Search results for: tensor decomposition
356 An Improved Algorithm for Calculation of the Third-order Orthogonal Tensor Product Expansion by Using Singular Value Decomposition
Authors: Chiharu Okuma, Naoki Yamamoto, Jun Murakami
Abstract:
As a method of expanding a higher-order tensor data to tensor products of vectors we have proposed the Third-order Orthogonal Tensor Product Expansion (3OTPE) that did similar expansion as Higher-Order Singular Value Decomposition (HOSVD). In this paper we provide a computation algorithm to improve our previous method, in which SVD is applied to the matrix that constituted by the contraction of original tensor data and one of the expansion vector obtained. The residual of the improved method is smaller than the previous method, truncating the expanding tensor products to the same number of terms. Moreover, the residual is smaller than HOSVD when applying to color image data. It is able to be confirmed that the computing time of improved method is the same as the previous method and considerably better than HOSVD.
Keywords: Singular value decomposition (SVD), higher-orderSVD (HOSVD), outer product expansion, power method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1681355 Blind Identification and Equalization of CDMA Signals Using the Levenvberg-Marquardt Algorithm
Authors: Mohammed Boutalline, Imad Badi, Belaid Bouikhalene, Said Safi
Abstract:
In this paper we describe the Levenvberg-Marquardt (LM) algorithm for identification and equalization of CDMA signals received by an antenna array in communication channels. The synthesis explains the digital separation and equalization of signals after propagation through multipath generating intersymbol interference (ISI). Exploiting discrete data transmitted and three diversities induced at the reception, the problem can be composed by the Block Component Decomposition (BCD) of a tensor of order 3 which is a new tensor decomposition generalizing the PARAFAC decomposition. We optimize the BCD decomposition by Levenvberg-Marquardt method gives encouraging results compared to classical alternating least squares algorithm (ALS). In the equalization part, we use the Minimum Mean Square Error (MMSE) to perform the presented method. The simulation results using the LM algorithm are important.
Keywords: Identification and equalization, communication channel, Levenvberg-Marquardt, tensor decomposition
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1813354 Green Function and Eshelby Tensor Based on Mindlin’s 2nd Gradient Model: An Explicit Study of Spherical Inclusion Case
Authors: A. Selmi, A. Bisharat
Abstract:
Using Fourier transform and based on the Mindlin's 2nd gradient model that involves two length scale parameters, the Green's function, the Eshelby tensor, and the Eshelby-like tensor for a spherical inclusion are derived. It is proved that the Eshelby tensor consists of two parts; the classical Eshelby tensor and a gradient part including the length scale parameters which enable the interpretation of the size effect. When the strain gradient is not taken into account, the obtained Green's function and Eshelby tensor reduce to its analogue based on the classical elasticity. The Eshelby tensor in and outside the inclusion, the volume average of the gradient part and the Eshelby-like tensor are explicitly obtained. Unlike the classical Eshelby tensor, the results show that the components of the new Eshelby tensor vary with the position and the inclusion dimensions. It is demonstrated that the contribution of the gradient part should not be neglected.
Keywords: Eshelby tensor, Eshelby-like tensor, Green’s function, Mindlin’s 2nd gradient model, Spherical inclusion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 714353 Decomposition of Graphs into Induced Paths and Cycles
Authors: I. Sahul Hamid, Abraham V. M.
Abstract:
A decomposition of a graph G is a collection ψ of subgraphs H1,H2, . . . , Hr of G such that every edge of G belongs to exactly one Hi. If each Hi is either an induced path or an induced cycle in G, then ψ is called an induced path decomposition of G. The minimum cardinality of an induced path decomposition of G is called the induced path decomposition number of G and is denoted by πi(G). In this paper we initiate a study of this parameter.
