultrasound milko tester. Data obtained from these measurements were evaluated by Principal Component Analysis (PCA) and Hierarchical Analysis (HA) as a preliminary step in determining geographical origin of these milk samples. It is observed that the isotopic ratios and a number of the nutritional parameters are responsible for the discrimination of the samples. It was also observed that it is possible to determine the geographical origin of these milk samples solely by the isotopic ratios of δ13C, 15N and 18O. The accuracy of the geographical discrimination is demonstrated when several milk samples from a milk factory taken from one of the regions under study were appropriately assigned to the correct PCA cluster.Keywords: inductively coupled plasma mass spectroscopy ICP-MS, isotope ratio mass spectroscopy IRMS, ultrasound, principal component analysis, hierarchical analysis, geographical origin, milk
Procedia PDF Downloads 374137 Three Dimensional Vibration Analysis of Carbon Nanotubes Embedded in Elastic Medium
Authors: M. Shaban, A. Alibeigloo
Abstract:
This paper studies free vibration behavior of single-walled carbon nanotubes (SWCNTs) embedded on elastic medium based on three-dimensional theory of elasticity. To accounting the size effect of carbon nanotubes, nonlocal theory is adopted to shell model. The nonlocal parameter is incorporated into all constitutive equations in three dimensions. The surrounding medium is modeled as two-parameter elastic foundation. By using Fourier series expansion in axial and circumferential direction, the set of coupled governing equations are reduced to the ordinary differential equations in thickness direction. Then, the state-space method as an efficient and accurate method is used to solve the resulting equations analytically. Comprehensive parametric studies are carried out to show the influences of the nonlocal parameter, radial and shear elastic stiffness, thickness-to-radius ratio and radius-to-length ratio.Keywords: carbon nanotubes, embedded, nonlocal, free vibration
Procedia PDF Downloads 454136 Synthesis and Characterization of Zeolite/Fe3O4 Nanocomposite Material and Investigation of Its Catalytic Reaction
Authors: Mojgan Zendehdel, Safura Molla Mohammad Zamani
Abstract:
In this paper, Fe3O4/NaY zeolite nanocomposite with different molar ratio were successfully synthesized and characterized using FT-IR, XRD, TGA, SEM and VSM techniques. The SEM graphs showed that much of Fe3O4 was successfully coated by the NaY zeolite layer. Also, the results show that the magnetism of the products is stable with added zeolite. The catalytic effect of nanocomposite investigated for esterification reaction under solvent-free conditions. Hence, the effect of the catalyst amount, reaction time, reaction temperature and reusability of catalyst were considered and nanocomposite that created from zeolite and 16.6 percent of Fe3O4 showed the highest yield. The catalyst can be easily separated from reaction with the magnet and it can also be used for several times.Keywords: zeolite, magnetic, nanocompsite, esterification
Procedia PDF Downloads 464135 Ultrasonic Assisted Growth of ZnO Nanorods at Low Temperature
Authors: Khairul Anuar, Wai Yee Lee, Daniel C. S. Bien, Hing Wah Lee, Ishak Azid
Abstract:
This paper investigates the effect of ultrasonic treatment on ZnO nutrient solution prior to the growth of ZnO nanorods, where the seed layer is annealed at 50 and 100°C. The results show that the ZnO nanorods are successfully grown on the sample annealed at 50°C in the sonicated ZnO nutrient solution with a length and a diameter of approximately 8.025 µm and 92 nm, respectively. However, no ZnO nanorods structures are observed for the sample annealed at 50°C and grown in unsonicated ZnO nutrient solution. Meanwhile, the ZnO nanorods for the sample annealed at 100°C are successfully grown in both sonicated and unsonicated ZnO nutrient solutions. The length and diameter of the nanorods for the sample grown in the sonicated solution are 8.681 µm and 1.033 nm, whereas those for the sample grown in the unsonicated solution are 7.613 µm and 1.040 nm. This result shows that with ultrasonic treatment, the length of the ZnO nanorods increases by 14%, whereas their diameter is reduced by 0.7%, resulting in an increase of aspect ratio from 7:1 to 8:1. Electroconductivity and pH sensors are used to measure the conductivity and acidity level of the sonicated and unsonicated solutions, respectively. The result shows that the conductivity increases from 87 mS/cm to 10.4 mS/cm, whereas the solution pH decreases from 6.52 to 6.13 for the sonicated and unsonicated solutions, respectively. The increase in solution conductivity and acidity level elucidates the higher amount of zinc nutrient in the sonicated solution than in the unsonicated solution.Keywords: ultrasonic treatment, low annealing temperature, ZnO nanostructure, nanorods
