
Normalizing Flow to Augmented Posterior:
Conditional Density Estimation with Interpretable
Dimension Reduction for High Dimensional Data

Cheng Zeng, George Michailidis, Hitoshi Iyatomi, Leo L Duan

Abstract—The conditional density characterizes the distribution
of a response variable y given other predictor x, and plays a key
role in many statistical tasks, including classification and outlier
detection. Although there has been abundant work on the problem
of Conditional Density Estimation (CDE) for a low-dimensional
response in the presence of a high-dimensional predictor, little work
has been done for a high-dimensional response such as images. The
promising performance of normalizing flow (NF) neural networks
in unconditional density estimation acts a motivating starting point.
In this work, we extend NF neural networks when external x is
present. Specifically, they use the NF to parameterize a one-to-one
transform between a high-dimensional y and a latent z that comprises
two components [zP , zN ]. The zP component is a low-dimensional
subvector obtained from the posterior distribution of an elementary
predictive model for x, such as logistic/linear regression. The
zN component is a high-dimensional independent Gaussian vector,
which explains the variations in y not or less related to x. Unlike
existing CDE methods, the proposed approach, coined Augmented
Posterior CDE (AP-CDE), only requires a simple modification on the
common normalizing flow framework, while significantly improving
the interpretation of the latent component, since zP represents a
supervised dimension reduction. In image analytics applications,
AP-CDE shows good separation of x-related variations due to factors
such as lighting condition and subject id, from the other random
variations. Further, the experiments show that an unconditional NF
neural network, based on an unsupervised model of z, such as
Gaussian mixture, fails to generate interpretable results.

Keywords—Conditional density estimation, image generation,
normalizing flow, supervised dimension reduction.

I. INTRODUCTION

ACONDITIONAL density characterizes the probabilistic

behavior of a set of random variables, when information

on a set of other variables is available. The case of a single

variable y (the response) conditioned on a multivariate x
(predictor) has received most attention in the literature, due

to a wide range of applications. A number of methods have

been proposed to address the conditional density estimation

(CDE) problem from observed data. Kernel density [1]–[3]

and k-nearest neighbors [4], [5] based techniques have been

extensively studied and employed in applications. Another

popular approach uses a mixture model of the form f(yi |
xi) =

∑K
h=1 wh(xi)g[yi | θh(xi)] over data index i =
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1, . . . , n, with
∑K

h=1 wh(xi) = 1 and potentially K → ∞.

In the mixture model and for continuous yi, g(·) can be a

location-scale density, such as a multivariate Gaussian one

mean μh and covariance matrix Σh. Importantly, the mixture

component parameters θh as well as the mixture weights wh

are some deterministic transforms of the xi’s, hence allowing

the mixture distribution of yi to vary according to xi. There is

a large literature in such a framework, see, e.g., [6]–[10] and

references therein.

The CDE framework has a wide range of statistical

applications, besides serving as a nonlinear predictive model

for yi, including outlier detection and classification. In the

first case, by evaluating the magnitude of f(yi | xi) for each

observed data point, one could identify those points in the

bottom density quantile as potential outliers [11], [12]. In the

latter case, when xi is a discrete class label, such as whether

a patient is in disease status, with a class probability p(xi),
p(xi | yi) ∝ p(xi)f(yi | xi) could be used as a probabilistic

classifier for predicting xi [13].

Despite significant advances in CDE, in recent years, a

number of major challenges are not satisfactorily addressed

for a high-dimensional response yi ∈ R
p, such as an image.

Hence, the focus of the current work is on the case of a

high-dimensional response yi — rather than low-dimensional

response conditioned on a high-dimensional predictor xi in

extant literature. For the latter, a large class of solutions

exist, such as BART [14], that partition the high-dimensional

space of xi and use simple piece-wise distribution (such as

spherical Gaussian, or Bernoulli) for the low-dimensional yi
in each region. Obviously, this strategy does not be applied to

high-dimensional yi.
The following two difficulties arise for a high-dimensional

response: (i) specification of the component distribution g in

the mixture model and (ii) the curse of dimensionality when

computing a high-dimensional mixture distribution. These two

points are elaborated next. Note that a parametric specification

of g can be unsatisfactory, since location-scale distribution

is often an over-simplification for high-dimensional data.

