Search results for: two dimensional model
8114 Hierarchies Based On the Number of Cooperating Systems of Finite Automata on Four-Dimensional Input Tapes
Authors: Makoto Sakamoto, Yasuo Uchida, Makoto Nagatomo, Takao Ito, Tsunehiro Yoshinaga, Satoshi Ikeda, Masahiro Yokomichi, Hiroshi Furutani
Abstract:
In theoretical computer science, the Turing machine has played a number of important roles in understanding and exploiting basic concepts and mechanisms in computing and information processing [20]. It is a simple mathematical model of computers [9]. After that, M.Blum and C.Hewitt first proposed two-dimensional automata as a computational model of two-dimensional pattern processing, and investigated their pattern recognition abilities in 1967 [7]. Since then, a lot of researchers in this field have been investigating many properties about automata on a two- or three-dimensional tape. On the other hand, the question of whether processing fourdimensional digital patterns is much more difficult than two- or threedimensional ones is of great interest from the theoretical and practical standpoints. Thus, the study of four-dimensional automata as a computasional model of four-dimensional pattern processing has been meaningful [8]-[19],[21]. This paper introduces a cooperating system of four-dimensional finite automata as one model of four-dimensional automata. A cooperating system of four-dimensional finite automata consists of a finite number of four-dimensional finite automata and a four-dimensional input tape where these finite automata work independently (in parallel). Those finite automata whose input heads scan the same cell of the input tape can communicate with each other, that is, every finite automaton is allowed to know the internal states of other finite automata on the same cell it is scanning at the moment. In this paper, we mainly investigate some accepting powers of a cooperating system of eight- or seven-way four-dimensional finite automata. The seven-way four-dimensional finite automaton is an eight-way four-dimensional finite automaton whose input head can move east, west, south, north, up, down, or in the fu-ture, but not in the past on a four-dimensional input tape.
Keywords: computational complexity, cooperating system, finite automaton, four-dimension, hierarchy, multihead.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18888113 Unsupervised Segmentation by Hidden Markov Chain with Bi-dimensional Observed Process
Authors: Abdelali Joumad, Abdelaziz Nasroallah
Abstract:
In unsupervised segmentation context, we propose a bi-dimensional hidden Markov chain model (X,Y) that we adapt to the image segmentation problem. The bi-dimensional observed process Y = (Y 1, Y 2) is such that Y 1 represents the noisy image and Y 2 represents a noisy supplementary information on the image, for example a noisy proportion of pixels of the same type in a neighborhood of the current pixel. The proposed model can be seen as a competitive alternative to the Hilbert-Peano scan. We propose a bayesian algorithm to estimate parameters of the considered model. The performance of this algorithm is globally favorable, compared to the bi-dimensional EM algorithm through numerical and visual data.
