Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4

Search results for: Classical Differential Geometry

4 A Method to Calculate Frenet Apparatus of W-Curves in the Euclidean 6-Space

Authors: Süha Yılmaz, Melih Turgut

Abstract:

These In this work, a regular unit speed curve in six dimensional Euclidean space, whose Frenet curvatures are constant, is considered. Thereafter, a method to calculate Frenet apparatus of this curve is presented.

Keywords: Classical Differential Geometry, Euclidean 6-space, Frenet Apparatus of the curves

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 934
3 On the Determination of a Time-like Dual Curve in Dual Lorentzian Space

Authors: Emin Özyılmaz

Abstract:

In this work, position vector of a time-like dual curve according to standard frame of D31 is investigated. First, it is proven that position vector of a time-like dual curve satisfies a dual vector differential equation of fourth order. The general solution of this dual vector differential equation has not yet been found. Due to this, in terms of special solutions, position vectors of some special time-like dual curves with respect to standard frame of D31 are presented.

Keywords: Classical Differential Geometry, Dual Numbers, DualFrenet Equations, Time-like Dual Curve, Position Vector, DualLorentzian Space

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1085
2 A Method to Calculate Frenet Apparatus of the Curves in Euclidean-5 Space

Authors: Süha Yılmaz, Melih Turgut

Abstract:

In this paper, a method to calculate Frenet Apparatus of the curves in five dimensional Euclidean space is presented.

Keywords: Classical Differential Geometry, Frenet Apparatus, Euclidean-5 space

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1379
1 Some Characterizations of Isotropic Curves In the Euclidean Space

Authors: Süha Yılmaz, Melih Turgut

Abstract:

The curves, of which the square of the distance between the two points equal to zero, are called minimal or isotropic curves [4]. In this work, first, necessary and sufficient conditions to be a Pseudo Helix, which is a special case of such curves, are presented. Thereafter, it is proven that an isotropic curve-s position vector and pseudo curvature satisfy a vector differential equation of fourth order. Additionally, In view of solution of mentioned equation, position vector of pseudo helices is obtained.

Keywords: Classical Differential Geometry, Euclidean space, Minimal Curves, Isotropic Curves, Pseudo Helix

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1496