Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1060

Search results for: vector variance.

1060 Distribution Sampling of Vector Variance without Duplications

Authors: Erna T. Herdiani, Maman A. Djauhari

Abstract:

In recent years, the use of vector variance as a measure of multivariate variability has received much attention in wide range of statistics. This paper deals with a more economic measure of multivariate variability, defined as vector variance minus all duplication elements. For high dimensional data, this will increase the computational efficiency almost 50 % compared to the original vector variance. Its sampling distribution will be investigated to make its applications possible.

Keywords: Asymptotic distribution, covariance matrix, likelihood ratio test, vector variance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1355
1059 Standard Deviation of Mean and Variance of Rows and Columns of Images for CBIR

Authors: H. B. Kekre, Kavita Patil

Abstract:

This paper describes a novel and effective approach to content-based image retrieval (CBIR) that represents each image in the database by a vector of feature values called “Standard deviation of mean vectors of color distribution of rows and columns of images for CBIR". In many areas of commerce, government, academia, and hospitals, large collections of digital images are being created. This paper describes the approach that uses contents as feature vector for retrieval of similar images. There are several classes of features that are used to specify queries: colour, texture, shape, spatial layout. Colour features are often easily obtained directly from the pixel intensities. In this paper feature extraction is done for the texture descriptor that is 'variance' and 'Variance of Variances'. First standard deviation of each row and column mean is calculated for R, G, and B planes. These six values are obtained for one image which acts as a feature vector. Secondly we calculate variance of the row and column of R, G and B planes of an image. Then six standard deviations of these variance sequences are calculated to form a feature vector of dimension six. We applied our approach to a database of 300 BMP images. We have determined the capability of automatic indexing by analyzing image content: color and texture as features and by applying a similarity measure Euclidean distance.

Keywords: Standard deviation Image retrieval, color distribution, Variance, Variance of Variance, Euclidean distance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3540
1058 Kernel’s Parameter Selection for Support Vector Domain Description

Authors: Mohamed EL Boujnouni, Mohamed Jedra, Noureddine Zahid

Abstract:

Support Vector Domain Description (SVDD) is one of the best-known one-class support vector learning methods, in which one tries the strategy of using balls defined on the feature space in order to distinguish a set of normal data from all other possible abnormal objects. As all kernel-based learning algorithms its performance depends heavily on the proper choice of the kernel parameter. This paper proposes a new approach to select kernel's parameter based on maximizing the distance between both gravity centers of normal and abnormal classes, and at the same time minimizing the variance within each class. The performance of the proposed algorithm is evaluated on several benchmarks. The experimental results demonstrate the feasibility and the effectiveness of the presented method.

Keywords: Gravity centers, Kernel’s parameter, Support Vector Domain Description, Variance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1654
1057 Efficient Antenna Array Beamforming with Robustness against Random Steering Mismatch

Authors: Ju-Hong Lee, Ching-Wei Liao, Kun-Che Lee

Abstract:

This paper deals with the problem of using antenna sensors for adaptive beamforming in the presence of random steering mismatch. We present an efficient adaptive array beamformer with robustness to deal with the considered problem. The robustness of the proposed beamformer comes from the efficient designation of the steering vector. Using the received array data vector, we construct an appropriate correlation matrix associated with the received array data vector and a correlation matrix associated with signal sources. Then, the eigenvector associated with the largest eigenvalue of the constructed signal correlation matrix is designated as an appropriate estimate of the steering vector. Finally, the adaptive weight vector required for adaptive beamforming is obtained by using the estimated steering vector and the constructed correlation matrix of the array data vector. Simulation results confirm the effectiveness of the proposed method.

Keywords: Adaptive beamforming, antenna array, linearly constrained minimum variance, robustness, steering vector.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 477
1056 Detecting the Nonlinearity in Time Series from Continuous Dynamic Systems Based on Delay Vector Variance Method

Authors: Shumin Hou, Yourong Li, Sanxing Zhao

Abstract:

Much time series data is generally from continuous dynamic system. Firstly, this paper studies the detection of the nonlinearity of time series from continuous dynamics systems by applying the Phase-randomized surrogate algorithm. Then, the Delay Vector Variance (DVV) method is introduced into nonlinearity test. The results show that under the different sampling conditions, the opposite detection of nonlinearity is obtained via using traditional test statistics methods, which include the third-order autocovariance and the asymmetry due to time reversal. Whereas the DVV method can perform well on determining nonlinear of Lorenz signal. It indicates that the proposed method can describe the continuous dynamics signal effectively.

