
 

 

  
Abstract—In recent years, the use of vector variance as a 

measure of multivariate variability has received much attention in 
wide range of statistics. This paper deals with a more economic 
measure of multivariate variability, defined as vector variance minus 
all duplication elements. For high dimensional data, this will increase 
the computational efficiency almost 50 % compared to the original 
vector variance. Its sampling distribution will be investigated to make 
its applications possible. 

 
Keywords—Asymptotic distribution, covariance matrix, 

likelihood ratio test, vector variance.  

I. INTRODUCTION 

YPOTHESIS testing about the stability of covariance 
structure is one of the fundamental issues in multivariate 

analysis. It is usually realized based on likelihood ratio test 
(LRT). See, for example, [2], [12], [18], [20], and [21] for the 
details of simultaneous test and [1], [7], [19], and the 
references therein for repeated test. Its wide range of 
applications can be easily found in literature. To mention 
some, see [3] for an early development; or [29] and [18] for its 
application in Manova; or [1] , [35], [31], [36], [19], [15], [7], 
and [32], and the references there in, for historical background 
and its development in manufacturing industry; or [26] and [2]  
in biological research.  

Under Normality, LRT means that one has to use 
covariance determinant (CD) as the measure of multivariate 
variability. This implies that LRT can only be used when the 
number of variables p is limited. In practice, It is not rare that 
the number of variables p is large. See, for example, [34],  
[26], and [4], for the discussion when the sample size n > p 
and [17] and [15]-[16] for the case n < p. This is a serious 
problem because, when p is large, the computation of CD is 
quite cumbersome and tedious. Its computational complexity 
is of order . Due to that limitation of CD, very recently, 
in [13] we propose to use vector variance (VV) as an 
alternative measure of multivariate variability. It is derived 
from the notion of vector covariance presented and used in [5], 
and originally introduced by [11] to measure the linear 
relationship between two random vectors. Although our 
approach in [13] is more heuristics than analytical, VV was 
successfully used as the stopping rule in fast minimum 
covariance determinant (FMCD) algorithm proposed by [25]. 
It reduces significantly the computational complexity of data 
concentration step. See [22], [23], [24], and [14] for in depth 
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presentation and discussion on MCD. A more comprehensive 
and analytical discussion on VV is presented in our recent 
paper [8]. In that paper, we show analytical the properties of 
VV  and its advantage relative to CD. Most recently, [9], we 
show the advantage of VV in monitoring multivariate process 
variability. 

Let Σ be the covariance matrix of the population under 
study. We assume that it is definite positive. Vector variance 
is the trace of the squared covariance matrix, i.e. 

Σ . It is the sum of square of all elements of Σ. The fact 
that Σ is symmetric, it is no need to involve all elements of 
Σ. The element of its upper (lower) triangular matrix are 
sufficient. This is what we want to discuss in this present 
paper. The rest of the paper is organized as follows. In section 
II, the problem formulation will be presented. Later on, in 
section III, we discuss the asymptotic distributional properties 
of modified vector variance (MVV), i.e. VV without all 
duplicated elements. Our approach will be based on the 
notions of vec operator and commutation matrix. 

II.  PROBLEM FORMULATION  
Let X is a random vector with mean vector   and definite 

positive covariance matrix ∑. Consider X as the superposition 
of two random vectors and of dimensions p and q, 
respectively, 

 
       .                                (1) 

 
If 

         ;                                   (2) 
 

 1, 2  and 
 
                   ∑ ;              (3) 

 
,   1, 2.  Then ∑  can be written in form of partitioned 

matrix 

         Σ Σ
Σ Σ                                 (4) 

 
[5] uses  Σ Σ   to measure the linear relationship 
between the two random vectors and   . He calls this 
parameter vector covariance. It is the sum of square of all 
diagonal elements of   Σ Σ . Thus  Σ  and Σ are 
called vector variance (VV) of and  respectively. In a 
special case, where p = q = 1, vector covariance is the square 
of the classical covariance. 

According to the above point of view, thus, VV of X is 
simply  Σ , i.e., the sum of square of all elements of  Σ. 
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But, by using the vec operator, see [20] and [27], it can also be 
represented as  Σ . The vec operator transforms Σ into 
the vector Σ  of  dimension by stacking its column one 
after another. We see that if VV,  Σ   , is a quadratic 
form, covariance determinant (CD),  |Σ|, is a multilinear form. 
Thus, the computational complexity of VV is of order  

  whereas that of CD, as mentioned previously, is of 
order   . This advantage of VV is very promising 
especially when we work with multivariate data of high 
dimension. However, as Σ is symmetric, there are      
elements of Σ  which are doubly counted in  Σ . This 
is the first problem that we want to discuss in this present 
paper. More specifically, instead of using the vec operator, we 
propose to use further operator which will transform the lower 
triangular part ΣL  of Σ into the vector Σ of dimension 

 by stacking its column one after another. From now on 
we call the paramete       vector variance without 
duplication or simply modified vector variance (MVV). It is 
clear that MVV is more economic than VV. The second 
problem is to investigate the distributional properties of 
sample MVV. This will guide us to a more economic 
hypothesis testing about the stability of covariance structure 
mentioned in section I. 