Keywords: Path decomposition, Induced path decomposition, Induced path decomposition number.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2364352 Comparison between Higher-Order SVD and Third-order Orthogonal Tensor Product Expansion
Authors: Chiharu Okuma, Jun Murakami, Naoki Yamamoto
Abstract:
In digital signal processing it is important to approximate multi-dimensional data by the method called rank reduction, in which we reduce the rank of multi-dimensional data from higher to lower. For 2-dimennsional data, singular value decomposition (SVD) is one of the most known rank reduction techniques. Additional, outer product expansion expanded from SVD was proposed and implemented for multi-dimensional data, which has been widely applied to image processing and pattern recognition. However, the multi-dimensional outer product expansion has behavior of great computation complex and has not orthogonally between the expansion terms. Therefore we have proposed an alterative method, Third-order Orthogonal Tensor Product Expansion short for 3-OTPE. 3-OTPE uses the power method instead of nonlinear optimization method for decreasing at computing time. At the same time the group of B. D. Lathauwer proposed Higher-Order SVD (HOSVD) that is also developed with SVD extensions for multi-dimensional data. 3-OTPE and HOSVD are similarly on the rank reduction of multi-dimensional data. Using these two methods we can obtain computation results respectively, some ones are the same while some ones are slight different. In this paper, we compare 3-OTPE to HOSVD in accuracy of calculation and computing time of resolution, and clarify the difference between these two methods.Keywords: Singular value decomposition (SVD), higher-order SVD (HOSVD), higher-order tensor, outer product expansion, power method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1552351 Induced Acyclic Path Decomposition in Graphs
Authors: Abraham V. M., I. Sahul Hamid
Abstract:
A decomposition of a graph G is a collection ψ of graphs H1,H2, . . . , Hr of G such that every edge of G belongs to exactly one Hi. If each Hi is either an induced path in G, then ψ is called an induced acyclic path decomposition of G and if each Hi is a (induced) cycle in G then ψ is called a (induced) cycle decomposition of G. The minimum cardinality of an induced acyclic path decomposition of G is called the induced acyclic path decomposition number of G and is denoted by ¤Çia(G). Similarly the cyclic decomposition number ¤Çc(G) is defined. In this paper we begin an investigation of these parameters.Keywords: Cycle decomposition, Induced acyclic path decomposition, Induced acyclic path decomposition number.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1560350 Non Approximately Inner Tensor Product of C*—Algebras
Authors: Rasoul Abazari
Abstract:
In this paper, we show that C*-tensor product of an arbitrary C*-algebra A, (not unital necessary) and C*-algebra B without ground state, have no approximately inner strongly continuous one-parameter group of *-automorphisms.
Keywords: One–parameter group, C*– tensor product, Approximately inner, Ground state.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1165349 On CR-Structure and F-Structure Satisfying Polynomial Equation
Authors: Manisha Kankarej
Abstract:
The purpose of this paper is to show a relation between CR structure and F-structure satisfying polynomial equation. In this paper, we have checked the significance of CR structure and F-structure on Integrability conditions and Nijenhuis tensor. It was proved that all the properties of Integrability conditions and Nijenhuis tensor are satisfied by CR structures and F-structure satisfying polynomial equation.Keywords: CR-submainfolds, CR-structure, Integrability condition & Nijenhuis tensor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 782348 Application of Multi-Dimensional Principal Component Analysis to Medical Data
Authors: Naoki Yamamoto, Jun Murakami, Chiharu Okuma, Yutaro Shigeto, Satoko Saito, Takashi Izumi, Nozomi Hayashida
Abstract:
Multi-dimensional principal component analysis (PCA) is the extension of the PCA, which is used widely as the dimensionality reduction technique in multivariate data analysis, to handle multi-dimensional data. To calculate the PCA the singular value decomposition (SVD) is commonly employed by the reason of its numerical stability. The multi-dimensional PCA can be calculated by using the higher-order SVD (HOSVD), which is proposed by Lathauwer et al., similarly with the case of ordinary PCA. In this paper, we apply the multi-dimensional PCA to the multi-dimensional medical data including the functional independence measure (FIM) score, and describe the results of experimental analysis.Keywords: multi-dimensional principal component analysis, higher-order SVD (HOSVD), functional independence measure (FIM), medical data, tensor decomposition
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2488347 Blind Channel Estimation Based on URV Decomposition Technique for Uplink of MC-CDMA
Authors: Pradya Pornnimitkul, Suwich Kunaruttanapruk, Bamrung Tau Sieskul, Somchai Jitapunkul
Abstract:
In this paper, we investigate a blind channel estimation method for Multi-carrier CDMA systems that use a subspace decomposition technique. This technique exploits the orthogonality property between the noise subspace and the received user codes to obtain channel of each user. In the past we used Singular Value Decomposition (SVD) technique but SVD have most computational complexity so in this paper use a new algorithm called URV Decomposition, which serve as an intermediary between the QR decomposition and SVD, replaced in SVD technique to track the noise space of the received data. Because of the URV decomposition has almost the same estimation performance as the SVD, but has less computational complexity.