Keywords: Image segmentation, Hidden Markov chain with a bi-dimensional observed process, Peano-Hilbert scan, Bayesian approach, MCMC methods, Bi-dimensional EM algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16128112 Generalization of SGIP Surface Tension Force Model in Three-Dimensional Flows and Compare to Other Models in Interfacial Flows
Authors: Afshin Ahmadi Nadooshan, Ebrahim Shirani
Abstract:
In this paper, the two-dimensional stagger grid interface pressure (SGIP) model has been generalized and presented into three-dimensional form. For this purpose, various models of surface tension force for interfacial flows have been investigated and compared with each other. The VOF method has been used for tracking the interface. To show the ability of the SGIP model for three-dimensional flows in comparison with other models, pressure contours, maximum spurious velocities, norm spurious flow velocities and pressure jump error for motionless drop of liquid and bubble of gas are calculated using different models. It has been pointed out that SGIP model in comparison with the CSF, CSS and PCIL models produces the least maximum and norm spurious velocities. Additionally, the new model produces more accurate results in calculating the pressure jumps across the interface for motionless drop of liquid and bubble of gas which is generated in surface tension force. Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14118111 Control-Oriented Enhanced Zero-Dimensional Two-Zone Combustion Modelling of Internal Combustion Engines
Authors: Razieh Arian, Hadi Adibi-Asl
Abstract:
This paper investigates an efficient combustion modeling for cycle simulation of internal combustion engine (ICE) studies. The term “efficient model” means that the models must generate desired simulation results while having fast simulation time. In other words, the efficient model is defined based on the application of the model. The objective of this study is to develop math-based models for control applications or shortly control-oriented models. This study compares different modeling approaches used to model the ICEs such as mean-value models, zero dimensional, quasi-dimensional, and multi-dimensional models for control applications. Mean-value models have been widely used for model-based control applications, but recently by developing advanced simulation tools (e.g. Maple/MapleSim) the higher order models (more complex) could be considered as control-oriented models. This paper presents the enhanced zero-dimensional cycle-by-cycle modeling and simulation of a spark ignition engine with a two-zone combustion model. The simulation results are cross-validated against the simulation results from GT-Power package and show a good agreement in terms of trends and values.Keywords: Two-zone combustion, control-oriented model, wiebe function, internal combustion engine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10958110 Predictability Analysis on HIV/AIDS System using Hurst Exponents
Authors: K. Kamalanand, P. Mannar Jawahar
Abstract:
Methods of contemporary mathematical physics such as chaos theory are useful for analyzing and understanding the behavior of complex biological and physiological systems. The three dimensional model of HIV/AIDS is the basis of active research since it provides a complete characterization of disease dynamics and the interaction of HIV-1 with the immune system. In this work, the behavior of the HIV system is analyzed using the three dimensional HIV model and a chaotic measure known as the Hurst exponent. Results demonstrate that Hurst exponents of CD4, CD8 cells and viral load vary nonlinearly with respect to variations in system parameters. Further, it was observed that the three dimensional HIV model can accommodate both persistent (H>0.5) and anti-persistent (H<0.5) dynamics of HIV states. In this paper, the objectives of the study, methodology and significant observations are presented in detail.Keywords: HIV/AIDS, mathematical model, chaos theory, Hurst exponent
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17438109 k-Neighborhood Template A-Type Three-Dimensional Bounded Cellular Acceptor
Authors: Makoto Nagatomo, Yasuo Uchida, Makoto Sakamoto, Tuo Zhang, Tatsuma Kurogi, Takao Ito, Tsunehiro Yoshinaga, Satoshi Ikeda, Masahiro Yokomichi, Hiroshi Furutani
Abstract:
This paper presents a four-dimensional computational model, k-neighborhood template A-type three-dimensional bounded cellular acceptor (abbreviated as A-3BCA(k)), and discusses the hierarchical properties. An A-3BCA(k) is a four-dimensional automaton which consists of a pair of a converter and a configuration-reader. The former converts the given four-dimensional tape to the three- and two- dimensional configuration and the latter determines the acceptance or nonacceptance of given four-dimensional tape whether or not the derived two-dimensional configuration is accepted. We mainly investigate the difference of the accepting power based on the difference of the configuration-reader. It is shown that the difference of the accepting power of the configuration-reader tends to affect directly that of the A-3BCA(k) for the case when the converter is deterministic. On the other hand, results are not analogous for the nondeterministic case.Keywords: Cellular acceptor, configuration-reader, converter, finite automaton, four-dimension, on-line tessellation acceptor, parallel/sequential array acceptor, turing machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15108108 Reliable One-Dimensional Model of Two-Dimensional Insulated Oval Duct Considering Heat Radiation