For example, for a collection of face photos from one

subject, the mean of a Gaussian density g is often a poor

summary characterization for this group of data points, since

there are other factors (such as unknown lighting conditions)

that contribute to the within-group variability, besides just

pixel-wise random noise. To address this issue, it is often

useful to assume that the high-dimensional data point lie

close to several manifolds, each having an intrinsic low
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dimension. One of the well-known solutions is the mixture of

factor analyzers (MFA) [15], [16], or mixture of probabilistic

principal component analysis (PCA) [17], which retains the

multivariate Gaussian density g[yi | μh(xi),Σh]; further,

the covariance matrix takes the form Σh = UhU
′
h + Λh,

with Uh some p × d matrix with d small, and Λh a

diagonal positive matrix. Effectively this parameterization

assumes that for some h, yi − μh(xi) lies near a linear

subspace spanned by the columns of Uh. However, it is

rather difficult to extend this technique to non-linear manifolds

through non-linear mappings. Alternatively, a popular idea is

to find a low-dimensional representation, or “embeddings” that

preserve some (often not all) relational characteristics of the

high-dimensional data, such as pairwise distances or local

neighborhoods. Such embedding is denoted by zi ∈ R
d for

each data point. Examples include Sammon’s mapping [18],

kernel PCA [19], Laplacian eigenmaps [20], locally-linear

embeddings [21], Gaussian process latent variables (GPLV)

[22], t-distributed stochastic neighbor embeddings (t-SNE)

[23], uniform manifold approximation and projection (UMAP)

[24], just to name a few. After obtaining such zi’s, one

could calculate the conditional density f(zi | xi) for zi, as a

surrogate the corresponding conditional density for yi. Despite

some success in visualization tasks and cluster analysis, a key

issue among the aforementioned methods is that the procedure

of dimension reduction often lacks a generative distribution

(except for GPLV); consequently, a density for f(yi | xi) can

not be obtained.

The second difficulty mentioned above is often overlooked

in the literature. Common algorithms used for mixture model

estimation involve a discrete latent variable zi = h with

probability wh, given that (yi | zi = h, xi) comes from

a component distribution g[· | θh(xi)]. Since p(zi = h |
yi, θh) ∝ whf [yi | θh(xi)], it allows iterating through the

following two steps: (a) sampling of zi via a multinomial

distribution (or taking expectation z̃i = p(zi = h | yi, θh)
in the EM algorithm [25]); (ii) updating θh(xi) conditioned

on zi or z̃i. Nevertheless, since for h = 1, . . . ,K, the

high-dimensional yi creates large magnitude of densities, thus

resulting in f [yi | θk(xi)]/f [yi | θl(xi)] ≈ 0 or ∞, unless

θk(xi) ≈ θl(xi). Consequently, each p[zi | yi, θh(xi)] is very

likely to be stuck at 1 for a given h∗, and close to 0 for all

the other h �= h∗, with the end result being that the estimation

algorithm “gets stuck” at the initial assignment zi’s.

The curse-of-dimensionality for density estimation is a well

known issue and the reason that algorithms such as rejection

sampling, importance sampling, and Metropolis-Hastings fail

in high dimensions [26], [27]. A similar problem was

recently discovered in high-dimensional clustering [28], which

is closely related to the unconditional density estimation

problem.

These challenges in high-dimensional density estimation

approaches motivated the development of completely different

approaches. Normalizing flow neural networks were proposed

to find an invertible mapping between a random variable

yi ∈ R
p and a latent variable zi ∼ N(0, Ip). The neural

network is formed by stacking layers of non-linear transforms,

each layer parameterized in the way such that it corresponds

to a bijective transform, and the inverse transform has a

closed-form or can be computed efficiently. Using a simple

change-of-variable technique, one could obtain the density

f(yi) as a transformed density from an independent Gaussian

one. Examples include RealNVP [29], MADE [30], MAF [31],

Glow [32], FFJORD [33] and iResNet [34], [35]. Due to

the large number of parameters and expressiveness of neural

networks, impressive performance has been exhibited as a

generative model for yi. For example, in image applications,

after training a normalizing flow network, one could generate

a new Gaussian vector zi′ and push it forward through the

trained network, with the transformed yi′ often looking as if

it were a real photo. Since there is only one neural network

involved (despite a large number of parameters within it), the

computation enjoys high efficiency through stochastic gradient

descent. Its expressiveness as a generative model, tractability

of the target density f(yi) and good computing performance

make the normalizing flow a compelling alternative to mixture

models for high-dimensional density estimation provided the

training data set is large enough.

