Search results for: voltage level.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4132

Search results for: voltage level.

3862 Sensorless Control of a Six-Phase Induction Motors Drive Using FOC in Stator Flux Reference Frame

Authors: G. R. Arab Markadeh, J. Soltani, N. R. Abjadi, M. Hajian

Abstract:

In this paper, a direct torque control - space vector modulation (DTC-SVM) scheme is presented for a six-phase speed and voltage sensorless induction motor (IM) drive. The decoupled torque and stator flux control is achieved based on IM stator flux field orientation. The rotor speed is detected by on-line estimating of the rotor angular slip speed and stator vector flux speed. In addition, a simple method is introduced to estimate the stator resistance. Moreover in this control scheme the voltage sensors are eliminated and actual motor phase voltages are approximated by using PWM inverter switching times and the dc link voltage. Finally, some simulation and experimental results are presented to verify the effectiveness and capability of the proposed control scheme.

Keywords: Stator FOC, Multiphase motors, sensorless.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1962
3861 Analysis of Noise Level Effects on Signal-Averaged Electrocardiograms

Authors: Chun-Cheng Lin

Abstract:

Noise level has critical effects on the diagnostic performance of signal-averaged electrocardiogram (SAECG), because the true starting and end points of QRS complex would be masked by the residual noise and sensitive to the noise level. Several studies and commercial machines have used a fixed number of heart beats (typically between 200 to 600 beats) or set a predefined noise level (typically between 0.3 to 1.0 μV) in each X, Y and Z lead to perform SAECG analysis. However different criteria or methods used to perform SAECG would cause the discrepancies of the noise levels among study subjects. According to the recommendations of 1991 ESC, AHA and ACC Task Force Consensus Document for the use of SAECG, the determinations of onset and offset are related closely to the mean and standard deviation of noise sample. Hence this study would try to perform SAECG using consistent root-mean-square (RMS) noise levels among study subjects and analyze the noise level effects on SAECG. This study would also evaluate the differences between normal subjects and chronic renal failure (CRF) patients in the time-domain SAECG parameters. The study subjects were composed of 50 normal Taiwanese and 20 CRF patients. During the signal-averaged processing, different RMS noise levels were adjusted to evaluate their effects on three time domain parameters (1) filtered total QRS duration (fQRSD), (2) RMS voltage of the last QRS 40 ms (RMS40), and (3) duration of the low amplitude signals below 40 μV (LAS40). The study results demonstrated that the reduction of RMS noise level can increase fQRSD and LAS40 and decrease the RMS40, and can further increase the differences of fQRSD and RMS40 between normal subjects and CRF patients. The SAECG may also become abnormal due to the reduction of RMS noise level. In conclusion, it is essential to establish diagnostic criteria of SAECG using consistent RMS noise levels for the reduction of the noise level effects.

Keywords: Signal-averaged electrocardiogram, Ventricular latepotentials, Chronic renal failure, Noise level effects.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1753
3860 Reduction of Leakage Power in Digital Logic Circuits Using Stacking Technique in 45 Nanometer Regime

Authors: P.K. Sharma, B. Bhargava, S. Akashe

Abstract:

Power dissipation due to leakage current in the digital circuits is a biggest factor which is considered specially while designing nanoscale circuits. This paper is exploring the ideas of reducing leakage current in static CMOS circuits by stacking the transistors in increasing numbers. Clearly it means that the stacking of OFF transistors in large numbers result a significant reduction in power dissipation. Increase in source voltage of NMOS transistor minimizes the leakage current. Thus stacking technique makes circuit with minimum power dissipation losses due to leakage current. Also some of digital circuits such as full adder, D flip flop and 6T SRAM have been simulated in this paper, with the application of reduction technique on ‘cadence virtuoso tool’ using specter at 45nm technology with supply voltage 0.7V.