Keywords: Nonlinearity, Time series, continuous dynamics system, DVV method

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1417
1055 A Robust Controller for Output Variance Reduction and Minimum Variance with Application on a Permanent Field DC-Motor

Authors: Mahmood M. Al-Imam, M. Mustafa

Abstract:

In this paper, we present an experimental testing for a new algorithm that determines an optimal controller-s coefficients for output variance reduction related to Linear Time Invariant (LTI) Systems. The algorithm features simplicity in calculation, generalization to minimal and non-minimal phase systems, and could be configured to achieve reference tracking as well as variance reduction after compromising with the output variance. An experiment of DCmotor velocity control demonstrates the application of this new algorithm in designing the controller. The results show that the controller achieves minimum variance and reference tracking for a preset velocity reference relying on an identified model of the motor.

Keywords: Output variance, minimum variance, overparameterization, DC-Motor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1191
1054 The Robust Clustering with Reduction Dimension

Authors: Dyah E. Herwindiati

Abstract:

A clustering is process to identify a homogeneous groups of object called as cluster. Clustering is one interesting topic on data mining. A group or class behaves similarly characteristics. This paper discusses a robust clustering process for data images with two reduction dimension approaches; i.e. the two dimensional principal component analysis (2DPCA) and principal component analysis (PCA). A standard approach to overcome this problem is dimension reduction, which transforms a high-dimensional data into a lower-dimensional space with limited loss of information. One of the most common forms of dimensionality reduction is the principal components analysis (PCA). The 2DPCA is often called a variant of principal component (PCA), the image matrices were directly treated as 2D matrices; they do not need to be transformed into a vector so that the covariance matrix of image can be constructed directly using the original image matrices. The decomposed classical covariance matrix is very sensitive to outlying observations. The objective of paper is to compare the performance of robust minimizing vector variance (MVV) in the two dimensional projection PCA (2DPCA) and the PCA for clustering on an arbitrary data image when outliers are hiden in the data set. The simulation aspects of robustness and the illustration of clustering images are discussed in the end of paper

Keywords: Breakdown point, Consistency, 2DPCA, PCA, Outlier, Vector Variance

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1519
1053 Texture Feature-Based Language Identification Using Wavelet-Domain BDIP and BVLC Features and FFT Feature

Authors: Ick Hoon Jang, Hoon Jae Lee, Dae Hoon Kwon, Ui Young Pak

Abstract:

In this paper, we propose a texture feature-based language identification using wavelet-domain BDIP (block difference of inverse probabilities) and BVLC (block variance of local correlation coefficients) features and FFT (fast Fourier transform) feature. In the proposed method, wavelet subbands are first obtained by wavelet transform from a test image and denoised by Donoho-s soft-thresholding. BDIP and BVLC operators are next applied to the wavelet subbands. FFT blocks are also obtained by 2D (twodimensional) FFT from the blocks into which the test image is partitioned. Some significant FFT coefficients in each block are selected and magnitude operator is applied to them. Moments for each subband of BDIP and BVLC and for each magnitude of significant FFT coefficients are then computed and fused into a feature vector. In classification, a stabilized Bayesian classifier, which adopts variance thresholding, searches the training feature vector most similar to the test feature vector. Experimental results show that the proposed method with the three operations yields excellent language identification even with rather low feature dimension.

Keywords: BDIP, BVLC, FFT, language identification, texture feature, wavelet transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1961
1052 Multi Switched Split Vector Quantizer

Authors: M. Satya Sai Ram, P. Siddaiah, M. Madhavi Latha

Abstract:

Vector quantization is a powerful tool for speech coding applications. This paper deals with LPC Coding of speech signals which uses a new technique called Multi Switched Split Vector Quantization, This is a hybrid of two product code vector quantization techniques namely the Multi stage vector quantization technique, and Switched split vector quantization technique,. Multi Switched Split Vector Quantization technique quantizes the linear predictive coefficients in terms of line spectral frequencies. From results it is proved that Multi Switched Split Vector Quantization provides better trade off between bitrate and spectral distortion performance, computational complexity and memory requirements when compared to Switched Split Vector Quantization, Multi stage vector quantization, and Split Vector Quantization techniques. By employing the switching technique at each stage of the vector quantizer the spectral distortion, computational complexity and memory requirements were greatly reduced. Spectral distortion was measured in dB, Computational complexity was measured in floating point operations (flops), and memory requirements was measured in (floats).