Keywords: Channel estimation, MC-CDMA, SVD, URV.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1771346 Generalized Morphological 3D Shape Decomposition Grayscale Interframe Interpolation Method
Authors: Dragos Nicolae VIZIREANU
Abstract:
One of the main image representations in Mathematical Morphology is the 3D Shape Decomposition Representation, useful for Image Compression and Representation,and Pattern Recognition. The 3D Morphological Shape Decomposition representation can be generalized a number of times,to extend the scope of its algebraic characteristics as much as possible. With these generalizations, the Morphological Shape Decomposition 's role to serve as an efficient image decomposition tool is extended to grayscale images.This work follows the above line, and further develops it. Anew evolutionary branch is added to the 3D Morphological Shape Decomposition's development, by the introduction of a 3D Multi Structuring Element Morphological Shape Decomposition, which permits 3D Morphological Shape Decomposition of 3D binary images (grayscale images) into "multiparameter" families of elements. At the beginning, 3D Morphological Shape Decomposition representations are based only on "1 parameter" families of elements for image decomposition.This paper addresses the gray scale inter frame interpolation by means of mathematical morphology. The new interframe interpolation method is based on generalized morphological 3D Shape Decomposition. This article will present the theoretical background of the morphological interframe interpolation, deduce the new representation and show some application examples.Computer simulations could illustrate results.
Keywords: 3D shape decomposition representation, mathematical morphology, gray scale interframe interpolation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1732345 N-Sun Decomposition of Complete Graphs and Complete Bipartite Graphs
Authors: R. Anitha, R. S. Lekshmi
Abstract:
Graph decompositions are vital in the study of combinatorial design theory. Given two graphs G and H, an H-decomposition of G is a partition of the edge set of G into disjoint isomorphic copies of H. An n-sun is a cycle Cn with an edge terminating in a vertex of degree one attached to each vertex. In this paper we have proved that the complete graph of order 2n, K2n can be decomposed into n-2 n-suns, a Hamilton cycle and a perfect matching, when n is even and for odd case, the decomposition is n-1 n-suns and a perfect matching. For an odd order complete graph K2n+1, delete the star subgraph K1, 2n and the resultant graph K2n is decomposed as in the case of even order. The method of building n-suns uses Walecki's construction for the Hamilton decomposition of complete graphs. A spanning tree decomposition of even order complete graphs is also discussed using the labeling scheme of n-sun decomposition. A complete bipartite graph Kn, n can be decomposed into n/2 n-suns when n/2 is even. When n/2 is odd, Kn, n can be decomposed into (n-2)/2 n-suns and a Hamilton cycle.Keywords: Hamilton cycle, n-sun decomposition, perfectmatching, spanning tree.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2253344 Analysis of Catalytic Properties of Ni3Al Thin Foils for the Methanol and Hexane Decomposition
Authors: M. Michalska-Domańska, P. Jóźwik, Z. Bojar
Abstract:
Intermetallic Ni3Al – based alloys belong to a group of advanced materials characterized by good chemical and physical properties (such as structural stability, corrosion resistance) which offer advenced technological applications. The paper presents the study of catalytic properties of Ni3Al foils (thickness approximately 50 &m) in the methanol and hexane decomposition. The egzamined material posses microcrystalline structure without any additional catalysts on the surface. The better catalytic activity of Ni3Al foils with respect to quartz plates in both methanol and hexane decomposition was confirmed. On thin Ni3Al foils the methanol conversion reaches approximately 100% above 480 oC while the hexane conversion reaches approximately 100% (98,5%) at 500 oC. Deposit formed during the methanol decomposition is built up of carbon nanofibers decorated with metal-like nanoparticles.Keywords: hexane decomposition, methanol decomposition, Ni3Al thin foils, Ni nanoparticles
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1526343 Optimizing Approach for Sifting Process to Solve a Common Type of Empirical Mode Decomposition Mode Mixing
Authors: Saad Al-Baddai, Karema Al-Subari, Elmar Lang, Bernd Ludwig
Abstract:
Empirical mode decomposition (EMD), a new data-driven of time-series decomposition, has the advantage of supposing that a time series is non-linear or non-stationary, as is implicitly achieved in Fourier decomposition. However, the EMD suffers of mode mixing problem in some cases. The aim of this paper is to present a solution for a common type of signals causing of EMD mode mixing problem, in case a signal suffers of an intermittency. By an artificial example, the solution shows superior performance in terms of cope EMD mode mixing problem comparing with the conventional EMD and Ensemble Empirical Mode decomposition (EEMD). Furthermore, the over-sifting problem is also completely avoided; and computation load is reduced roughly six times compared with EEMD, an ensemble number of 50.Keywords: Empirical mode decomposition, mode mixing, sifting process, over-sifting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 979342 N-Sun Decomposition of Complete, Complete Bipartite and Some Harary Graphs
Authors: R. Anitha, R. S. Lekshmi
Abstract:
Graph decompositions are vital in the study of combinatorial design theory. A decomposition of a graph G is a partition of its edge set. An n-sun graph is a cycle Cn with an edge terminating in a vertex of degree one attached to each vertex. In this paper, we define n-sun decomposition of some even order graphs with a perfect matching. We have proved that the complete graph K2n, complete bipartite graph K2n, 2n and the Harary graph H4, 2n have n-sun decompositions. A labeling scheme is used to construct the n-suns.Keywords: Decomposition, Hamilton cycle, n-sun graph, perfect matching, spanning tree.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2382341 Curvature of Almost Split Quaternion Kaehler Manifolds
Authors: Erhan Ata, H. Hilmi Hacisalihoğlu, Yusuf Yayli
Abstract:
In this work some characterizations of semi Riemannian curvature tensor on almost split quaternion Kaehler manifolds and some characterizations of Ricci tensor on almost split quaternion Kaehler manifolds are given.Keywords: Almost split quaternion Kaehler manifold, Riemann curvature, Ricci curvature.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1750340 New Subband Adaptive IIR Filter Based On Polyphase Decomposition
Authors: Young-Seok Choi
Abstract:
We present a subband adaptive infinite-impulse response (IIR) filtering method, which is based on a polyphase decomposition of IIR filter. Motivated by the fact that the polyphase structure has benefits in terms of convergence rate and stability, we introduce the polyphase decomposition to subband IIR filtering, i.e., in each subband high order IIR filter is decomposed into polyphase IIR filters with lower order. Computer simulations demonstrate that the proposed method has improved convergence rate over conventional IIR filters.