Keywords: Stack, 6T SRAM cell, low power, threshold voltage

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3376
3859 High Voltage Driver Design for Actuating a MOEMS Mirror Array

Authors: M. Lenzhofer, D. Holzmann, A. Tortschanoff

Abstract:

In this paper we present a new multichannel high voltage driver box to connect up to six MOEMS mirror devices to it that have resonant and also quasistatically driven actuating electrodes. It is possible to drive all resonant axes synchronously while the amplitude of them can individually be controlled by separate microcontrollers that also operate the quasistatic axes. Circuit simulations are compared with the measurements done on the real system and also show the robust driving performance of a MOEMS mirror.

Keywords: MOEMS, scanner mirror, electrostatic driver.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1872
3858 Various Modifications of Electrochemical Barrier Layer Thinning of Anodic Aluminum Oxide

Authors: W. J. Stępniowski, W. Florkiewicz, M. Norek, M. Michalska-Domańska, E. Kościuczyk, T. Czujko

Abstract:

In this paper, two options of anodic alumina barrier layer thinning have been demonstrated. The approaches varied with the duration of the voltage step. It was found that too long step of the barrier layer thinning process leads to chemical etching of the nanopores on their top. At the bottoms pores are not fully opened what is disadvantageous for further applications in nanofabrication. On the other hand, while the duration of the voltage step is controlled by the current density (value of the current density cannot exceed 75% of the value recorded during previous voltage step) the pores are fully opened. However, pores at the bottom obtained with this procedure have smaller diameter, nevertheless this procedure provides electric contact between the bare aluminum (substrate) and electrolyte, what is suitable for template assisted electrodeposition, one of the most cost-efficient synthesis method in nanotechnology.

Keywords: Anodic aluminum oxide, anodization, barrier layer thinning, nanopores.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2583
3857 Optimizing Voltage Parameter of Deep Brain Stimulation for Parkinsonian Patients by Modeling

Authors: M. Sadeghi, A.H. Jafari, S.M.P. Firoozabadi

Abstract:

Deep Brain Stimulation or DBS is the second solution for Parkinson's Disease. Its three parameters are: frequency, pulse width and voltage. They must be optimized to achieve successful treatment. Nowadays it is done clinically by neurologists and there is not certain numerical method to detect them. The aim of this research is to introduce simulation and modeling of Parkinson's Disease treatment as a computational procedure to select optimum voltage. We recorded finger tremor signals of some Parkinsonian patients under DBS treatment at constant frequency and pulse width but variable voltages; then, we adapted a new model to fit these data. The optimum voltages obtained by data fitting results were the same as neurologists- commented voltages, which means modeling can be used as an engineering method to select optimum stimulation voltages.

Keywords: modeling, Deep Brain Stimulation, Parkinson'sdisease, tremor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1728
3856 Effects of Water Content on Dielectric Properties of Mineral Transformer Oil

Authors: Suwarno, M. Helmi Prakoso

Abstract:

Mineral oil is commonly used for high voltage transformer insulation. The insulation quality of mineral oil is affecting the operation process of high voltage transformer. There are many contaminations which could decrease the insulation quality of mineral oil. One of them is water. This research talks about the effect of water content on dielectric properties, physic properties, and partial discharge pattern on mineral oil. Samples were varied with 10 varieties of water content value. And then all samples would be tested to measure the dielectric properties, physic properties, and partial discharge pattern. The result of this research showed that an increment of water content value would decrease the insulation quality of mineral oil.

Keywords: Dielectric properties, high voltage transformer, mineral oil, water content.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3568
3855 A Novel Digital Implementation of AC Voltage Controller for Speed Control of Induction Motor

Authors: Ali M. Eltamaly, A. I. Alolah, R. Hamouda, M. Y. Abdulghany

Abstract:

In this paper a novel, simple and reliable digital firing scheme has been implemented for speed control of three-phase induction motor using ac voltage controller. The system consists of three-phase supply connected to the three-phase induction motor via three triacs and its control circuit. The ac voltage controller has three modes of operation depending on the shape of supply current. The performance of the induction motor differs in each mode where the speed is directly proportional with firing angle in two modes and inversely in the third one. So, the control system has to detect the current mode of operation to choose the correct firing angle of triacs. Three sensors are used to feed the line currents to control system to detect the mode of operation. The control strategy is implemented using a low cost Xilinx Spartan-3E field programmable gate array (FPGA) device. Three PI-controllers are designed on FPGA to control the system in the three-modes. Simulation of the system is carried out using PSIM computer program. The simulation results show stable operation for different loading conditions especially in mode 2/3. The simulation results have been compared with the experimental results from laboratory prototype.