Keywords: Unconstrained vector quantization, Linear predictiveCoding, Split vector quantization, Multi stage vector quantization, Switched Split vector quantization, Line Spectral Frequencies.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1530
1051 Efficient Frontier - Comparing Different Volatility Estimators

Authors: Tea Poklepović, Zdravka Aljinović, Mario Matković

Abstract:

Modern Portfolio Theory (MPT) according to Markowitz states that investors form mean-variance efficient portfolios which maximizes their utility. Markowitz proposed the standard deviation as a simple measure for portfolio risk and the lower semi-variance as the only risk measure of interest to rational investors. This paper uses a third volatility estimator based on intraday data and compares three efficient frontiers on the Croatian Stock Market. The results show that range-based volatility estimator outperforms both mean-variance and lower semi-variance model.

Keywords: Variance, lower semi-variance, range-based volatility.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2364
1050 Octonionic Reformulation of Vector Analysis

Authors: Bhupendra C. S. Chauhan, P. S. Bisht, O. P. S. Negi

Abstract:

According to celebrated Hurwitz theorem, there exists four division algebras consisting of R (real numbers), C (complex numbers), H (quaternions) and O (octonions). Keeping in view the utility of octonion variable we have tried to extend the three dimensional vector analysis to seven dimensional one. Starting with the scalar and vector product in seven dimensions, we have redefined the gradient, divergence and curl in seven dimension. It is shown that the identity n(n - 1)(n - 3)(n - 7) = 0 is satisfied only for 0, 1, 3 and 7 dimensional vectors. We have tried to write all the vector inequalities and formulas in terms of seven dimensions and it is shown that same formulas loose their meaning in seven dimensions due to non-associativity of octonions. The vector formulas are retained only if we put certain restrictions on octonions and split octonions.

Keywords: Octonions, Vector Space and seven dimensions

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1008
1049 Position Vector of a Partially Null Curve Derived from a Vector Differential Equation

Authors: Süha Yılmaz, Emin Özyılmaz, Melih Turgut, Şuur Nizamoğlu

Abstract:

In this paper, position vector of a partially null unit speed curve with respect to standard frame of Minkowski space-time is studied. First, it is proven that position vector of every partially null unit speed curve satisfies a vector differential equation of fourth order. In terms of solution of the differential equation, position vector of a partially null unit speed curve is expressed.

Keywords: Frenet Equations, Partially Null Curves, Minkowski Space-time, Vector Differential Equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 983
1048 Support Vector Fuzzy Based Neural Networks For Exchange Rate Modeling

Authors: Prof. Chokri SLIM

Abstract:

A Novel fuzzy neural network combining with support vector learning mechanism called support-vector-based fuzzy neural networks (SVBFNN) is proposed. The SVBFNN combine the capability of minimizing the empirical risk (training error) and expected risk (testing error) of support vector learning in high dimensional data spaces and the efficient human-like reasoning of FNN.

Keywords: Neural network, fuzzy inference, machine learning, fuzzy modeling and rule extraction, support vector regression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16394
1047 Necessary and Sufficient Condition for the Quaternion Vector Measure

Authors: Mei Li, Fahui Zhai

Abstract:

In this paper, the definitions of the quaternion measure and the quaternion vector measure are introduced. The relation between the quaternion measure and the complex vector measure as well as the relation between the quaternion linear functional and the complex linear functional are discussed respectively. By using these relations, the necessary and sufficient condition to determine the quaternion vector measure is given.

Keywords: Quaternion, Quaternion measure, Quaternion vector measure, Quaternion Banach space, Quaternion linear functional.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 676
1046 On the Determination of a Time-like Dual Curve in Dual Lorentzian Space

Authors: Emin Özyılmaz

Abstract:

In this work, position vector of a time-like dual curve according to standard frame of D31 is investigated. First, it is proven that position vector of a time-like dual curve satisfies a dual vector differential equation of fourth order. The general solution of this dual vector differential equation has not yet been found. Due to this, in terms of special solutions, position vectors of some special time-like dual curves with respect to standard frame of D31 are presented.