Keywords: Subband adaptive filter, IIR filtering. Polyphase decomposition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2488339 A Novel Instantaneous Frequency Computation Approach for Empirical Mode Decomposition
Authors: Liming Zhang
Abstract:
This paper introduces a new instantaneous frequency computation approach -Counting Instantaneous Frequency for a general class of signals called simple waves. The classsimple wave contains a wide range of continuous signals for which the concept instantaneous frequency has a perfect physical sense. The concept of -Counting Instantaneous Frequency also applies to all the discrete data. For all the simple wave signals and the discrete data, -Counting instantaneous frequency can be computed directly without signal decomposition process. The intrinsic mode functions obtained through empirical mode decomposition belongs to simple wave. So -Counting instantaneous frequency can be used together with empirical mode decomposition.Keywords: Instantaneous frequency, empirical mode decomposition, intrinsic mode function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1563338 Adaptive Fourier Decomposition Based Signal Instantaneous Frequency Computation Approach
Authors: Liming Zhang
Abstract:
There have been different approaches to compute the analytic instantaneous frequency with a variety of background reasoning and applicability in practice, as well as restrictions. This paper presents an adaptive Fourier decomposition and (α-counting) based instantaneous frequency computation approach. The adaptive Fourier decomposition is a recently proposed new signal decomposition approach. The instantaneous frequency can be computed through the so called mono-components decomposed by it. Due to the fast energy convergency, the highest frequency of the signal will be discarded by the adaptive Fourier decomposition, which represents the noise of the signal in most of the situation. A new instantaneous frequency definition for a large class of so-called simple waves is also proposed in this paper. Simple wave contains a wide range of signals for which the concept instantaneous frequency has a perfect physical sense. The α-counting instantaneous frequency can be used to compute the highest frequency for a signal. Combination of these two approaches one can obtain the IFs of the whole signal. An experiment is demonstrated the computation procedure with promising results.Keywords: Adaptive Fourier decomposition, Fourier series, signal processing, instantaneous frequency
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2343337 Probabilistic Bhattacharya Based Active Contour Model in Structure Tensor Space
Authors: Hiren Mewada, Suprava Patnaik
Abstract:
Object identification and segmentation application requires extraction of object in foreground from the background. In this paper the Bhattacharya distance based probabilistic approach is utilized with an active contour model (ACM) to segment an object from the background. In the proposed approach, the Bhattacharya histogram is calculated on non-linear structure tensor space. Based on the histogram, new formulation of active contour model is proposed to segment images. The results are tested on both color and gray images from the Berkeley image database. The experimental results show that the proposed model is applicable to both color and gray images as well as both texture images and natural images. Again in comparing to the Bhattacharya based ACM in ICA space, the proposed model is able to segment multiple object too.
Keywords: Active Contour, Bhattacharya Histogram, Structure tensor, Image segmentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2044336 A Reconfigurable Processing Element for Cholesky Decomposition and Matrix Inversion
Authors: Aki Happonen, Adrian Burian, Erwin Hemming
Abstract:
Fixed-point simulation results are used for the performance measure of inverting matrices by Cholesky decomposition. The fixed-point Cholesky decomposition algorithm is implemented using a fixed-point reconfigurable processing element. The reconfigurable processing element provides all mathematical operations required by Cholesky decomposition. The fixed-point word length analysis is based on simulations using different condition numbers and different matrix sizes. Simulation results show that 16 bits word length gives sufficient performance for small matrices with low condition number. Larger matrices and higher condition numbers require more dynamic range for a fixedpoint implementation.Keywords: Cholesky Decomposition, Fixed-point, Matrix inversion, Reconfigurable processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1681335 A Decomposition Method for the Bipartite Separability of Bell Diagonal States
Authors: Wei-Chih Su, Kuan-Peng Chen, Ming-Chung Tsai, Zheng-Yao Su
Abstract:
A new decomposition form is introduced in this report to establish a criterion for the bi-partite separability of Bell diagonal states. A such criterion takes a quadratic inequality of the coefficients of a given Bell diagonal states and can be derived via a simple algorithmic calculation of its invariants. In addition, the criterion can be extended to a quantum system of higher dimension.Keywords: decomposition, bipartite separability, Bell diagonal states.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1645334 Algebraic Riccati Matrix Equation for Eigen- Decomposition of Special Structured Matrices; Applications in Structural Mechanics
Authors: Mahdi Nouri
Abstract:
In this paper Algebraic Riccati matrix equation is used for Eigen-decomposition of special structured matrices. This is achieved by similarity transformation and then using algebraic riccati matrix equation to triangulation of matrices. The process is decomposition of matrices into small and specially structured submatrices with low dimensions for fast and easy finding of Eigenpairs. Numerical and structural examples included showing the efficiency of present method.