On the other hand, since one can inversely obtain zi
as a deterministic transform of yi, a number of interesting

directions of exploration for zi arise. One of them is whether

a more interpretable modeling structure for zi can be used,

other than just being drawn from an independent Gaussian

distribution. Early examples includes using a mixture of

Gaussian distribution [36], or a mixture of subspace structure

[37] to name a select few. Although some interpretable results,

including improved clustering accuracy were reported, it was

later discovered that most of the improved results were largely

due to the specific pre-processing of the reported data sets [38],

instead of the selected distribution for zi. This cautionary tale

serves as a good warning, that it is quite difficult — if not

impossible — to rely on unsupervised normalizing flow (that

is, using yi alone) to find structure in the latent zi. Naturally,

this motivates us to consider external information from xi, and

create a normalizing flow-based conditional density estimator.

The focus is on the CDE problem involving a

high-dimensional yi and low-dimensional xi; for example, xi

could correspond to labels, or a continuous vector providing

context information for the observed yi. Specifically, we

use the normalizing flow to form an invertible transform

of data yi and an “augmented posterior (AP)” based zi
that comprises of two components [zP,i, zN,i]; zP,i is a

low-dimensional subvector that forms a joint distribution with

xi, such as via simple logistic/linear regression likelihood

f(xi | zP,i). Effectively, the distribution of [zP,i, zN,i] is the

posterior distribution of (zP,i | xi) augmented by independent

Gaussian zN,i. Note that there has been some recent work

on normalizing flow based CDE, e.g., [31]. However, the

proposed approach enjoys several unique advantages: first,

it produces a supervised dimension reduction in those zP,i

within the CDE framework; second, it requires only simple

modification of the common normalizing flow networks, so

it is very easy to implement; last, it produces a single latent

variable zi for each data point yi, and hence the unconditional

density calculation does not involve summation or integration

over the space of the predictor variable. The article will
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illustrate these advantages as well as the outperformed density

estimation results.

II. METHOD

The section begins by introducing notation used in the

sequel. Let yi ∈ R
p be a continuous response with distribution

fy , and xi ∈ X ⊆ R
m be the corresponding predictor variable

(could be discrete, continuous, or a mix of both) drawn from

another distribution fx. This article focuses on the case of

large p and small m.

A. Background: Generative Models Based on Normalizing
Flows

The subsection provides some background on the

normalizing flow neural networks. We suppose that there is

a one-to-one and differentiable almost everywhere mapping

Tθ : R
p → R

p (with θ the parameters within it), that can

transform random variable y into another latent continuous

z ∈ R
p following a simple distribution fz . With a slight

abuse of notation, f. is used to represent both a density

and a probability function. After a change of variable, for

i = 1, . . . , n:

fy(yi) = fz[Tθ(yi)]|∇yTθ(yi)|,
with |∇yTθ(·)| being the determinant of the Jacobian matrix

with the gradient taken with respect to yi. To estimate Tθ,

one typically minimizes the Kullback–Leibler (KL) divergence

between the target distribution f∗
y (y) and the normalizing

flow-based fy(y), which is

KL[f∗
y (y), fz[Tθ(y)]|∇yTθ(y)|]

≈ 1

n

n∑
i=1

{− log fz[Tθ(yi)]|∇yTθ(yi)|
}
+ constant,

where the right hand side is the empirical KL, equaling to the

loss function to be minimized over θ.

