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Abstract—Methods of contemporary mathematical physics such
as chaos theory are useful for analyzing and understanding the
behavior of complex biological and physiologica systems. The three
dimensional model of HIV/AIDS is the basis of active research since
it provides a complete characterization of disease dynamics and the
interaction of HIV-1 with the immune system. In this work, the
behavior of the HIV system is analyzed using the three dimensional
HIV model and a chaotic measure known as the Hurst exponent.
Results demonstrate that Hurst exponents of CD4, CD8 cells and
viral load vary nonlinearly with respect to variations in system
parameters. Further, it was observed that the three dimensional HIV
model can accommodate both persistent (H>0.5) and anti-persistent
(H<0.5) dynamics of HIV states. In this paper, the objectives of the
study, methodology and significant observations are presented in
detail.

Keywords—HIV/AIDS, mathematical model, chaos theory, Hurst
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|. INTRODUCTION

HE mathematical models used to represent the dynamics

of infectious diseases can explain highly complex clinical
signals and symptoms. It is in the context of modeling, that
scientists and technologists can apply their knowledge to
formulate guidelines for clinical tests and practical
measurements [1,2]. Mathematical modeling of the interaction
between HIV-1 and the immune system improves the
understanding of the dynamics of the disease [3]. Many HIV
dynamic models have been proposed by researchers [4-8] to
provide theoretical principles for development of treatment
strategies for HIV infected patients [9].

The nonlinear three dimensional HIV model is the basis of
active research [1] since it includes most aspects known thus
far regarding the dynamics of HIV-1 in the human body [3].
Since all parameters of this model can be determined from
CDA4 cell levels and viral load in blood, the three dimensional
model is highly useful for practical applications [10]. This
model can be used to simultaneously obtain the response of the
CD4 Iymphocyte population, the CD8 lymphocyte population
and the HIV-1 viral load and permits an analytical study of the
dynamics of the disease. The model can also be used to
determinethe dstate of health of an individual and verify the
effects of drugs [3]. The analysis of complexity of the HIV
model is essential for choosing proper parameter estimation
methods and for designing suitable control strategies.
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The nonlinear analysis on HIV models is critical to explore
viral fitness assays and estimate viral fitness parameters [11].
There are several reports regarding the nonlinear analyses on
models describing HIV dynamics. Bortz and Nelson (2004)
[12] performed a formal sensitivity analysis on a nonlinear
model of HIV infection dynamics and presented the results of
both a differential analysis as well as a principle component
based analysis. David et al. (2008) [13] performed sensitivity
analysis on a nonlinear HIV model using both classical
sensitivity functions and generalized sensitivity functions.
Naresh et al. (2009) [14] performed numerical analysis on a
nonlinear HIV model to investigate the influence of certain
key parameters on the spread of the disease.

Y e and Ding (2009) [15] introduced fractional order into an
HIV model and analyzed its chaotic behavior using an Adams-
type predictor-corrector method. Al-Sheikh et al. (2011) [16]
performed stability analysis on a non-linear mathematical
model which analyzes the spread and control of HIV. Lavielle
et al. (2011) [17] used a maximum likelihood estimation
algorithm, to analyze simultaneously the HIV vira load
decrease and the CD4 increase in patients using a nonlinear
HIV model. Further, Ho and Ling (2010) [18] have shown that
the system dynamics of the three dimensional HIV model is
sensitive to both the initial conditions and the system
parameters. Hence, the HIV system is chaotic and exhibits a
bifurcation behavior.

Methods of contemporary physics such as chaos theory are
important for biological systems research [19]. Chaos and
many regulatory mechanisms control the dynamics of living
systems. These mechanisms are associated with the regulation
of voltage-dependent ion channels, regulation of enzyme
activity, the control of receptor activity or transport processes,
viral dynamics and also circadian rhythms [20,21]. In analysis
of bio-systems and process, different chaotic measures are
used. Among such measures, calculating chaotic exponents
such as Hurst exponents and dimensional analysis are most
important and common [22].

The objective of this work is to extensively analyze the
complexity of the HIV/AIDS system using the three
dimensiona HIV model and a nonlinear, chaotic measure
known as the Hurst exponent.