Keywords: FPGA, Induction motor, PSIM, triac, Voltage controller.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2872
3854 Experimental Investigation of Adjacent Hall Structures Parameters

Authors: Ivelina N. Cholakova, Tihomir B. Takov, Radostin Ts. Tsankov, Nicolas Simonne, Slavka S. Tzanova

Abstract:

Adjacent Hall microsensors, comprising a silicon substrate and four contacts, providing simultaneously two supply inputs and two differential outputs, are characterized. The voltage related sensitivity is in the order of 0.11T-1, and a cancellation method for offset compensation is used, achieving residual offset in the micro scale which is also compared to a single Hall plate.

Keywords: Adjacent Hall sensors, offset compensation, voltage related sensitivity, 0.18μm CMOS technology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1468
3853 T-DOF PI Controller Design for a Speed Control of Induction Motor

Authors: Tianchai Suksri, Satean Tunyasrirut

Abstract:

This paper presents design and implements the T-DOF PI controller design for a speed control of induction motor. The voltage source inverter type space vector pulse width modulation technique is used the drive system. This scheme leads to be able to adjust the speed of the motor by control the frequency and amplitude of the input voltage. The ratio of input stator voltage to frequency should be kept constant. The T-DOF PI controller design by root locus technique is also introduced to the system for regulates and tracking speed response. The experimental results in testing the 120 watt induction motor from no-load condition to rated condition show the effectiveness of the proposed control scheme.

Keywords: PI controller, root locus technique, space vector pulse width modulation, induction motor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2100
3852 Fuzzy Logic Control for a Speed Control of Induction Motor using Space Vector Pulse Width Modulation

Authors: Satean Tunyasrirut, Tianchai Suksri, Sompong Srilad

Abstract:

This paper presents design and implements a voltage source inverter type space vector pulse width modulation (SVPWM) for control a speed of induction motor. This scheme leads to be able to adjust the speed of the motor by control the frequency and amplitude of the stator voltage, the ratio of stator voltage to frequency should be kept constant. The fuzzy logic controller is also introduced to the system for keeping the motor speed to be constant when the load varies. The experimental results in testing the 0.22 kW induction motor from no-load condition to rated condition show the effectiveness of the proposed control scheme.

Keywords: Fuzzy logic control, space vector pulse width modulation, induction motor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2958
3851 Transmission Pricing based on Voltage Angle Decomposition

Authors: M. Oloomi-Buygi, M. Reza Salehizadeh

Abstract:

In this paper a new approach for transmission pricing is presented. The main idea is voltage angle allocation, i.e. determining the contribution of each contract on the voltage angle of each bus. DC power flow is used to compute a primary solution for angle decomposition. To consider the impacts of system non-linearity on angle decomposition, the primary solution is corrected in different iterations of decoupled Newton-Raphson power flow. Then, the contribution of each contract on power flow of each transmission line is computed based on angle decomposition. Contract-related flows are used as a measure for “extent of use" of transmission network capacity and consequently transmission pricing. The presented approach is applied to a 4-bus test system and IEEE 30-bus test system.