Keywords: Classical Differential Geometry, Dual Numbers, DualFrenet Equations, Time-like Dual Curve, Position Vector, DualLorentzian Space.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1293
1045 Multi Switched Split Vector Quantization of Narrowband Speech Signals

Authors: M. Satya Sai Ram, P. Siddaiah, M. Madhavi Latha

Abstract:

Vector quantization is a powerful tool for speech coding applications. This paper deals with LPC Coding of speech signals which uses a new technique called Multi Switched Split Vector Quantization (MSSVQ), which is a hybrid of Multi, switched, split vector quantization techniques. The spectral distortion performance, computational complexity, and memory requirements of MSSVQ are compared to split vector quantization (SVQ), multi stage vector quantization(MSVQ) and switched split vector quantization (SSVQ) techniques. It has been proved from results that MSSVQ has better spectral distortion performance, lower computational complexity and lower memory requirements when compared to all the above mentioned product code vector quantization techniques. Computational complexity is measured in floating point operations (flops), and memory requirements is measured in (floats).

Keywords: Linear predictive Coding, Multi stage vectorquantization, Switched Split vector quantization, Split vectorquantization, Line Spectral Frequencies (LSF).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1465
1044 Image Compression Using Hybrid Vector Quantization

Authors: S.Esakkirajan, T. Veerakumar, V. Senthil Murugan, P.Navaneethan

Abstract:

In this paper, image compression using hybrid vector quantization scheme such as Multistage Vector Quantization (MSVQ) and Pyramid Vector Quantization (PVQ) are introduced. A combined MSVQ and PVQ are utilized to take advantages provided by both of them. In the wavelet decomposition of the image, most of the information often resides in the lowest frequency subband. MSVQ is applied to significant low frequency coefficients. PVQ is utilized to quantize the coefficients of other high frequency subbands. The wavelet coefficients are derived using lifting scheme. The main aim of the proposed scheme is to achieve high compression ratio without much compromise in the image quality. The results are compared with the existing image compression scheme using MSVQ.

Keywords: Lifting Scheme, Multistage Vector Quantization and Pyramid Vector Quantization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1757
1043 Parallel Vector Processing Using Multi Level Orbital DATA

Authors: Nagi Mekhiel

Abstract:

Many applications use vector operations by applying single instruction to multiple data that map to different locations in conventional memory. Transferring data from memory is limited by access latency and bandwidth affecting the performance gain of vector processing. We present a memory system that makes all of its content available to processors in time so that processors need not to access the memory, we force each location to be available to all processors at a specific time. The data move in different orbits to become available to other processors in higher orbits at different time. We use this memory to apply parallel vector operations to data streams at first orbit level. Data processed in the first level move to upper orbit one data element at a time, allowing a processor in that orbit to apply another vector operation to deal with serial code limitations inherited in all parallel applications and interleaved it with lower level vector operations.

Keywords: Memory organization, parallel processors, serial code, vector processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 676
1042 Face Detection using Variance based Haar-Like feature and SVM

Authors: Cuong Nguyen Khac, Ju H. Park, Ho-Youl Jung

Abstract:

This paper proposes a new approach to perform the problem of real-time face detection. The proposed method combines primitive Haar-Like feature and variance value to construct a new feature, so-called Variance based Haar-Like feature. Face in image can be represented with a small quantity of features using this new feature. We used SVM instead of AdaBoost for training and classification. We made a database containing 5,000 face samples and 10,000 non-face samples extracted from real images for learning purposed. The 5,000 face samples contain many images which have many differences of light conditions. And experiments showed that face detection system using Variance based Haar-Like feature and SVM can be much more efficient than face detection system using primitive Haar-Like feature and AdaBoost. We tested our method on two Face databases and one Non-Face database. We have obtained 96.17% of correct detection rate on YaleB face database, which is higher 4.21% than that of using primitive Haar-Like feature and AdaBoost.

Keywords: AdaBoost, Haar-Like feature, SVM, variance, Variance based Haar-Like feature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3515
1041 Determinants of the U.S. Current Account

Authors: Shuh Liang

Abstract:

This article provides empirical evidence on the effect of domestic and international factors on the U.S. current account deficit. Linear dynamic regression and vector autoregression models are employed to estimate the relationships during the period from 1986 to 2011. The findings of this study suggest that the current and lagged private saving rate and foreign current account for East Asian economies have played a vital role in affecting the U.S. current account. Additionally, using Granger causality tests and variance decompositions, the change of the productivity growth and foreign domestic demand are determined to influence significantly the change of the U.S. current account. To summarize, the empirical relationship between the U.S. current account deficit and its determinants is sensitive to alternative regression models and specifications.