To flexibly parameterize the transform while maintaining

invertibility, one uses a special multilayer neural network

(“invertible neural network”) with T = T1 ◦ T2 ◦ · · · ◦ Tm,

and each Tk : Rp → R
p is a layer of an invertible transform

of relatively simple operations; for example, in RealNVP

[29], the input of Tk is equally partitioned to r = [rA, rB ],
and Tk([rA, rB ]) = [rA, rB � s(rA) + l(rA)], with s and l
functions that produce the location-scale change to rB . Then

in the next layer, one alternates by using Tk+1([rA, rB ]) =
[rA � s(rB) + l(rB), rB ]. Other types of neural networks

include autoregressive flows and residual flows. The authors

refer readers to [39] as a review for all types of flows

employed. Besides invertibility, these neural networks are also

carefully designed so that the term of the determinant of the

Jacobian and the inverse mapping of the neural networks can

be computed at low cost.

Obtaining an approximate solution of Tθ via an invertible

neural network leads to a transport map Tθ̂, that gives a density

estimator for the data f̂y(yi) = fz[Tθ̂(yi)]|∇yTθ̂(yi)|. This

method is commonly referred to as “normalizing flow”, since

one often assigns a standard independent Gaussian distribution

to z ∼ N(0, Ip) for simplicity, which is often called the base

distribution. As a generative model, one can sample zi′ ∼
N(0, Ip), and then yi′ = T−1

θ̂
(zi′) produces new generated

data from the estimated distribution fy .

B. Augmented Posterior for CDE

To enable CDE for fy|x(yi | xi), as well as making the latent

variable zi more interpretable, we consider a joint distribution

between z and x,

fz,x(zi, xi) = fzN (zN,i)fzP (zP,i)fx|z(xi | zP,i;β), (1)

independently for i = 1, . . . , n, where zi = [zP,i, zN,i]. The

first component zP,i ∈ R
d is a low-dimensional subvector

and is used in a predictive model for xi, whereas the second

component zN,i ∈ R
p−d is a high-dimensional subvector

unrelated to xi, and β is viewed as a non-random parameter

that will be estimated. If one considers fx|z to be the likelihood

for x, and fz to be the prior distribution for z, then it is not

hard to see that,

fz|x(zi | xi) = fzN (zN,i)
fzP (zP,i)fx|z(xi | zP,i;β)∫
Rd fzP (t)fx|z(xi | t;β)dt ,

where the second part is the posterior of zP , fzP |x(zP,i |
xi;β), and fzN (zN,i) is an independent random variable that

augments this posterior, to make zi match the dimension of

yi. Therefore, each zi = (zP,i, zN,i) is referred to as a sample

point from an “augmented posterior”.

Fig. 1 The diagram of the architecture of AP-CDE, the solid lines show the
generative process for the data (y, x), he dashed lines show how to generate

a new latent variable z from the augmented posterior

Fig. 1 shows the architecture of the proposed model.

Note that for simplicity, we retain the standard independent

Gaussian density for fzN and fzP as in a typical normalizing

flow, while employing a generalized linear model for fx|z . For

example, if xi ∈ R
m is continuous, then one can use xi =

β0 + β1zi + εi, with β0 ∈ R
m, β1 an m× d matrix, and εi

iid∼
N[�0, diag(β2)] with β2 positive vector. For each univariate

discrete xi,j ∈ {1, . . . ,K}, one can use a multinomial logistic

regression in fx|z , p(xi,j = k | zP,i) ∝ exp(β0,k + β′
kzP,i),

with β0,k ∈ R, βk ∈ R
d for k = 1, . . . ,K − 1, and βK

and β0,K fixed to 0-value as common in logistic regression.

In general, the conditional probability function fx|z could be

proportional to the original function to the power λ for the

purpose of regularization. This is commonly used in robust

Bayesian models [40] and hybrid deep generative models [41].
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In the proposed model, the normalizing constant is merged

into the denominator of the posterior fzP |x naturally, and the

model is still a generative one.

In the case of xi having both continuous and (potentially

more than one) discrete elements, xi = [xA,i, xB,i], one

can partition zP,i = [zPA,i, zPB ,i], and use a separable

likelihood function fx|zP (xi | zP,i) = fxA|zPA
(xA,i |

zPA,i)fxB |zPB
(xB,i | zPB ,i) — where the first term on

the right models the continuous part, and the second term

does the discrete part. This separation in zP is motivated

by applications under consideration, in which commonly the

discrete part corresponds to the class label of an image,

whereas the continuous part to other conditions (such as

lighting) that are unrelated to the labeling information.