Il.METHODOLOGY

A. The three dimensional HIV model

The response of the concentrations of the CD4 lymphocyte
population, the CD8 lymphocyte population and the HIV-1
viral load can be characterized by the following first order
nonlinear differential equation [18, 23-25].
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% = a(x, - (1)) —bx(t) (t) (1a)
d)éit) =c(y, = y(t)) +dy(t)z(t) (1b)
= 2(0(ex) - ) (10)

where, x(t), y(t) and z(t) are the concentratiofighe CD4
lymphocyte population, the CD8 lymphocyte populatand
the HIV-1 viral load, respectively.oxand y are the normal
unperturbed concentrations of the CD4 and CD8 lyouopte
population. a, b, ¢, d, e and f are the systemmpeters. The

description of each parameter [26] is provided al€ 1.
TABLE |
DESCRIPTIONOF HIv MODEL PARAMETERS
Parameter Description
a death rate of CD4 cells
b rate of infection of CD4 cells by virus
[« death rate of CD8 cells
d rate of increase of CD8 cells in response toeased
viral load
e rate of increase of viral load
f rate of decrease of viral load

B. Estimation of Hurst exponent

Hurst exponent (H) [27-29] is responsible for a suga of
predictability of a time series. Hurst exponentuesl range
between 0 and 1. A value 0.5 < H < 1 indicates ipienst
behavior where one can expect with increasing icgytahat
whatever direction of change has been current auifitinue.
Values 0 < H < 0.5 indicates anti-persistent betravin that
one can expect whatever direction of change iseatiris
unlikely to continue. A straight line with non zegradient
would have a Hurst exponent of 1.

In this work, the Hurst exponents of CD4 cell paiain,
CD8 cell population and HIV-1 viral load were cdhted
using the aggregated variance method [30-32]. Xgt( be a
time series, shortly denoted by XFor an integer m between
2 and N/2, the series is divided into blocks ofbrm and the
sample average is computed over edthlick.

(m) - = Z Xt ’

M- (kDm+1
(2)
For each m, the sample variance)_oﬁm is computed across

the blocks
1 [N/m] —
2

=D &

For successive values of m, the sample variasrﬁeis

@)

plotted against m on a log-log plot. The estimdtélids the
slope of the least squares line fit to the poirfithe plot.

Ill.  RESULTS ANDDISCUSSION
Figurel shows the variation in the Hurst exponeftSD4,
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CD8 cell populations and HIV-1 viral load as a ftioe of

parameter ‘a’ in the range of 0 to 1. A nonlineariation is

seen in the Hurst exponent of CD4 cell populationthe

adopted range of parameter ‘a’. The Hurst expooér@D8

cells appear to decrease and then increase asathe wof

parameter ‘a’ is increased from 0 to 1. Furthedy amall

variations in the Hurst exponent of viral load aeen as the
value of parameter ‘a’ increases.

10 T T T T T T T T
0.9
~ 08k
c
(]
5
S 07
x
(O]
@
S 0.6
I
—— CD4 cells
o5~ NS e CD8 cells
--- Viralload
1 " 1 " 1 " 1
0.2 04 0.6 08 10

death rate of CD4 cells

Fig. 1 Variation of the Hurst exponents of CD4, Ci2fi
populations and HIV1 viral load shown as a functidparameter ‘a’
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Fig. 2 Variation of the Hurst exponents of CD4, Ci2fi
populations and HIV1 viral load shown as a functiéparameter ‘b’

Figure 2 shows the variation in the Hurst exponehtsD4,
CD8 cell populations and HIV-1 viral load as a fiioe of
parameter ‘b’ in the range of 10 to 250. It is sttt the Hurst
exponents of CD4 and CD8 cell population decreasdsthen
increases as the value of parameter ‘b’ increAdbgreas, the
Hurst exponent of viral load increases initiallydafurther
decreases exponentially as parameter ‘b’ increases.

The variation in Hurst exponents of CD4, CD8 cell
populations and HIV1 viral load is shown as a figrctof
parameter ‘c’ in Figure 3. The Hurst exponents 8f4Cells
and viral load decreases almost linearly as thaievadf
parameter ‘C’ increases in the range of 0 to l.tHeur a
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nonlinear variation is seen in the Hurst expondntib8 cell appears to decrease as the value of parametencifeases.

population in the adopted parameter range. However, the Hurst exponents of CD4 and CD8 celissaen
The variation in Hurst exponents of CD4, CD8 celto vary nonlinearly in the adopted parameter range.
populations and viral load is shown as a functibparameter O~ T
‘d’ in Figure 4. It is found that the Hurst expotemf CD4 CD4 cells
and CD8 cells increase nonlinearly as the valupasameter 09r R C_D8 cells
‘d’ increases in the range of O to 40. However, Herst I 7 ==~ Viralload
exponent of viral load decreases in the adoptednpeter = _ /’
range. 2 ’
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Fig. 5 Variation of the Hurst exponents of CD4, C&28l
populations and HIV1 viral load shown as a functidparameter ‘e’
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L . L . L . behavior of CD4 cell population. It is found thhetCD4 cell
1o 20 %0 population exhibits persistent behavior (H>0.5)Ha adopted
rate of increase of CD8 cells range of parameters ‘a, ‘b’, ‘c’ and ‘e’. Anti-pEstent
_ _inresponse to increased viral load behavior (H<0.5) in CD4 cells is seen in the cade o
Fig. 4 Variation of the Hurst exponents of CD4, Cix8 parameters ‘d’ and ‘' in the range of 0-1.25 ah®.0028