Keywords: Deregulation, Power electric markets, Transmission pricing methodologies, decoupled Newton-Raphson power flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1613
3850 Spark Breakdown Voltage and Surface Degradation of Multiwalled Carbon Nanotube Electrode Surfaces

Authors: M. G. Rostedt, M. J. Hall, L. Shi, R. D. Matthews

Abstract:

Silicon substrates coated with multiwalled carbon nanotubes (MWCNTs) were experimentally investigated to determine spark breakdown voltages relative to uncoated surfaces, the degree of surface degradation associated with the spark discharge, and techniques to minimize the surface degradation. The results may be applicable to instruments or processes that use MWCNT as a means of increasing local electric field strength and where spark breakdown is a possibility that might affect the devices’ performance or longevity. MWCNTs were shown to reduce the breakdown voltage of a 1mm gap in air by 30-50%. The relative decrease in breakdown voltage was maintained over gap distances of 0.5 to 2mm and gauge pressures of 0 to 4 bar. Degradation of the MWCNT coated surfaces was observed. Several techniques to improve durability were investigated. These included: chromium and gold-palladium coatings, tube annealing, and embedding clusters of MWCNT in a ceramic matrix.

Keywords: Ionization sensor, spark, nanotubes, electrode, breakdown.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2387
3849 Linear Prediction System in Measuring Glucose Level in Blood

Authors: Intan Maisarah Abd Rahim, Herlina Abdul Rahim, Rashidah Ghazali

Abstract:

Diabetes is a medical condition that can lead to various diseases such as stroke, heart disease, blindness and obesity. In clinical practice, the concern of the diabetic patients towards the blood glucose examination is rather alarming as some of the individual describing it as something painful with pinprick and pinch. As for some patient with high level of glucose level, pricking the fingers multiple times a day with the conventional glucose meter for close monitoring can be tiresome, time consuming and painful. With these concerns, several non-invasive techniques were used by researchers in measuring the glucose level in blood, including ultrasonic sensor implementation, multisensory systems, absorbance of transmittance, bio-impedance, voltage intensity, and thermography. This paper is discussing the application of the near-infrared (NIR) spectroscopy as a non-invasive method in measuring the glucose level and the implementation of the linear system identification model in predicting the output data for the NIR measurement. In this study, the wavelengths considered are at the 1450 nm and 1950 nm. Both of these wavelengths showed the most reliable information on the glucose presence in blood. Then, the linear Autoregressive Moving Average Exogenous model (ARMAX) model with both un-regularized and regularized methods was implemented in predicting the output result for the NIR measurement in order to investigate the practicality of the linear system in this study. However, the result showed only 50.11% accuracy obtained from the system which is far from the satisfying results that should be obtained.

Keywords: Diabetes, glucose level, linear, near-infrared (NIR), non-invasive, prediction system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 818
3848 Investigation of the Electronic Properties of Au/methyl-red/Ag Surface type Schottky Diode by Current-Voltage Method

Authors: Zubair Ahmad, Muhammad Hassan Sayyad

Abstract:

In this paper, fabrication and study of electronic properties of Au/methyl-red/Ag surface type Schottky diode by current-voltage (I-V) method has been reported. The I-V characteristics of the Schottky diode showed the good rectifying behavior. The values of ideality factor n and barrier height b of Au/methyl-red/Ag Schottky diode were calculated from the semi-log I-V characteristics and by using the Cheung functions. From semi-log current-voltage characteristics the values of n and b were found 1.93 and 0.254 eV, respectively, while by using Cheung functions their values were calculated 1.89 and 0.26 eV, respectively. The effect of series resistance was also analyzed by Cheung functions. The series resistance RS values were determined from dV/d(lnI)–I and H(I)–I graphs and were found to be 1.1 k and 1.3 k, respectively.