Next, if there is an invertible mapping Tθ that connects zi
and yi, by applying change-of-variable, one has

fy|x(yi | xi) = fz|x[Tθ(yi) | xi;β]|∇yTθ(yi)|.
To estimate this mapping Tθ as well as the parameter β in

the predictive model of xi, one minimizes the empirical KL

divergence between the target distribution f∗
y|x(y | x) and the

fy|x(y | x) in the above, leading to:

min
θ,β

1

n

n∑
i=1

{
− log[fz[Tθ(yi)]|∇yTθ(yi)|

− log fx|z[xi | TP
θ (yi);β]

+ log

∫
Rd

fzP (t)fx|z(xi | t;β)dt
}
,

(2)

where TP
θ (zi) [or, TN

θ (zi)] means taking the subvector

(corresponding to zP , or zN ) from the output of Tθ(zi).
Although the last integral above is often intractable, as the

stochastic gradient descent technique (the commonly used

optimization algorithm in normalizing flow) only requires an

approximate gradient via taking a random subset of size nb

instead of n, one can replace the last term via a Monte Carlo

estimate, log[
∑M

l=1 fx|z(xi | tl;β)/M ], with each tl
iid∼ fzP

[in this article, N(�0, Id)]. The nb integrals to be estimated can

share those M random samples tl’s across i in the subset of

size nb, and hence the estimation is inexpensive.

After the KL divergence is minimized, a conditional density

estimator is obtained by

f̂y|x(yi | xi) = fz|x[Tθ̂(yi) | xi; β̂]|∇yTθ̂(yi)|.
Further, to calculate the marginal density of y for a new data

point for which only the response yi is available, one can

simply marginalize over xi in (1), and obtain

fy(yi) = fzN [TN
θ̂
(yi)]fzP [T

P
θ̂
(yi)]|∇yTθ̂(yi)|.

Therefore, after the optimization, both conditional and

marginal density estimation can be accomplished in a

computational efficient manner.

C. Supervised Dimension Reduction and Validation

Besides conditional density estimates, another advantage

of using the augmented posterior is that it produces

a low-dimensional representation zP,i that is related to

the variations in xi. Indeed, after the optimization step

concludes, one obtains a computational form that produces

low-dimensional zP,i = TP
θ̂
(yi), and TP

θ̂
is estimated under

supervising information from x.

On the other hand, one may further wonder if zP,i has

captured all the useful information that connects yi and xi. To

formalize, if the true data generating mechanism for (yi, xi)
is indeed based on zi ∼ fz , yi = T−1

θ (zi), xi ∼ fx|zP , then

one would have the following sufficient dimension reduction

outcome:

x ⊥⊥ y | TP
θ (y),

as the ideal result.

There are ways to test conditional independence in classical

linear models [42] and non-linear low dimensional models

[43], [44]. However, the combination of nonlinearity and high

dimensionality poses significant challenges. Fortunately, for

high-dimensional data with yi and xi, this can be validated

via synthesizing new data and predicting xi via another neural

network G, independently trained with (yi, xi)’s.

Specifically, for each zi = Tθ̂(yi) produced, one fixes

zP,i while replacing zN,i with an independently sampled

z̃N,i,j ∼ N(0, Ip−d) for j = 1, . . . , J . Then synthesized

ỹi,j = T−1

θ̂
[zP,i, z̃N,i,j ] is obtained. One predicts the xi using

ỹi,j via the separately trained network G, and observes if each

predicted x̂i,j differ from the observed xi — in the ideal

case, x̂i,j should not differ much from xi (since zP,i should

contain most of the predictive information about xi), and the

conditional independence can be quantified by the error rate.

D. Parameterization Details

In this article, Tθ is parameterized using the state-of-art

normalizing flow Glow [32]. We choose Glow in the

experiments for its high accuracy on the density estimation

and the ease of implementation. It employs a multi-scale

architecture [29], which contains L levels. After each level,

half of the dimensions of latent zi are immediately modeled

as Gaussians, while the remaining half are further transformed

by the flows. This significantly improves the computation

efficiency. Each level consists of K (depth) steps of flow

that share an identical structure which contains an activation

normalization, an invertible 1 × 1 convolution and an affine

coupling layer. In this article, the authors use the additive

coupling layer as a special case of the affine coupling

layer, in which the number of channels of the hidden layers

(convolutional neural networks) is set to be 512.