Authors: King-Leung Wong, Wen-Lih Chen, Yu-feng Chang
Abstract:
The reliable results of an insulated oval duct considering heat radiation are obtained basing on accurate oval perimeter obtained by integral method as well as one-dimensional Plane Wedge Thermal Resistance (PWTR) model. This is an extension study of former paper of insulated oval duct neglecting heat radiation. It is found that in the practical situations with long-short-axes ratio a/b <= 5/1, heat transfer rate errors are within 1.2 % by comparing with accurate two-dimensional numerical solutions for most practical dimensionless insulated thickness (t/R2 <= 0.5). On the contrary, neglecting the heat radiation effect is likely to produce very big heat transfer rate errors of non-insulated (E>43% at t/R2=0) and thin-insulated (E>4.5% while t/R2<= 0.1) oval ducts in situations of ambient air with lower external convection heat coefficients and larger surface emissivity.Keywords: Heat convection, heat radiation, oval duct, PWTR model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15958107 Three-Dimensional Generalized Thermoelasticity with Variable Thermal Conductivity
Authors: Hamdy M. Youssef, Mowffaq Oreijah, Hunaydi S. Alsharif
Abstract:
In this paper, a three-dimensional model of the generalized thermoelasticity with one relaxation time and variable thermal conductivity has been constructed. The resulting non-dimensional governing equations together with the Laplace and double Fourier transforms techniques have been applied to a three-dimensional half-space subjected to thermal loading with rectangular pulse and traction free in the directions of the principle co-ordinates. The inverses of double Fourier transforms, and Laplace transforms have been obtained numerically. Numerical results for the temperature increment, the invariant stress, the invariant strain, and the displacement are represented graphically. The variability of the thermal conductivity has significant effects on the thermal and the mechanical waves.
Keywords: Thermoelasticity, three-dimensional, Laplace transforms, Fourier transforms, thermal conductivity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7498106 Estimation of Structural Parameters in Time Domain Using One Dimensional Piezo Zirconium Titanium Patch Model
Authors: N. Jinesh, K. Shankar
Abstract:
This article presents a method of using the one dimensional piezo-electric patch on beam model for structural identification. A hybrid element constituted of one dimensional beam element and a PZT sensor is used with reduced material properties. This model is convenient and simple for identification of beams. Accuracy of this element is first verified against a corresponding 3D finite element model (FEM). The structural identification is carried out as an inverse problem whereby parameters are identified by minimizing the deviation between the predicted and measured voltage response of the patch, when subjected to excitation. A non-classical optimization algorithm Particle Swarm Optimization is used to minimize this objective function. The signals are polluted with 5% Gaussian noise to simulate experimental noise. The proposed method is applied on beam structure and identified parameters are stiffness and damping. The model is also validated experimentally.
Keywords: Structural identification, PZT patches, inverse problem, particle swarm optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9318105 An Investigation of a Three-Dimensional Constitutive Model of Gas Diffusion Layers in Polymer Electrolyte Membrane Fuel Cells
Authors: Yanqin Chen, Chao Jiang, Chongdu Cho
Abstract:
This research presents the three-dimensional mechanical characteristics of a commercial gas diffusion layer by experiment and simulation results. Although the mechanical performance of gas diffusion layers has attracted much attention, its reliability and accuracy are still a major challenge. With the help of simulation analysis methods, it is beneficial to the gas diffusion layer’s extensive commercial development and the overall stress analysis of proton electrolyte membrane fuel cells during its pre-production design period. Therefore, in this paper, a three-dimensional constitutive model of a commercial gas diffusion layer, including its material stiffness matrix parameters, is developed and coded, in the user-defined material model of a commercial finite element method software for simulation. Then, the model is validated by comparing experimental results as well as simulation outcomes. As a result, both the experimental data and simulation results show a good agreement with each other, with high accuracy.
Keywords: Gas diffusion layer, proton electrolyte membrane fuel cell, stiffness matrix, three-dimensional mechanical characteristics, user-defined material model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9488104 Thermal Analysis of Toroidal Transformers Using Finite Element Method
Authors: Adrian T.