Keywords: Riccati, matrix equation, eigenvalue problem, symmetric, bisymmetric, persymmetric, decomposition, canonical forms, Graphs theory, adjacency and Laplacian matrices.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1798333 Laplace Adomian Decomposition Method Applied to a Two-Dimensional Viscous Flow with Shrinking Sheet
Authors: M. A. Koroma, S. Widatalla, A. F. Kamara, C. Zhang
Abstract:
Our aim in this piece of work is to demonstrate the power of the Laplace Adomian decomposition method (LADM) in approximating the solutions of nonlinear differential equations governing the two-dimensional viscous flow induced by a shrinking sheet.Keywords: Adomian polynomials, Laplace Adomian decomposition method, Padé Approximant, Shrinking sheet.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2021332 ECG Analysis using Nature Inspired Algorithm
Authors: A.Sankara Subramanian, G.Gurusamy, G.Selvakumar, P.Gnanasekar, A.Nagappan
Abstract:
This paper presents an algorithm based on the wavelet decomposition, for feature extraction from the ECG signal and recognition of three types of Ventricular Arrhythmias using neural networks. A set of Discrete Wavelet Transform (DWT) coefficients, which contain the maximum information about the arrhythmias, is selected from the wavelet decomposition. After that a novel clustering algorithm based on nature inspired algorithm (Ant Colony Optimization) is developed for classifying arrhythmia types. The algorithm is applied on the ECG registrations from the MIT-BIH arrhythmia and malignant ventricular arrhythmia databases. We applied Daubechies 4 wavelet in our algorithm. The wavelet decomposition enabled us to perform the task efficiently and produced reliable results.Keywords: Daubechies 4 Wavelet, ECG, Nature inspired algorithm, Ventricular Arrhythmias, Wavelet Decomposition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2295331 Region Segmentation based on Gaussian Dirichlet Process Mixture Model and its Application to 3D Geometric Stricture Detection
Authors: Jonghyun Park, Soonyoung Park, Sanggyun Kim, Wanhyun Cho, Sunworl Kim
Abstract:
In general, image-based 3D scenes can now be found in many popular vision systems, computer games and virtual reality tours. So, It is important to segment ROI (region of interest) from input scenes as a preprocessing step for geometric stricture detection in 3D scene. In this paper, we propose a method for segmenting ROI based on tensor voting and Dirichlet process mixture model. In particular, to estimate geometric structure information for 3D scene from a single outdoor image, we apply the tensor voting and Dirichlet process mixture model to a image segmentation. The tensor voting is used based on the fact that homogeneous region in an image are usually close together on a smooth region and therefore the tokens corresponding to centers of these regions have high saliency values. The proposed approach is a novel nonparametric Bayesian segmentation method using Gaussian Dirichlet process mixture model to automatically segment various natural scenes. Finally, our method can label regions of the input image into coarse categories: “ground", “sky", and “vertical" for 3D application. The experimental results show that our method successfully segments coarse regions in many complex natural scene images for 3D.