Under this kind of multi-scale architecture, the following

important problem is how to choose the way of splitting zi
into [zP,i, zN,i]. First, to make the Monte Carlo estimation

of the integral in (2) accurate, efficient and stable, one does

not expect d, the dimension of zP,i, too large. Second, since

the outputs from the later layers experience more transforms

compared to the ones from the earlier layers, choosing

dimensions of zP,i from the relatively later layers will improve

the model performance. This is illustrated in the numerical

experiments.
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III. NUMERICAL EXPERIMENTS

The following set of numerical experiments demonstrates

the AP-CDE’s advantages for density estimation and

dimensional reduction. The following competing models are

used to compare its performance: (i) the Glow normalizing

flow based on independent Gaussian z ∼ N(�0, Ip), without

using any information from x; (ii) a modified Glow

based on a Gaussian mixture (named Glow-Mix), zi ∼∑K
k=1 wkN(μk, Ip), with K set to the ground-truth number

of classes in the data; and (iii) a CDE extended from Glow

(named Glow-CDE) by adding xi as an input in each additive

coupling layer [31, Section 3.4]. When the predictor variable

xi is discrete, e.g., class label, the comparison is also made

with (iv) a naive CDE model based on Glow where for each

value x′ of xi a Glow is trained on those data yi with xi = x′

(named Glow-NCDE). For a fair comparison, the authors set

the four competitors to have the same numbers of levels L
and the same depth K, as in the AP-CDE model. The first

two models perform unconditional density estimation with

producing latent variables, whereas the last two models are

conditional. Unlike the proposed model, the two CDE models

compared do not have a unique corresponding latent variable

for a new data. Note that the fourth model is inefficient because

one has to train models of number of classes of x.

We use the Adam optimizer [45] provided in the PyTorch

framework to train all models, with a mini batch size of

nb = 64 and learning rate at 0.0005 for all models. All

models are trained for 200 epochs, where the optimizer goes

through the whole training dataset exactly once in each epoch.

For the first 10 epochs as warm-up, the learning rate linearly

increases to 0.0005 after each batch training. Then the learning

rate goes down to 10−4 using cosine annealing schedule [46].

We monitor the loss function of all models and ensure that

convergence is achieved by all models. Finally, M = 1000 is

set in the Monte Carlo estimator for the integral in (2).

The experiments are based on the following two datasets:

the FashionMNIST one of the fashion products [47] and

the Extended Yale Face B one of face images [48]. These

images have a single color channel, containing pixel values

{0, . . . , 255}. The authors follow [29], [31] to dequantize the

pixel values by adding standard uniform noise onto every pixel

and scaling the values to (0, 1) by dividing 256.

A. FashionMNIST Images of Fashion Products

The FashionMNIST data are used to illustrate the CDE

when xi is discrete. This dataset contains 70, 000 processed

images of fashion products, each having 28×28 pixels. Among

them, 60, 000 is used for training purposes and the remaining

is used for testing. Each image yi is associated with a discrete

label xi with values from 0 to 9 recording the ground-truth

fashion products, including T-shirt, sandal, bag, etc. Each

image is padded to dimension 32 × 32 by adding 2 more

dimensions of 0 in each of four direction, and then extend

each image to 3 channels by repeating the image in each of

channel.

For the Glow model, levels L = 3 and depth K = 32 are

set. For the sub-model fx|z in AP-CDE, the authors use the

likelihood function of the multinomial logistic regression, as

stated in Section II-B. Since the labels are relatively balanced

across classes, to improve interpretation on the latent zP,i’s, all

intercept terms β0,k’s are set to be zeros. The authors compare

several choices of the dimensions of zP,i. To be clear, in the

multi-scale architecture, when the data yi has dimension 3×
32 × 32, the output z

(1)
i from the first level has dimension

6×16×16, the output z
(2)
i from the second level has dimension

12×8×8, while the final output z
(3)
i has dimension 48×4×4.