Abstract:
In this paper a three dimensional thermal model of a power toroidal transformer is proposed for both steady-state or transient conditions. The influence of electric current and ambient temperature on the temperature distribution, has been investigated. To validate the three dimensional thermal model, some experimental tests have been done. There is a good correlation between experimental and simulation results.Keywords: Temperature distribution, thermal analysis, toroidal transformer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35788103 Three Dimensional Dynamic Analysis of Water Storage Tanks Considering FSI Using FEM
Authors: S. Mahdi S. Kolbadi, Ramezan Ali Alvand, Afrasiab Mirzaei
Abstract:
In this study, to investigate and analyze the seismic behavior of concrete in open rectangular water storage tanks in two-dimensional and three-dimensional spaces, the Finite Element Method has been used. Through this method, dynamic responses can be investigated together in fluid storages system. Soil behavior has been simulated using tanks boundary conditions in linear form. In this research, in addition to flexibility of wall, the effects of fluid-structure interaction on seismic response of tanks have been investigated to account for the effects of flexible foundation in linear boundary conditions form, and a dynamic response of rectangular tanks in two-dimensional and three-dimensional spaces using finite element method has been provided. The boundary conditions of both rigid and flexible walls in two-dimensional finite element method have been considered to investigate the effect of wall flexibility on seismic response of fluid and storage system. Furthermore, three-dimensional model of fluid-structure interaction issue together with wall flexibility has been analyzed under the three components of earthquake. The obtained results show that two-dimensional model is also accurately near to the results of three-dimension as well as flexibility of foundation leads to absorb received energy and relative reduction of responses.
Keywords: Dynamic behavior, water storage tank, fluid-structure interaction, flexible wall.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9808102 High-Fidelity 1D Dynamic Model of a Hydraulic Servo Valve Using 3D Computational Fluid Dynamics and Electromagnetic Finite Element Analysis
Authors: D. Henninger, A. Zopey, T. Ihde, C. Mehring
Abstract:
The dynamic performance of a 4-way solenoid operated hydraulic spool valve has been analyzed by means of a one-dimensional modeling approach capturing flow, magnetic and fluid forces, valve inertia forces, fluid compressibility, and damping. Increased model accuracy was achieved by analyzing the detailed three-dimensional electromagnetic behavior of the solenoids and flow behavior through the spool valve body for a set of relevant operating conditions, thereby allowing the accurate mapping of flow and magnetic forces on the moving valve body, in lieu of representing the respective forces by lower-order models or by means of simplistic textbook correlations. The resulting high-fidelity one-dimensional model provided the basis for specific and timely design modification eliminating experimentally observed valve oscillations.Keywords: Dynamic performance model, high-fidelity model, 1D-3D decoupled analysis, solenoid-operated hydraulic servo valve, CFD and electromagnetic FEA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11528101 Zero Dimensional Simulation of Combustion Process of a DI Diesel Engine Fuelled With Biofuels
Authors: Donepudi Jagadish, Ravi Kumar Puli, K. Madhu Murthy
Abstract:
A zero dimensional model has been used to investigate the combustion performance of a single cylinder direct injection diesel engine fueled by biofuels with options like supercharging and exhaust gas recirculation. The numerical simulation was performed at constant speed. The indicated pressure, temperature diagrams are plotted and compared for different fuels. The emissions of soot and nitrous oxide are computed with phenomenological models. The experimental work was also carried out with biodiesel (palm stearin methyl ester) diesel blends, ethanol diesel blends to validate simulation results with experimental results, and observed that the present model is successful in predicting the engine performance with biofuels.Keywords: Biofuels Zero Dimensional Modeling, EnginePerformance, Engine Emissions
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 42488100 Mathematical Modeling of Storm Surge in Three Dimensional Primitive Equations
Authors: Worachat Wannawong, Usa W. HumphriesPrungchan Wongwises, Suphat Vongvisessomjai
Abstract:
The mathematical modeling of storm surge in sea and coastal regions such as the South China Sea (SCS) and the Gulf of Thailand (GoT) are important to study the typhoon characteristics. The storm surge causes an inundation at a lateral boundary exhibiting in the coastal zones particularly in the GoT and some part of the SCS. The model simulations in the three dimensional primitive equations with a high resolution model are important to protect local properties and human life from the typhoon surges. In the present study, the mathematical modeling is used to simulate the typhoon–induced surges in three case studies of Typhoon Linda 1997. The results of model simulations at the tide gauge stations can describe the characteristics of storm surges at the coastal zones.Keywords: lateral boundary, mathematical modeling, numericalsimulations, three dimensional primitive equations, storm surge.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34368099 Dimensional Modeling of HIV Data Using Open Source
Authors: Charles D. Otine, Samuel B. Kucel, Lena Trojer
Abstract:
Selecting the data modeling technique for an information system is determined by the objective of the resultant data model. Dimensional modeling is the preferred modeling technique for data destined for data warehouses and data mining, presenting data models that ease analysis and queries which are in contrast with entity relationship modeling. The establishment of data warehouses as components of information system landscapes in many organizations has subsequently led to the development of dimensional modeling. This has been significantly more developed and reported for the commercial database management systems as compared to the open sources thereby making it less affordable for those in resource constrained settings. This paper presents dimensional modeling of HIV patient information using open source modeling tools. It aims to take advantage of the fact that the most affected regions by the HIV virus are also heavily resource constrained (sub-Saharan Africa) whereas having large quantities of HIV data. Two HIV data source systems were studied to identify appropriate dimensions and facts these were then modeled using two open source dimensional modeling tools. Use of open source would reduce the software costs for dimensional modeling and in turn make data warehousing and data mining more feasible even for those in resource constrained settings but with data available.Keywords: About Database, Data Mining, Data warehouse, Dimensional Modeling, Open Source.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19588098 Numerical Analysis on Rapid Decompression in Conventional Dry Gases using One- Dimensional Mathematical Modeling
Authors: Evgeniy Burlutskiy
Abstract:
The paper presents a one-dimensional transient mathematical model of compressible thermal multi-component gas mixture flows in pipes. The set of the mass, momentum and enthalpy conservation equations for gas phase is solved. Thermo-physical properties of multi-component gas mixture are calculated by solving the Equation of State (EOS) model. The Soave-Redlich-Kwong (SRK-EOS) model is chosen. Gas mixture viscosity is calculated on the basis of the Lee-Gonzales-Eakin (LGE) correlation. Numerical analysis on rapid decompression in conventional dry gases is performed by using the proposed mathematical model. The model is validated on measured values of the decompression wave speed in dry natural gas mixtures. All predictions show excellent agreement with the experimental data at high and low pressure. The presented model predicts the decompression in dry natural gas mixtures much better than GASDECOM and OLGA codes, which are the most frequently-used codes in oil and gas pipeline transport service.Keywords: Mathematical model, Rapid Gas Decompression
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30078097 Numerical Simulation of a Three-Dimensional Framework under the Action of Two-Dimensional Moving Loads
Authors: Jia-Jang Wu
Abstract:
The objective of this research is to develop a general technique so that one may predict the dynamic behaviour of a three-dimensional scale crane model subjected to time-dependent moving point forces by means of conventional finite element computer packages. To this end, the whole scale crane model is divided into two parts: the stationary framework and the moving substructure. In such a case, the dynamic responses of a scale crane model can be predicted from the forced vibration responses of the stationary framework due to actions of the four time-dependent moving point forces induced by the moving substructure. Since the magnitudes and positions of the moving point forces are dependent on the relative positions between the trolley, moving substructure and the stationary framework, it can be found from the numerical results that the time histories for the moving speeds of the moving substructure and the trolley are the key factors affecting the dynamic responses of the scale crane model.Keywords: Moving load, moving substructure, dynamic responses, forced vibration responses.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14078096 Preparation of Computer Model of the Aircraft for Numerical Aeroelasticity Tests – Flutter