Keywords: Current account deficit, productivity growth, foreign demand, vector autoregression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1567
1040 Wafer Fab Operational Cost Monitoring and Controlling with Cost per Equivalent Wafer Out

Authors: Ian Kree, Davina Chin Lee Yien

Abstract:

This paper presents Cost per Equivalent Wafer Out, which we find useful in wafer fab operational cost monitoring and controlling. It removes the loading and product mix effect in the cost variance analysis. The operation heads, therefore, could immediately focus on identifying areas for cost improvement. Without this, they would have to measure the impact of the loading variance and product mix variance between actual and budgeted prior to make any decision on cost improvement. Cost per Equivalent Wafer Out, thereby, increases efficiency in wafer fab operational cost monitoring and controlling.

Keywords: Cost Control, Cost Variance, Operational Expenditure, Semiconductor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2179
1039 The Relationship of Private Savings and Economic Growth: Case of Croatia

Authors: Irena Palić

Abstract:

The main objective of the research in this paper is to empirically assess the causal relationship of private savings and economic growth in the Republic of Croatia. Households’ savings are approximated by household deposits in banks, while domestic income is approximated by industrial production volume indices. Vector Autoregression model and Granger causality tests are used to in order to analyse the relationship among private savings and economic growth. Since ADF unit root tests have shown that both mentioned series are non stationary at levels, series are first differenced in order to become stationary. Therefore, VAR model is estimated with percentage change in private savings and percentage change in domestic income, which can be interpreted as economic growth in case of positive percentage change in domestic income. The Granger causality test has shown that there is no causal relationship among private savings and economic growth in Croatia. The impulse response functions have shown that the impact of shock in domestic income on private savings change is stronger than the impact of private saving on growth. Variance decompositions show that both economic growth and private saving change explain the largest part of its own forecast variance. The research has shown that the link between private savings economic and growth in Croatia is weak, what is in line with relevant empirical research in small open economies.

Keywords: Economic growth, Granger causality, innovation analysis, private savings, Vector Autoregression model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1282
1038 A Formulation of the Latent Class Vector Model for Pairwise Data

Authors: Tomoya Okubo, Kuninori Nakamura, Shin-ichi Mayekawa

Abstract:

In this research, a latent class vector model for pairwise data is formulated. As compared to the basic vector model, this model yields consistent estimates of the parameters since the number of parameters to be estimated does not increase with the number of subjects. The result of the analysis reveals that the model was stable and could classify each subject to the latent classes representing the typical scales used by these subjects.

Keywords: finite mixture models, latent class analysis, Thrustone's paired comparison method, vector model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1031
1037 3D Model Retrieval based on Normal Vector Interpolation Method

Authors: Ami Kim, Oubong Gwun, Juwhan Song

Abstract:

In this paper, we proposed the distribution of mesh normal vector direction as a feature descriptor of a 3D model. A normal vector shows the entire shape of a model well. The distribution of normal vectors was sampled in proportion to each polygon's area so that the information on the surface with less surface area may be less reflected on composing a feature descriptor in order to enhance retrieval performance. At the analysis result of ANMRR, the enhancement of approx. 12.4%~34.7% compared to the existing method has also been indicated.

Keywords: Interpolated Normal Vector, Feature Descriptor, 3DModel Retrieval.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1278
1036 Reducing Test Vectors Count Using Fault Based Optimization Schemes in VLSI Testing

Authors: Vinod Kumar Khera, R. K. Sharma, A. K. Gupta

Abstract:

Power dissipation increases exponentially during test mode as compared to normal operation of the circuit. In extreme cases, test power is more than twice the power consumed during normal operation mode. Test vector generation scheme is key component in deciding the power hungriness of a circuit during testing. Test vector count and consequent leakage current are functions of test vector generation scheme. Fault based test vector count optimization has been presented in this work. It helps in reducing test vector count and the leakage current. In the presented scheme, test vectors have been reduced by extracting essential child vectors. The scheme has been tested experimentally using stuck at fault models and results ensure the reduction in test vector count.

Keywords: Low power VLSI testing, independent fault, essential faults, test vector reduction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1013
1035 0.13-µm Complementary Metal-Oxide Semiconductor Vector Modulator for Beamforming System

Authors: J. S. Kim

Abstract:

This paper presents a 0.13-µm Complementary Metal-Oxide Semiconductor (CMOS) vector modulator for beamforming system. The vector modulator features a 360° phase and gain range of -10 dB to 10 dB with a root mean square phase and amplitude error of only 2.2° and 0.45 dB, respectively. These features make it a suitable for wireless backhaul system in the 5 GHz industrial, scientific, and medical (ISM) bands. It draws a current of 20.4 mA from a 1.2 V supply. The total chip size is 1.87x1.34 mm².