Keywords: Surface type Schottky diodes, Methyl-red, Currentvoltage method

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1580
3847 Optimal Placement and Sizing of SVC for Load Margin Improvement Using BF Algorithm

Authors: Santi Behera, M. Tripathy, J. K. Satapathy

Abstract:

Power systems are operating under stressed condition due to continuous increase in demand of load. This can lead to voltage instability problem when face additional load increase or contingency. In order to avoid voltage instability suitable size of reactive power compensation at optimal location in the system is required which improves the load margin. This work aims at obtaining optimal size as well as location of compensation in the 39- bus New England system with the help of Bacteria Foraging and Genetic algorithms. To reduce the computational time the work identifies weak candidate buses in the system, and then picks only two of them to take part in the optimization. The objective function is based on a recently proposed voltage stability index which takes into account the weighted average sensitivity index is a simpler and faster approach than the conventional CPF algorithm. BFOA has been found to give better results compared to GA.

Keywords: BFOA, GA, SSVSL, WASI.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2136
3846 Design of PI and Fuzzy Controller for High-Efficiency and Tightly Regulated Full Bridge DC-DC Converter

Authors: Sudha Bansal, Lalit Mohan Saini, Dheeraj Joshi

Abstract:

The controller is used to improve the dynamic performance of DC-DC converter by achieving a robust output voltage against load disturbances. This paper presents the performance of PI and Fuzzy controller for a phase- shifted zero-voltage switched full-bridge PWM (ZVS FB- PWM) converters with a closed loop control. The proposed converter is regulated with minimum overshoot and good stability. In this paper phase-shift control method is used as an effective tool to reduce switching losses and duty cycle losses. A 1kW/100KHz dc/dc converter is simulated and analyzed using MATLAB. The circuit is simulated for static and dynamic load (DC motor). It has been observed that performance of converter with fuzzy controller is better than that of PI controller. An efficiency comparison of the converter with a reported topology has also been carried out.

Keywords: Full-bridge converter, phase-shifted, synchronous rectifier (SR), zero-voltage switching (ZVS).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2926
3845 Automatic Generation Control Design Based on Full State Vector Feedback for a Multi-Area Energy System Connected via Parallel AC/DC Lines

Authors: Gulshan Sharma

Abstract:

This article presents the design of optimal automatic generation control (AGC) based on full state feedback control for a multi-area interconnected power system. An extra high voltage AC transmission line in parallel with a high voltage DC link is considered as an area interconnection between the areas. The optimal AGC are designed and implemented in the wake of 1% load perturbation in one of the areas and the system dynamic response plots for various system states are obtained to investigate the system dynamic performance. The pattern of closed-loop eigenvalues are also determined to analyze the system stability. From the investigations carried out in the work, it is revealed that the dynamic performance of the system under consideration has an appreciable improvement when a high voltage DC line is paralleled with an extra high voltage AC line as an interconnection between the areas. The investigation of closed-loop eigenvalues reveals that the system stability is ensured in all case studies carried out with the designed optimal AGC.

Keywords: Automatic generation control, area control error, DC link, optimal AGC regulator, closed-loop eigenvalues.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 777
3844 An Efficient Tool for Mitigating Voltage Unbalance with Reactive Power Control of Distributed Grid-Connected Photovoltaic Systems

Authors: Malinwo Estone Ayikpa

Abstract:

With the rapid increase of grid-connected PV systems over the last decades, genuine challenges have arisen for engineers and professionals of energy field in the planning and operation of existing distribution networks with the integration of new generation sources. However, the conventional distribution network, in its design was not expected to receive other generation outside the main power supply. The tools generally used to analyze the networks become inefficient and cannot take into account all the constraints related to the operation of grid-connected PV systems. Some of these constraints are voltage control difficulty, reverse power flow, and especially voltage unbalance which could be due to the poor distribution of single-phase PV systems in the network. In order to analyze the impact of the connection of small and large number of PV systems to the distribution networks, this paper presents an efficient optimization tool that minimizes voltage unbalance in three-phase distribution networks with active and reactive power injections from the allocation of single-phase and three-phase PV plants. Reactive power can be generated or absorbed using the available capacity and the adjustable power factor of the inverter. Good reduction of voltage unbalance can be achieved by reactive power control of the PV systems. The presented tool is based on the three-phase current injection method and the PV systems are modeled via an equivalent circuit. The primal-dual interior point method is used to obtain the optimal operating points for the systems.

