Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30169
Predictability Analysis on HIV/AIDS System using Hurst Exponents

Authors: K. Kamalanand, P. Mannar Jawahar

Abstract:

Methods of contemporary mathematical physics such as chaos theory are useful for analyzing and understanding the behavior of complex biological and physiological systems. The three dimensional model of HIV/AIDS is the basis of active research since it provides a complete characterization of disease dynamics and the interaction of HIV-1 with the immune system. In this work, the behavior of the HIV system is analyzed using the three dimensional HIV model and a chaotic measure known as the Hurst exponent. Results demonstrate that Hurst exponents of CD4, CD8 cells and viral load vary nonlinearly with respect to variations in system parameters. Further, it was observed that the three dimensional HIV model can accommodate both persistent (H>0.5) and anti-persistent (H<0.5) dynamics of HIV states. In this paper, the objectives of the study, methodology and significant observations are presented in detail.

Keywords: HIV/AIDS, mathematical model, chaos theory, Hurst exponent

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1082803

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1375

References:


[1] Xia, X.: HIV/AIDS modeling and control. Automatica. 39, 1983-1988 (2004)
[2] Filter, R.A., Xia, X., Gray, C.M.: Dynamic HIV/AIDS parameter estimation with application to a vaccine readiness study in Southern Africa. IEEE Trans. Biomed. Engin. 52, 784-791 (2005)
[3] de Souza, F.M.C.: Modeling the dynamics of HIV-1 and CD4 and CD8 lymphocytes. IEEE Engin. Med. Biol. 18, 21-24 (1999)
[4] Perelson, A.S., Neumann, A.U., Markowitz, M., Leonard, J.M., Ho, D.D.: HIV-1 dynamics in vivo: Virion clearance rate, infected cell lifespan, and viral generation time. Science. 271, 1582-1586 (1996)
[5] Wu, H., Ding, A.A., De Gruttola, V.: Estimation of HIV dynamic parameters. Statistics in Medicine. 17, 2463-2485 (1998)
[6] Perelson, A.S., Nelson, P.W.: Mathematical analysis of HIV-1 dynamics in vivo. SIAM Review. 41, 3-44 (1999)
[7] Ngarakana-Gwasira, E.T., Bhunu, C.P., Mushayabasa, S., Hove- Musekwa, S.D., Garira, W., Tchuenche, J.M.: Exploring the effects of parameter heterogeneity on the intrinsic dynamics of HIV/AIDS in heterosexual settings. International Journal of Biomathematics. 4, 75-92 (2011)
[8] Huang, Y., Rosenkranz, S.L., Wu, H.: Modeling HIV dynamics and antiviral responses with consideration of time-varying drug exposures, sensitivities and adherence. Mathematical Biosciences. 184, 165-186 (2003)
[9] Huang, Y., Liu, D., Wu, H.: Hierarchical Bayesian methods for estimation of parameters in a longitudinal HIV dynamic system. Biometrics. 62, 413-423 (2006)
[10] Xia, X., Moog, C.H.: Identifiability of nonlinear systems with applications to HIV/AIDS models. IEEE transactions on automatic control. 48, 330-336 (2003)
[11] Miao, H., Dykes, C., Demeter, L.M., Hulin, Wu.: Differential Equation Modeling of HIV Viral Fitness Experiments: Model Identification, Model Selection, and Multimodel Inference. Biometrics. 65, 292-300 (2009)
[12] Bortz, D.M., Nelson, P.W.: Sensitivity Analysis of a Nonlinear Lumped Parameter Model of HIV Infection Dynamics. Bulletin of Mathematical Biology. 66, 1009-1026 (2004)