Authors: M. Rychlik, R. Roszak, M. Morzynski, M. Nowak, H. Hausa, K. Kotecki
Abstract:
Article presents the geometry and structure reconstruction procedure of the aircraft model for flatter research (based on the I22-IRYDA aircraft). For reconstruction the Reverse Engineering techniques and advanced surface modeling CAD tools are used. Authors discuss all stages of data acquisition process, computation and analysis of measured data. For acquisition the three dimensional structured light scanner was used. In the further sections, details of reconstruction process are present. Geometry reconstruction procedure transform measured input data (points cloud) into the three dimensional parametric computer model (NURBS solid model) which is compatible with CAD systems. Parallel to the geometry of the aircraft, the internal structure (structural model) are extracted and modeled. In last chapter the evaluation of obtained models are discussed.Keywords: computer modeling, numerical simulation, Reverse Engineering, structural model
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17588095 Application of Multi-Dimensional Principal Component Analysis to Medical Data
Authors: Naoki Yamamoto, Jun Murakami, Chiharu Okuma, Yutaro Shigeto, Satoko Saito, Takashi Izumi, Nozomi Hayashida
Abstract:
Multi-dimensional principal component analysis (PCA) is the extension of the PCA, which is used widely as the dimensionality reduction technique in multivariate data analysis, to handle multi-dimensional data. To calculate the PCA the singular value decomposition (SVD) is commonly employed by the reason of its numerical stability. The multi-dimensional PCA can be calculated by using the higher-order SVD (HOSVD), which is proposed by Lathauwer et al., similarly with the case of ordinary PCA. In this paper, we apply the multi-dimensional PCA to the multi-dimensional medical data including the functional independence measure (FIM) score, and describe the results of experimental analysis.Keywords: multi-dimensional principal component analysis, higher-order SVD (HOSVD), functional independence measure (FIM), medical data, tensor decomposition
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25028094 A Survey on Facial Feature Points Detection Techniques and Approaches
Authors: Rachid Ahdid, Khaddouj Taifi, Said Safi, Bouzid Manaut
Abstract:
Automatic detection of facial feature points plays an important role in applications such as facial feature tracking, human-machine interaction and face recognition. The majority of facial feature points detection methods using two-dimensional or three-dimensional data are covered in existing survey papers. In this article chosen approaches to the facial features detection have been gathered and described. This overview focuses on the class of researches exploiting facial feature points detection to represent facial surface for two-dimensional or three-dimensional face. In the conclusion, we discusses advantages and disadvantages of the presented algorithms.Keywords: Facial feature points, face recognition, facial feature tracking, two-dimensional data, three-dimensional data.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16818093 Prediction of Nonlinear Torsional Behavior of High Strength RC Beams
Authors: Woo-Young Jung, Minho Kwon
Abstract:
Seismic design criteria based on performance of structures have recently been adopted by practicing engineers in response to destructive earthquakes. A simple but efficient structural-analysis tool capable of predicting both the strength and ductility is needed to analyze reinforced concrete (RC) structures under such event. A three-dimensional lattice model is developed in this study to analyze torsions in high-strength RC members. Optimization techniques for determining optimal variables in each lattice model are introduced. Pure torsion tests of RC members are performed to validate the proposed model. Correlation studies between the numerical and experimental results confirm that the proposed model is well capable of representing salient features of the experimental results.
Keywords: Torsion, non-linear analysis, three-dimensional lattice, high-strength concrete.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22758092 A Self-Consistent Scheme for Elastic-Plastic Asperity Contact
Authors: Xu Jianguo
Abstract:
In this paper, a generalized self-consistent scheme, or “three phase model", is used to set up a micro-mechanics model for rough surface contact with randomly distributed asperities. The dimensionless average real pressure p is obtained as function of the ratio of the real contact area to the apparent contact area, 0 A / A r . Both elastic and plastic materials are considered, and the influence of the plasticity of material on p is discussed. Both two-dimensional and three-dimensional rough surface contact problems are considered.