Keywords: Photovoltaic generation, primal-dual interior point method, three-phase optimal power flow, unbalanced system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1048
3843 Least Squares Method Identification of Corona Current-Voltage Characteristics and Electromagnetic Field in Electrostatic Precipitator

Authors: H. Nouri, I. E. Achouri, A. Grimes, H. Ait Said, M. Aissou, Y. Zebboudj

Abstract:

This paper aims to analysis the behavior of DC corona discharge in wire-to-plate electrostatic precipitators (ESP). Currentvoltage curves are particularly analyzed. Experimental results show that discharge current is strongly affected by the applied voltage. The proposed method of current identification is to use the method of least squares. Least squares problems that of into two categories: linear or ordinary least squares and non-linear least squares, depending on whether or not the residuals are linear in all unknowns. The linear least-squares problem occurs in statistical regression analysis; it has a closed-form solution. A closed-form solution (or closed form expression) is any formula that can be evaluated in a finite number of standard operations. The non-linear problem has no closed-form solution and is usually solved by iterative.

Keywords: Electrostatic precipitator, current-voltage characteristics, Least Squares method, electric field, magnetic field.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2061
3842 High-performance Second-Generation Controlled Current Conveyor CCCII and High Frequency Applications

Authors: Néjib Hassen, Thouraya Ettaghzouti, Kamel Besbes

Abstract:

In this paper, a modified CCCII is presented. We have used a current mirror with low supply voltage. This circuit is operated at low supply voltage of ±1V. Tspice simulations for TSMC 0.18μm CMOS Technology has shown that the current and voltage bandwidth are respectively 3.34GHz and 4.37GHz, and parasitic resistance at port X has a value of 169.320 for a control current of 120μA. In order to realize this circuit, we have implemented in this first step a universal current mode filter where the frequency can reach the 134.58MHz. In the second step, we have implemented two simulated inductors: one floating and the other grounded. These two inductors are operated in high frequency and variable depending on bias current I0. Finally, we have used the two last inductors respectively to implement two sinusoidal oscillators domains of frequencies respectively: [470MHz, 692MHz], and [358MHz, 572MHz] for bias currents I0 [80μA, 350μA].

Keywords: Current controlled current conveyor CCCII, floating inductor, grounded inductor, oscillator, universal filter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2747
3841 Modeling and Analysis of DFIG Based Wind Power System Using Instantaneous Power Components

Authors: Jaimala Gambhir, Tilak Thakur, Puneet Chawla

Abstract:

As per the statistical data, the Doubly-fed Induction Generator (DFIG) based wind turbine with variable speed and variable pitch control is the most common wind turbine in the growing wind market. This machine is usually used on the grid connected wind energy conversion system to satisfy grid code requirements such as grid stability, Fault Ride Through (FRT), power quality improvement, grid synchronization and power control etc. Though the requirements are not fulfilled directly by the machine, the control strategy is used in both the stator as well as rotor side along with power electronic converters to fulfil the requirements stated above. To satisfy the grid code requirements of wind turbine, usually grid side converter is playing a major role. So in order to improve the operation capacity of wind turbine under critical situation, the intensive study of both machine side converter control and grid side converter control is necessary In this paper DFIG is modeled using power components as variables and the performance of the DFIG system is analysed under grid voltage fluctuations. The voltage fluctuations are made by lowering and raising the voltage values in the utility grid intentionally for the purpose of simulation keeping in view of different grid disturbances.

Keywords: DFIG, dynamic modeling, DPC, sag, swell, voltage fluctuations, FRT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2602
3840 Model and Control of Renewable Energy Systems

Authors: Yelena Chaiko

Abstract:

This paper presents a developed method for controlling multi-renewable energy generators. The control system depends basically on three sensors (wind anemometer, solar sensor, and voltage sensor). These sensors represent PLC-s analogue inputs. Controlling the output voltage supply can be achieved by an enhanced method of interlocking between the renewable energy generators, depending on those sensors and output contactors.