The following choices of zP,i are compared: (1) z
(3)
1:2,1,1; (2)

z
(2)
1:2,1,1; (3) z

(1)
1:2,1,1; (4) z

(3)
1:16,1,1; (5) z

(2)
1:4,1:2,1:2; (6) z

(1)
1:4,1:2,1:2;

(7) z
(3)
1:48,1:2,1:2; (8) z

(2)
1:12,1:4,1:4; and (9) z

(1)
1:3,1:8,1:8.

(a) Glow (b) Glow-Mix (c) AP-CDE

Fig. 2 Latent representations estimated by the three models applied on the
FashionMNIST training set; for the Glow and the Glow-Mix models,

UMAP is used to reduce the dimensions to 2

Fig. 2 plots the latent representations produced by Glow,

Glow-Mix and AP-CDE with the choice (1) for the zP,i.

Recall that for Glow and Glow-Mix, the latent zi has the

same dimensionality as the images, UMAP [24] is used to

reduce the dimension and plot its output in 2D. For AP-CDE,

the plot of the latent zP,i is provided. As expected, the

latent variable produced by Glow follows a simple spherical

Gaussian, and thus is not interpretable. Somewhat surprising,

Glow-Mix does not produce a meaningful result either, despite

using a mixture of 10 Gaussians (that corresponds to the true

number of classes) — instead, the Glow-Mix model converges

to only one component containing a mixture of zi’s from all

classes. This negative finding is in accordance to an early

critique on clustering with deep neural networks [38], where

it was reported that in an unsupervised setting, imposing a

modeling structure on the latent variable (such as a mixture

of Gaussians) does not lead to a clear separation of data from

different classes. Using AP-CDE and the supervising label

information form xi, the authors obtain a good separation of

the ten products based on the low-dimensional representation

zP,i ∈ R
2 for the model z

(3)
1:2,1,1 (shown in Fig. 2(c)).

TABLE I
THE AVERAGE BITS PER DIMENSION ON THE TRAINING AND THE

TESTING SETS OF FASHIONMNIST FOR ALL MODELS

Models Glow Glow-Mix Glow-CDE Glow-NCDE AP-CDE

Training set 1.02 1.04 1.03 1.31 1.02
Testing set 1.03 1.05 1.04 1.32 1.03

Lower BPM means higher density.

Table I depicts the average bits per dimension (BPM) on the

training and the testing sets for all models. Here the BPM is the

negative log-densities divided by the number of dimensions,

which is broadly used in the literature because it has similar
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scale for different resolution of images. For AP-CDE model,

we choose the best model considering the error rate and

the density estimation performance among the all choices

of zP,i. The model of using z
(3)
1:48,1:2,1:2 is chosen. Clearly,

for this dataset, AP-CDE, likely due to a better group-wise

concentration, produces overall higher (or equal) marginal

densities compared to its competitors.

Table II depicts the average bits per dimension on the

training and the testing sets for all AP-CDE models as well

as the classification error rates on the testing set, where one

obtains zP,i and predict the label via the trained logistic

regression model using argmaxk∈{0,...,9} fx|zP (k | TP
θ̂
(yi)).

It shows that when one chooses more dimensions of the

same level for the zP,i, the classification error rate will

be lower, while the density estimation performances do not

vary significantly. Moreover, even when the zP,i has the

same number of dimensions, the higher level can provide

more accurate classification. This bunch of experiments is an

important guidance on how to choose the dimensions for zP,i

— the whole output of the last level is always not a bad choice.

Empirically it shows that the low-dimensional

representation zP,i contains almost all the information

to separate the different classes when the dimensions

of zP,i are well chosen. For the model z
(3)
1:48,1:2,1:2, as

described in Section II-C, if one fixes zP,i, but replaces zN,i

with independently sampled realizations from a Gaussian

distribution, and then through T−1

θ̂
one can obtain 10 new

images for each original observation i. We then employ the

ResNet101 [49] (a convolutional neural network separately

trained on the training set) to classify these artificially

generated images, and find that 95.26% of them are still

classified to the same class label as the yi’s. Hence, it is

concluded that the zN,i largely corresponds to within-class

variation, whereas zP,i captures between-class variation.

(a) Training set. (b) Testing set.