Keywords: CMOS, vector modulator, beamforming, wireless backhaul, ISM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 687
1034 Vector Control Using Series Iron Loss Model of Induction, Motors and Power Loss Minimization

Authors: Kheldoun Aissa, Khodja Djalal Eddine

Abstract:

The iron loss is a source of detuning in vector controlled induction motor drives if the classical rotor vector controller is used for decoupling. In fact, the field orientation will not be satisfied and the output torque will not truck the reference torque mostly used by Loss Model Controllers (LMCs). In addition, this component of loss, among others, may be excessive if the vector controlled induction motor is driving light loads. In this paper, the series iron loss model is used to develop a vector controller immune to iron loss effect and then an LMC to minimize the total power loss using the torque generated by the speed controller.

Keywords: Field Oriented Controller, Induction Motor, Loss ModelController, Series Iron Loss.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2501
1033 Simplified Space Vector Based Decoupled Switching Strategy for Indirect Vector Controlled Open-End Winding Induction Motor Drive

Authors: Syed Munvar Ali, V. Vijaya Kumar Reddy, M. Surya Kalavathi

Abstract:

In this paper, a dual inverter configuration has been implemented for induction motor drive. This isolated dual inverter is capable to produce high quality of output voltage and minimize common mode voltage (CMV). To this isolated dual inverter a decoupled space vector based pulse width modulation (PWM) technique is proposed. Conventional space vector based PWM (SVPWM) techniques require reference voltage vector calculation and sector identification. The proposed decoupled SVPWM technique generates gating pulses from instantaneous phase voltages and gives a CMV of ±vdc/6. To evaluate proposed algorithm MATLAB based simulation studies are carried on indirect vector controlled open end winding induction motor drive.

Keywords: Inverter configuration, decoupled SVPWM, common mode voltage, vector control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 505
1032 Voltage Problem Location Classification Using Performance of Least Squares Support Vector Machine LS-SVM and Learning Vector Quantization LVQ

Authors: Khaled Abduesslam. M, Mohammed Ali, Basher H Alsdai, Muhammad Nizam, Inayati

Abstract:

This paper presents the voltage problem location classification using performance of Least Squares Support Vector Machine (LS-SVM) and Learning Vector Quantization (LVQ) in electrical power system for proper voltage problem location implemented by IEEE 39 bus New- England. The data was collected from the time domain simulation by using Power System Analysis Toolbox (PSAT). Outputs from simulation data such as voltage, phase angle, real power and reactive power were taken as input to estimate voltage stability at particular buses based on Power Transfer Stability Index (PTSI).The simulation data was carried out on the IEEE 39 bus test system by considering load bus increased on the system. To verify of the proposed LS-SVM its performance was compared to Learning Vector Quantization (LVQ). The results showed that LS-SVM is faster and better as compared to LVQ. The results also demonstrated that the LS-SVM was estimated by 0% misclassification whereas LVQ had 7.69% misclassification.

Keywords: IEEE 39 bus, Least Squares Support Vector Machine, Learning Vector Quantization, Voltage Collapse.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2217
1031 Optimal Control Strategies for Speed Control of Permanent-Magnet Synchronous Motor Drives

Authors: Roozbeh Molavi, Davood A. Khaburi

Abstract:

The permanent magnet synchronous motor (PMSM) is very useful in many applications. Vector control of PMSM is popular kind of its control. In this paper, at first an optimal vector control for PMSM is designed and then results are compared with conventional vector control. Then, it is assumed that the measurements are noisy and linear quadratic Gaussian (LQG) methodology is used to filter the noises. The results of noisy optimal vector control and filtered optimal vector control are compared to each other. Nonlinearity of PMSM and existence of inverter in its control circuit caused that the system is nonlinear and time-variant. With deriving average model, the system is changed to nonlinear time-invariant and then the nonlinear system is converted to linear system by linearization of model around average values. This model is used to optimize vector control then two optimal vector controls are compared to each other. Simulation results show that the performance and robustness to noise of the control system has been highly improved.

Keywords: Kalman filter, Linear quadratic Gaussian (LQG), Linear quadratic regulator (LQR), Permanent-Magnet synchronousmotor (PMSM).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2827