Keywords: Renewable, energy, control, model, generator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1454
3839 Fuzzy Tuned PID Controller with D-Q-O Reference Frame Technique Based Active Power Filter

Authors: Kavala Kiran Kumar, R. Govardhana Rao

Abstract:

Active power filter continues to be a powerful tool to control harmonics in power systems thereby enhancing the power quality. This paper presents a fuzzy tuned PID controller based shunt active filter to diminish the harmonics caused by non linear loads like thyristor bridge rectifiers and imbalanced loads. Here Fuzzy controller provides the tuning of PID, based on firing of thyristor bridge rectifiers and variations in input rms current. The shunt APF system is implemented with three phase current controlled Voltage Source Inverter (VSI) and is connected at the point of common coupling for compensating the current harmonics by injecting equal but opposite filter currents. These controllers are capable of controlling dc-side capacitor voltage and estimating reference currents. Hysteresis Current Controller (HCC) is used to generate switching signals for the voltage source inverter. Simulation studies are carried out with non linear loads like thyristor bridge rectifier along with unbalanced loads and the results proved that the APF along with fuzzy tuned PID controller work flawlessly for different firing angles of non linear load.

Keywords: Active power filters (APF), Fuzzy logic controller (FLC), Hysteresis current controller (HCC), PID, Total harmonic Distortion (THD), Voltage source inverter (VSI).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2482
3838 Application of Four-electrode Method to Analysis Resistance Characteristics of Conductive Concrete

Authors: Chun-Yao Lee, Siang-Ren Wang

Abstract:

The purpose of this paper is to discuss the influence of resistance characteristic on the high conductive concrete considering the various voltage and environment. The four-electrode method is applied to the tailor-made high conductive concrete with appropriate proportion. The curve of resistivity with the changes of voltage and environment is plotted and the changes of resistivity are explored. The result based on the methods reveals that resistivity is less affected by the temperature factor, and the four-electrode method would be an applicable measurement method on a site inspection.

Keywords: Conductive concrete, Resistivity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1561
3837 Influence of Measurement System on Negative Bias Temperature Instability Characterization: Fast BTI vs Conventional BTI vs Fast Wafer Level Reliability

Authors: Vincent King Soon Wong, Hong Seng Ng, Florinna Sim

Abstract:

Negative Bias Temperature Instability (NBTI) is one of the critical degradation mechanisms in semiconductor device reliability that causes shift in the threshold voltage (Vth). However, thorough understanding of this reliability failure mechanism is still unachievable due to a recovery characteristic known as NBTI recovery. This paper will demonstrate the severity of NBTI recovery as well as one of the effective methods used to mitigate, which is the minimization of measurement system delays. Comparison was done in between two measurement systems that have significant differences in measurement delays to show how NBTI recovery causes result deviations and how fast measurement systems can mitigate NBTI recovery. Another method to minimize NBTI recovery without the influence of measurement system known as Fast Wafer Level Reliability (FWLR) NBTI was also done to be used as reference.

Keywords: Fast vs slow BTI, Fast wafer level reliability, Negative bias temperature instability, NBTI measurement system, metal-oxide-semiconductor field-effect transistor, MOSFET, NBTI recovery, reliability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1588
3836 Interplay of Power Management at Core and Server Level

Authors: Jörg Lenhardt, Wolfram Schiffmann, Jörg Keller

Abstract:

While the feature sizes of recent Complementary Metal Oxid Semiconductor (CMOS) devices decrease the influence of static power prevails their energy consumption. Thus, power savings that benefit from Dynamic Frequency and Voltage Scaling (DVFS) are diminishing and temporal shutdown of cores or other microchip components become more worthwhile. A consequence of powering off unused parts of a chip is that the relative difference between idle and fully loaded power consumption is increased. That means, future chips and whole server systems gain more power saving potential through power-aware load balancing, whereas in former times this power saving approach had only limited effect, and thus, was not widely adopted. While powering off complete servers was used to save energy, it will be superfluous in many cases when cores can be powered down. An important advantage that comes with that is a largely reduced time to respond to increased computational demand. We include the above developments in a server power model and quantify the advantage. Our conclusion is that strategies from datacenters when to power off server systems might be used in the future on core level, while load balancing mechanisms previously used at core level might be used in the future at server level.