Keywords: Contact mechanics, plastic deformation, self-consistent scheme.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17558091 Normalizing Flow to Augmented Posterior: Conditional Density Estimation with Interpretable Dimension Reduction for High Dimensional Data
Authors: Cheng Zeng, George Michailidis, Hitoshi Iyatomi, Leo L Duan
Abstract:
The conditional density characterizes the distribution of a response variable y given other predictor x, and plays a key role in many statistical tasks, including classification and outlier detection. Although there has been abundant work on the problem of Conditional Density Estimation (CDE) for a low-dimensional response in the presence of a high-dimensional predictor, little work has been done for a high-dimensional response such as images. The promising performance of normalizing flow (NF) neural networks in unconditional density estimation acts a motivating starting point. In this work, we extend NF neural networks when external x is present. Specifically, they use the NF to parameterize a one-to-one transform between a high-dimensional y and a latent z that comprises two components [zP , zN]. The zP component is a low-dimensional subvector obtained from the posterior distribution of an elementary predictive model for x, such as logistic/linear regression. The zN component is a high-dimensional independent Gaussian vector, which explains the variations in y not or less related to x. Unlike existing CDE methods, the proposed approach, coined Augmented Posterior CDE (AP-CDE), only requires a simple modification on the common normalizing flow framework, while significantly improving the interpretation of the latent component, since zP represents a supervised dimension reduction. In image analytics applications, AP-CDE shows good separation of x-related variations due to factors such as lighting condition and subject id, from the other random variations. Further, the experiments show that an unconditional NF neural network, based on an unsupervised model of z, such as Gaussian mixture, fails to generate interpretable results.
Keywords: Conditional density estimation, image generation, normalizing flow, supervised dimension reduction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1658090 Thermal Analysis of the Current Path from Circuit Breakers Using Finite Element Method
Authors: Adrian T. Plesca
Abstract:
This paper describes a three-dimensional thermal model of the current path included in the low voltage power circuit breakers. The model can be used to analyse the thermal behaviour of the current path during both steady-state and transient conditions. The current path lengthwise temperature distribution and timecurrent characteristic of the terminal connections of the power circuit breaker have been obtained. The influence of the electric current and voltage drop on main electric contact of the circuit breaker has been investigated. To validate the three-dimensional thermal model, some experimental tests have been done. There is a good correlation between experimental and simulation results.Keywords: Current path, power circuit breakers, temperature distribution, thermal analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26968089 A Novel Algorithm for Parsing IFC Models
Authors: Raninder Kaur Dhillon, Mayur Jethwa, Hardeep Singh Rai
Abstract:
Information technology has made a pivotal progress across disparate disciplines, one of which is AEC (Architecture, Engineering and Construction) industry. CAD is a form of computer-aided building modulation that architects, engineers and contractors use to create and view two- and three-dimensional models. The AEC industry also uses building information modeling (BIM), a newer computerized modeling system that can create four-dimensional models; this software can greatly increase productivity in the AEC industry. BIM models generate open source IFC (Industry Foundation Classes) files which aim for interoperability for exchanging information throughout the project lifecycle among various disciplines. The methods developed in previous studies require either an IFC schema or MVD and software applications, such as an IFC model server or a Building Information Modeling (BIM) authoring tool, to extract a partial or complete IFC instance model. This paper proposes an efficient algorithm for extracting a partial and total model from an Industry Foundation Classes (IFC) instance model without an IFC schema or a complete IFC model view definition (MVD).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27048088 Extend Three-wave Method for the (3+1)-Dimensional Soliton Equation
Authors: Somayeh Arbabi Mohammad-Abadi, Maliheh Najafi
Abstract:
In this paper, we study (3+1)-dimensional Soliton equation. We employ the Hirota-s bilinear method to obtain the bilinear form of (3+1)-dimensional Soliton equation. Then by the idea of extended three-wave method, some exact soliton solutions including breather type solutions are presented.