lati d HIV1 viral load sh functid ter 'd’ .
populations an viralload shown as a funchaparameter respectively. It appears that the parameters ‘dd ah

contribute to the anti-persistent behavior of Clefisc
Similarly, the parameter range and the correspgndin

behavior of CD8 cell population is shown in TablefBe CD8
cell population is found to exhibit persistent béba in the
adopted range of parameters ‘b’ and ‘c’. Anti-psbesit
behavior in CD8 cells is seen in the case of patarséa’, ‘d’,

‘e’ and ‘f in the range of 0.32-0.42, 0-4, 0.018®2 and
0.0024-0.0044 respectively. It is noted that theapeeters ‘a’,
‘d’, ‘e’ and ‘' contribute to the anti-persistertehavior of
CD8 cells.

Similarly, Figure5 shows the variation in the Hurst
exponents of CD4, CD8 cell populations and HIV-davload
as a function of parameter ‘e’ in the range of M102. It is
seen that the Hurst exponents of CD4 and CD8 deltsease
nonlinearly with increase in parameter ‘e’. Alsonenlinear
variation is seen in the Hurst exponent of viraddoin the
considered range of parameter ‘e’.

Figure 6 shows the variation in the Hurst exponehtsD4,
CDS8 cell populations and viral load as a functiéparameter
‘f" in the range of 0 to 0.03. The Hurst exponehvial load
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Further, typical persistent and anti-persistentabér of
CD4 cell population is shown in Figures 7 and $eesively.

TABLE Il
THE PARAMETER RANGE AND THE CORRESPONDINGBEHAVIOR OF CD4 CELL
POPULATION
Parameter Parameter range Behavior of CD4 cell
population
a 0-1 Persister
- Anti-persister
b 10-200 Persistent
- Anti-persistent
c 0-1 Persistent
- Anti-persister
d 1.5-40 Persister
0-1.25 Anti-persistent
e 0-0.02 Persistent
- Anti-persistent
f 0.002¢-0.02 Persister
0-0.002¢ Anti-persister
TABLE llI
THE PARAMETER RANGE AND THE CORRESPONDINGBEHAVIOR OF CD8 CELL
POPULATION
Parameter Parameter range
population
a 0-0.31, 0.4-1 Persister
0.32-0.42 Anti-persister
b 10-200 Persistent
- Anti-persistent
c 0-1 Persister
- Anti-persister
d 4.25-4Q Persister
0-4 Anti-persistent
e 0-0.0135 Persistent
0.013¢-0.02 Anti-persister
f 0-0.0023, 0.004-0.0% Persister
0.0024-0.0044 Anti-persistent
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Fig. 7 A persistent behavior of CD4 cell populat@stained using
the three dimensional HIV model with a=0.25, b=5€0.25, d=10,
€=0.01 and f=0.009
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Fig. 8 An anti-persistent behavior of CD4 cell plgpion obtained
using the three dimensional HIV model with a=0.2850, c=0.25,
d=10, e=0.01 and =10

V. CONCLUSIONS
A mathematical model that describes the dynamicdIbf

Behavior of CD8 cell infection is highly useful to decide on treatmemmategies for

HIV/AIDS patients [33]. The dynamic three dimensbhi |V

model is a commonly used model since it includesstmo

aspects known thus far regarding the dynamics &f-Hl in
the human body [3].
In this work,

exponent. The HIV model was simulated using Euler&thod
for different parameter values and the responsé&3Dgf, CD8
lymphocyte populations and viral load were obtain&te
Hurst exponents of the obtained states were caézlilasing
the aggregate variance method.

Results demonstrate that Hurst exponents of CD4 &ills
and viral load vary nonlinearly in the adopted mangf
parameters ‘a’, ‘'b’, ‘c’, ‘d’, ‘e’ and ‘f'. Also, i was found that
the three dimensional
persistent and anti-persistent dynamics of HIVestaFurther,
the parameters ‘d’ and ‘f were found to contribtethe anti-
persistent behavior (H<0.5) of CD4 cells. Wheretise
parameters ‘a’, ‘d’, ‘e’ and ‘f’ contribute to thenti-persistent
behavior of CD8 cells. The viral load was found etchibit
persistent behavior in the considered range ofrpaters.

This study seems to be of high clinical significarsince the
analysis of complexity of the HIV model is essentiar
choosing proper parameter estimation methods amnd
designing suitable treatment strategies.
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