Keywords: Power efficiency, static power consumption, dynamic power consumption, CMOS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1650
3835 Application of Single Tuned Passive Filters in Distribution Networks at the Point of Common Coupling

Authors: M. Almutairi, S. Hadjiloucas

Abstract:

The harmonic distortion of voltage is important in relation to power quality due to the interaction between the large diffusion of non-linear and time-varying single-phase and three-phase loads with power supply systems. However, harmonic distortion levels can be reduced by improving the design of polluting loads or by applying arrangements and adding filters. The application of passive filters is an effective solution that can be used to achieve harmonic mitigation mainly because filters offer high efficiency, simplicity, and are economical. Additionally, possible different frequency response characteristics can work to achieve certain required harmonic filtering targets. With these ideas in mind, the objective of this paper is to determine what size single tuned passive filters work in distribution networks best, in order to economically limit violations caused at a given point of common coupling (PCC). This article suggests that a single tuned passive filter could be employed in typical industrial power systems. Furthermore, constrained optimization can be used to find the optimal sizing of the passive filter in order to reduce both harmonic voltage and harmonic currents in the power system to an acceptable level, and, thus, improve the load power factor. The optimization technique works to minimize voltage total harmonic distortions (VTHD) and current total harmonic distortions (ITHD), where maintaining a given power factor at a specified range is desired. According to the IEEE Standard 519, both indices are viewed as constraints for the optimal passive filter design problem. The performance of this technique will be discussed using numerical examples taken from previous publications.

Keywords: Harmonics, passive filter, power factor, power quality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2134
3834 Study of Shaft Voltage on Short Circuit Alternator with Static Frequency Converter

Authors: Arun Kumar Datta, Manisha Dubey, Shailendra Jain

Abstract:

Electric machines are driven nowadays by static system popularly known as soft starter. This paper describes a thyristor based static frequency converter (SFC) to run a large synchronous machine installed at a short circuit test laboratory. Normally a synchronous machine requires prime mover or some other driving mechanism to run. This machine doesn’t need a prime mover as it operates in dual mode. In the beginning SFC starts this machine as a motor to achieve the full speed. Thereafter whenever required it can be converted to generator mode. This paper begins with the various starting methodology of synchronous machine. Detailed of SFC with different operational modes have been analyzed. Shaft voltage is a very common phenomenon for the machines with static drives. Various causes of shaft voltages in perspective with this machine are the main attraction of this paper.

Keywords: Capacitive coupling, electric discharge machining, inductive coupling, Shaft voltage, static frequency converter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3220
3833 Role of Ionic Solutions Affect Water Treeing Propagation in XLPE Insulation for High Voltage Cable

Authors: T. Boonraksa, B. Marungsri

Abstract:

This paper presents the experimental results on role of ionic solutions affect water treeing propagation in cross-linked polyethylene insulation for high voltage cable. To study the water treeing expansion due to the ionic solutions, discs of 4mm thickness and 4cm diameter were taken from 115 kV XLPE insulation cable and were used as test specimen in this study. Ionic solutions composed of CuSO4, FeSO4, Na2SO4 and K2SO4 were used. Each specimen was immersed in 0.1 mole ionic solutions and was tested for 120 hrs. under a voltage stress at 7 kV AC rms, 1000 Hz. The results show that Na2SO4 and CuSO4solutions play an important role in the expansion of water treeing and cause degradation of the crosslinked polyethylene (XLPE) in the presence of the applied electric field.

Keywords: Ionic Solutions, Water Treeing, Water treeing Expansion, Cross-linked Polyethylene (XLPE).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2834