[13] David, J., Tran, H., Banks, H.T.: HIV Model Analysis and Estimation Implementation Under Optimal Control Based Treatment Strategies. International Journal of Pure and Applied Mathematics. 3, 357-392 (2009)
[14] Naresh, R., Sharma, D., Tripathi, A.: Modelling the effect of risky sexual behaviour on the spread of HIV/AIDS. International Journal of Applied Mathematics and Computation. 1, 132-147 (2009)
[15] Haiping, Ye., Ding, Y.: Nonlinear Dynamics and Chaos in a Fractional- Order HIV Model. Mathematical Problems in Engineering Volume 2009, Article ID 378614 (2009)
[16] Al-Sheikh, S., Musali, F., Alsolami, M.: Stability Analysis of an HIV/AIDS Epidemic Model with Screening. International Mathematical Forum. 6, 3251-3273 (2011)
[17] Lavielle, M., Samson, A., Karina Fermin, A., Mentré, F.: Maximum likelihood estimation of long-term HIV dynamic models and antiviral response. Biometrics. 67, 250-259 (2011)
[18] Ho, C.Y-F., Ling, B.W-K.: Initiation of HIV Therapy. International Journal of Bifurcation and Chaos. 20, 1279-1292 (2010)
[19] Klonowski, W.: From conformons to human brains: an informal overview of nonlinear dynamics and its applications in biomedicine. Nonlinear Biomedical Physics. 1, 5 (2007)
[20] Goldbeter, A.: Computational Approaches to Cellular Rhythms. Nature. 420, 238-245 (2002)
[21] Savi, M.A.: Chaos and Order in Biomedical Rhythms. J. of the Braz. Soc. of Mech. Sci. & Eng. XXVII, 157-169 (2005)
[22] Das, A., Das, P., Roy, A.B.: Applicability of Lyapunov Exponent in EEG data analysis. Complexity International. 9, 1-8 (2002)
[23] Iwasa, Y., Michor, F., Nowak, M.A.: Virus evolution within patients increases pathogenicity. J. Theor. Biol. 232, 17-26 (2005)
[24] Gilchrist, M.A., Coombs, D., Perelson, A.S.: Optimizing within-host viral fitness: Infected cell lifespan and virion production rate. J. Theor. Biol. 229, 281-288 (2004)
[25] Jafelice, R.M., Barros, L.C., Bassanezi, R.C., Gomide, F.: Fuzzy setbased model to compute the life expectancy of HIV infected populations. IEEE Ann. Meeting of the Fuzzy Information Processing. 27-30 June 2004, NAFIPS, 314-318 (2004)
[26] Ge, S.S., Tian, Z., Lee, T.H.: Nonlinear Control of a Dynamic Model of HIV-1. IEEE transactions on biomedical engineering. 52, 353-361 (2005)
[27] Hurst, H.E., Black, R.P., Simaika, Y.M.: Long-Term Storage: An Experimental Study. Constable - London. (1965)
[28] Edmonds, A.N.: Time Series Prediction Using Supervised Learning and Tools from Chaos Theory. Ph.D Thesis (1996)
[29] Jose, M.V., Govezensky, T., Bobadilla, J.R.: Fractional Brownian motion in DNA sequences of bacterial chromosomes: a renormalization group approach. Revista Mexicana De Fi'Sica. 56, 69-74 (2010)
[30] Taqqu, M.S., Teverovsky, V., Willinger, W.: Estimators for long range dependence: an empirical study. Fractals. 3, 785 - 788 (1995)
[31] Bârbulescu, A., Serban, C., Maftei, C.: Evaluation of Hurst exponent for precipitation time series. Latest Trends On Computers. 2, 590-595 (2010)
[32] Beran, J.: Statistics for Long-Memory Processes. Chapman & Hall. (1994)
[33] Kamalanand, K., Mannar Jawahar, P.: Estimation of HIV/AIDS Parameters using Jumping Frogs Optimization. International Journal of Medical Discovery. 4 (2012)G. O. Young, "Synthetic structure of industrial plastics (Book style with paper title and editor)," in Plastics, 2nd ed. vol. 3, J. Peters, Ed. New York: McGraw-Hill, 1964, pp. 15- 64.