The solution for the first problem is given by teorema 1.5. 
in [27]. Let   be a vector dimension    defined as 

follows. The 1 -th component is equal to 
1 and 0 otherwise; i = 1, 2, …, p and j = 1, 2, …, i. Let also 

 be a matrix of size  its , th element is equal to 
1 and 0 otherwise. If we define 

 

           
;    

;                                (5) 

 
Then Theorem 1.5 in [27] gives us the following result. 
 

          ∑ . Σ Σ                  (6) 
 

Furthermore, if we denote 
 

                 ∑                          (7)                            
 
then  
  

        Σ Σ .                            (8) 
 

Consequently, if     is the generalized 
inverse of  we have the following transformation 
 

                 Σ Σ                             (9) 
 
This transformation is also valid for all symmetric matrices. 

III. DISTRIBUTIONAL PROPERTIES OF SAMPLE VECTOR 
VARIANCE WITHOUT DUPLICATION  

Let , , … , be a sample random of size n drawn from a 
p-variate normal distribution , ∑ . Its sample mean vector 
and sample covariance matrix are, respectively, 

 
∑   and ∑         (10) 

 
Sample VV is defined as . Accordingly sample 

MVV is . To investigate the asymptotic distribution 
of sample MVV, our approach here is based on the notions of 
vec operator and commutation matrix can be found, for 
example, in [20], [27], [28], and [10]. The vec operator 
simplifies the study of random matrix by means of random 
vector and commutation matrix simplifies the investigation of 
parameters. First, we recall the following result given in [27], 
about the asymptotic distribution of and its covariance 
matrix which is represented by using commutation matrix K. 
See also [30] for the notation of convergence in distribution. 

 
   √ 1 ∑ 0, Γ                 (11) 

 
where  

                        Γ ∑⊗∑ ,                          (12) 
 

                          ∑ ∑ ⊗                       (13) 
 
and  Is defined in the previous section, i.e., a matrix of size 
(pxp) where its (i,j)-th element is equal to 1 and 0 otherwise. 
From this result, if the transformation (1)  is used on S, by 
using the result in [20]  we have 
 

√ 1 ∑  0, Λ                  (14) 
 
where , 
 

 and  

Λ . Γ.  
 

Further, based on corollary 3.2. and Proposition 3.3. in [28], 
if we define   arrive at the following 
proposition about the asymptotic distribution of sample MVV. 

 
Proposition 1  
√ 1 ∑  0,                (15) 
 
where 4 ∑ Γ ∑  
 
This proposition is seemingly complicated to be used in 

application because the variance of sample MVV, 
,involves multiplication of large size matrix Γ 
 , size even for moderate value of p. However, the 

following proposition helps us to simplify the computation of 
that variance. The proof is only a matter of algebraic 
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manipulation using the properties of vec operator and 
commutation matrix. 

 
Proposition 2 
 
Let Ω be a matrix of size (p x p) such that 
 

             Ω ∑                     (16) 
 
then  

                   8 Ω ∑                           (17) 
 
Proof 

 
Since  Γ ∑⊗∑ , then  can be written in the 

form 
 

4 ∑ ∑⊗∑ ∑      (18) 
 

8 ∑ ∑⊗∑ ∑                  (19) 
 

where  
 

                                                                   (20) 
 

But, 
 

                              ∑⊗∑  ∑⊗∑ .                     (21) 
 

Hence, 
 

8 ∑ ∑⊗∑ ∑                 (22) 
 

Finally, since   and   is symmetric, we get 
 

8 ∑ ∑⊗∑ ∑                (23) 
 

8 Ω ∑⊗∑  Ω                                    (24) 
 

Because 
 

                   ∑ ∑                    (25) 
 

                     8 Ω ∑                              (26) 
 

IV. CONCLUSION  

If vector variance  is of dimension ,  is of 
dimension  p(p + 1)/ 2. This gain is too good to be 
neglected. Furthermore, Proposition 1 and 2 have made 
possible the application of modified vector variance,   
where  simply eight is times the sum of square of all 
elements of  ΩΣ.  
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