Keywords: Three-wave method, (3+1)-dimensional Soliton equation, Hirota's bilinear form.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15598087 Generalization of Clustering Coefficient on Lattice Networks Applied to Criminal Networks
Authors: Christian H. Sanabria-Montaña, Rodrigo Huerta-Quintanilla
Abstract:
A lattice network is a special type of network in which all nodes have the same number of links, and its boundary conditions are periodic. The most basic lattice network is the ring, a one-dimensional network with periodic border conditions. In contrast, the Cartesian product of d rings forms a d-dimensional lattice network. An analytical expression currently exists for the clustering coefficient in this type of network, but the theoretical value is valid only up to certain connectivity value; in other words, the analytical expression is incomplete. Here we obtain analytically the clustering coefficient expression in d-dimensional lattice networks for any link density. Our analytical results show that the clustering coefficient for a lattice network with density of links that tend to 1, leads to the value of the clustering coefficient of a fully connected network. We developed a model on criminology in which the generalized clustering coefficient expression is applied. The model states that delinquents learn the know-how of crime business by sharing knowledge, directly or indirectly, with their friends of the gang. This generalization shed light on the network properties, which is important to develop new models in different fields where network structure plays an important role in the system dynamic, such as criminology, evolutionary game theory, econophysics, among others.Keywords: Clustering coefficient, criminology, generalized, regular network d-dimensional.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16368086 Estimation of Attenuation and Phase Delay in Driving Voltage Waveform of an Ultra-High-Speed Image Sensor by Dimensional Analysis
Authors: V. T. S. Dao, T. G. Etoh, C. Vo Le, H. D. Nguyen, K. Takehara, T. Akino, K. Nishi
Abstract:
We present an explicit expression to estimate driving voltage attenuation through RC networks representation of an ultrahigh- speed image sensor. Elmore delay metric for a fundamental RC chain is employed as the first-order approximation. By application of dimensional analysis to SPICE simulation data, we found a simple expression that significantly improves the accuracy of the approximation. Estimation error of the resultant expression for uniform RC networks is less than 2%. Similarly, another simple closed-form model to estimate 50 % delay through fundamental RC networks is also derived with sufficient accuracy. The framework of this analysis can be extended to address delay or attenuation issues of other VLSI structures.
Keywords: Dimensional Analysis, Elmore model, RC network, Signal Attenuation, Ultra-High-Speed Image Sensor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14238085 A Comparative Study on the Dimensional Error of 3D CAD Model and SLS RP Model for Reconstruction of Cranial Defect
Authors: L. Siva Rama Krishna, Sriram Venkatesh, M. Sastish Kumar, M. Uma Maheswara Chary
Abstract:
Rapid Prototyping (RP) is a technology that produces models and prototype parts from 3D CAD model data, CT/MRI scan data, and model data created from 3D object digitizing systems. There are several RP process like Stereolithography (SLA), Solid Ground Curing (SGC), Selective Laser Sintering (SLS), Fused Deposition Modeling (FDM), 3D Printing (3DP) among them SLS and FDM RP processes are used to fabricate pattern of custom cranial implant. RP technology is useful in engineering and biomedical application. This is helpful in engineering for product design, tooling and manufacture etc. RP biomedical applications are design and development of medical devices, instruments, prosthetics and implantation; it is also helpful in planning complex surgical operation. The traditional approach limits the full appreciation of various bony structure movements and therefore the custom implants produced are difficult to measure the anatomy of parts and analyze the changes in facial appearances accurately. Cranioplasty surgery is a surgical correction of a defect in cranial bone by implanting a metal or plastic replacement to restore the missing part. This paper aims to do a comparative study on the dimensional error of CAD and SLS RP Models for reconstruction of cranial defect by comparing the virtual CAD with the physical RP model of a cranial defect.
Keywords: Rapid Prototyping, Selective Laser Sintering, Cranial defect, Dimensional Error.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3362