Keywords: Region segmentation, tensor voting, image-based 3D, geometric structure, Gaussian Dirichlet process mixture model
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1881330 A Reconfigurable Processing Element Implementation for Matrix Inversion Using Cholesky Decomposition
Authors: Aki Happonen, Adrian Burian, Erwin Hemming
Abstract:
Fixed-point simulation results are used for the performance measure of inverting matrices using a reconfigurable processing element. Matrices are inverted using the Cholesky decomposition algorithm. The reconfigurable processing element is capable of all required mathematical operations. The fixed-point word length analysis is based on simulations of different condition numbers and different matrix sizes.Keywords: Cholesky Decomposition, Fixed-point, Matrixinversion, Reconfigurable processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1614329 Linear Elasticity Problems Solved by Using the Fictitious Domain Method and Total - FETI Domain Decomposition
Authors: Lukas Mocek, Alexandros Markopoulos
Abstract:
The main goal of this paper is to show a possibility, how to solve numerically elliptic boundary value problems arising in 2D linear elasticity by using the fictitious domain method (FDM) and the Total-FETI domain decomposition method. We briefly mention the theoretical background of these methods and demonstrate their performance on a benchmark.
Keywords: Linear elasticity, fictitious domain method, Total-FETI, domain decomposition, saddle-point system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1570328 Riemannian Manifolds for Brain Extraction on Multi-modal Resonance Magnetic Images
Authors: Mohamed Gouskir, Belaid Bouikhalene, Hicham Aissaoui, Benachir Elhadadi
Abstract:
In this paper, we present an application of Riemannian geometry for processing non-Euclidean image data. We consider the image as residing in a Riemannian manifold, for developing a new method to brain edge detection and brain extraction. Automating this process is a challenge due to the high diversity in appearance brain tissue, among different patients and sequences. The main contribution, in this paper, is the use of an edge-based anisotropic diffusion tensor for the segmentation task by integrating both image edge geometry and Riemannian manifold (geodesic, metric tensor) to regularize the convergence contour and extract complex anatomical structures. We check the accuracy of the segmentation results on simulated brain MRI scans of single T1-weighted, T2-weighted and Proton Density sequences. We validate our approach using two different databases: BrainWeb database, and MRI Multiple sclerosis Database (MRI MS DB). We have compared, qualitatively and quantitatively, our approach with the well-known brain extraction algorithms. We show that using a Riemannian manifolds to medical image analysis improves the efficient results to brain extraction, in real time, outperforming the results of the standard techniques.Keywords: Riemannian manifolds, Riemannian Tensor, Brain Segmentation, Non-Euclidean data, Brain Extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1652327 Application of Tocopherol as Antioxidant to Reduce Decomposition Process on Palm Oil Biodiesel
Authors: Supriyono, Sumardiyono, Rendy J. Pramono
Abstract:
Biodiesel is one of the alternative fuels promising for substituting petrodiesel as energy source which has an advantage as it is sustainable and eco-friendly. Due to the raw material that tends to decompose during storage, biodiesel also has the same characteristic that tends to decompose during storage. Biodiesel decomposition will form higher acid value as the result of oxidation to double bond on a fatty acid compound on biodiesel. Thus, free fatty acid value could be used to evaluate degradation of biodiesel due to the oxidation process. High free fatty acid on biodiesel could impact on the engine performance. Decomposition of biodiesel due to oxidation reaction could prevent by introducing a small amount of antioxidant. The origin of raw materials and the process for producing biodiesel will determine the effectiveness of antioxidant. Biodiesel made from high free fatty acid (FFA) crude palm oil (CPO) by using two steps esterification is vulnerable to oxidation process which is resulted in increasing on the FFA value. Tocopherol also known as vitamin E is one of the antioxidant that could improve the stability of biodiesel due to decomposition by the oxidation process. Tocopherol 0.5% concentration on palm oil biodiesel could reduce 13% of increasing FFA under temperature 80 °C and exposing time 180 minute.Keywords: Antioxidant, biodiesel, decomposition, oxidation, tocopherol.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1623