Procedia PDF Downloads 370134 Moisture Absorption Analysis of LLDPE-NR Nanocomposite for HV Insulation
Authors: M. S. Kamarulzaman, N. A. Muhamad, N. A. M. Jamail, M. A. M. Piah, N. F. Kasri
Abstract:
Insulation for high voltage application that has been service for a very long time is subjected to several types of degradation. The degradation can lead to premature breakdown and definitely will spent highly cost to replace the cable. Thus, there are many research on nano composite material get serious attention attention due to their abilities to enhance electrical performance by addition of nano filler. In this paper, water absorption of Low Linear Density Polyethyelene (LLDPE) with different amount of nano filler added is studied. This study is necessary to be conducted since most of electrical apparatus such as cable insulation are dominant used especially in high voltage application. The cable insulation are continuously exposed in uncontrolled environment may suffer degradation process. Three type of nano fillers, was used in this study are: Silicon dioxide (SiO2), Titanium dioxide (TiO2) and Monmorillonite (MMT). The percentage absorption of water was measured by weighted using high precision scales for absorption process up to 92 days. Experimental result demonstrate that SiO2 absorb less water than other filler while, the MMT has hydrophilic properties which it absorbs more water compare to another sample.Keywords: nano composite, nano filler, water absorption, hydrophilic properties
Procedia PDF Downloads 361133 Preventive Effect of Zinc on Nickel Hepatotoxicity and Nephrotoxicity in Albino (Wistar) Rats
Authors: Zine Kechrid, Samira Bouhalit
Abstract:
Aim: We studied the effect of intraperitonial zinc treatment on nickel sulphate-induced hepatotoxicity and nephrotoxicity in Wistar strain male albino rats. Materials and Methods: Liver and kidney dysfunction parameters represented by aspartate transaminase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP), blood glucose, serum total protein, serum urea, serum creatinine, and serum belurebin were estimated. Liver glutathione level, catalase and GPx activities were also determined in liver as indicators of oxidative damage. Result: Nickel treatment led to high serum glucose concentration and produced hepatotoxicity and nephrotoxicity characterized by increasing GPT, GOT and alkaline phosphatase activities, serum total protein, serum urea, serum creatinine and serum belurebin concentrations. In addition, liver glutathione level, catalase and GSH-Px activities diminished due to high lipid peroxidation. The simultaneous administration of zinc with nickel sulphate resulted in a remarkable improvement of the previous parameters compared with rats treated with nickel alone. Conclusion: In conclusion, nickel sulphate led to liver and kidney dysfunctions and hepatic lipid peroxidation in animals, but simultaneous treatment with zinc offers a relative protection against nickel induced hepatotoxicity, nephrotoxicity and lipid peroxidation.Keywords: nickel, zinc, rats, GOT, GPT, nephrotoxicity, hepatotoxicity
Procedia PDF Downloads 453132 The Effect of Enzymatic Keratin Hydrolysate on the Susceptibility of Cellulosic-Elastomeric Material to Biodecomposition
Authors: Y. H. Tshela Ntumba, A. Przepiórkowska, M. Prochoń
Abstract:
Polymeric materials have become an integral part of every aspect of today's industry. They have wide applications, inter alia, in areas such as medicine, food industry and agriculture. In agriculture, for example, they are used for the production of pots, irrigation systems and for soil mulching. The aim of this study was the attempt to produce a biodecomposable agricultural mat, by coating cotton fabric with a blend of carboxylated styrene-butadiene latex (LBSK) containing the enzymatic hydrolyzate of keratin from cattle hair, which would serve as a material for mulching. The production of such material allows the beneficial management of burdensome tannery waste constituted by keratin from cattle hair and at the same time, the production of agricultural mats that much faster undergo decomposition than commonly used polyethylene mats.Keywords: agricultural mat, biodecomposition, biodegradation, carboxylated butadiene-styrene latex, cellulosic-elastomeric material, keratin hydrolyzate, mulching, protein hydrolyzate
Procedia PDF Downloads 422