Fig. 3 The first two dimensions of the latent variables from AP-CDE model

z
(3)
1:2,1,1 on FashionMNIST, colored by the estimated densities in the scale

of BPM

Further, we color the latent zP,i using the magnitude of the

density (Fig. 3). In the result, those points with relatively low

density values tend to correspond to images of low quality or

higher ambiguity regarding the product class. To show this,

we plot a few sampled fashion products in Fig. 4 and sort

each row by the density value in increasing order. It can be

seen that the images on the left tend to be harder to assign to

a class, compared to the ones on the right.

Fig. 4 Sample images from the AP-CDE model z
(3)
1:48,1:2,1:2 trained by

FashionMNIST data, with each row sorted in the increasing order of
estimated densities

B. Human Face Photos

To illustrate the AP-CDE with continuous and mixed-type

xi, experiments are also run on the Yale face dataset. There

are 2, 414 face photos, each containing a single color channel

with a 168 × 192 pixel resolution. The images are resized

to 28 × 32 to reduce computation cost, while maintaining

clarity of the photos. The images come from 38 people, and

this information is used as a discrete class variable xA,i.

Further, the photos were taken under different light conditions,

recorded as azimuth angle and elevation. This information is

used as two continuous variables xB,i and xC,i.

For the Glow model, the parameters are set to L = 3
and K = 32. A logistic regression likelihood fxA|zPA

is

used for the discrete xA, that depends on 3 dimensions of

z
(3)
1:3,1,1. Here, z(3) is the output from the third level. Linear

regression xB,i = βB
0 + βB

1 zPB ,i + εBi , xC,i = βC
0 +

βC
1 zPC ,i + εCi are employed for the other two covariates,

where both zPB ,i = z
(3)
4,1,1 and zPC ,i = z

(3)
5,1,1 are one

dimensional. Assume εBi
iid∼ N(0, 0.01) and εCi

iid∼ N(0, 0.01);
note the low value of the variance selected, which forces

higher correlation between (xA, zPA
) and (xB , zPB

). In this

case, the last integral in (2) has closed form because the

integrand is the product of two Gaussian densities. The integral

is 1/
√
2π(β2

2 + β2
1) exp{−(xi − β0)

2/[2(β2
2 + β2

1)]}.

Competing methods include Glow and Glow-Mix. As can

be seen in Fig. 5, AP-CDE leads to a clear separation of latent

representations due to the use of label information, whereas

unsupervised Glow and Glow-Mix fail to do so. Further,

the Glow model does not produce a group-mixed sphere as

did in the FashionMNIST experiment. The Glow-Mix model

produces four clusters in the latent space but none of them

represents some class of people.

To show the expressiveness of AP-CDE as a generative

model, the following procedure is used to synthesize new

artificial images. One selects a range for Azimuth angles

(−100 to 100) and a range for elevations (−60 to 60) (with
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TABLE II
THE AVERAGE BITS PER DIMENSION ON THE TRAINING AND THE TESTING SETS AND THE CLASSIFICATION ERROR RATES ON THE TESTING SETS FOR

ALL AP-CDE MODELS ON THE FASHIONMNIST DATA

Models z
(3)
1:2,1,1 z

(2)
1:2,1,1 z

(1)
1:2,1,1 z

(3)
1:16,1,1 z

(2)
1:4,1:2,1:2 z

(1)
1:4,1:2,1:2 z

(3)
1:48,1:2,1:2 z

(2)
1:12,1:4,1:4 z

(1)
1:3,1:8,1:8

BPM (Training set) 1.02 1.03 1.01 1.05 1.06 1.02 1.02 1.04 1.01
BPM (Testing set) 1.03 1.03 1.02 1.06 1.06 1.02 1.03 1.05 1.02

Error rate (%) 50.96 60.53 89.69 6.89 7.48 80.33 6.46 7.26 89.90

(a) Glow (b) Glow-Mix

(c) AP-CDE

Fig. 5 The latent representations estimated from the Yale face data; the
UMAP is used to reduce the dimensions to 2 for Glow and Glow-Mix; for

the AP-CDE model, all the dimensions of zP are shown in pairs plot

interpolation), and form a 12×12 grid. For each grid cell, one

draws a ZPA,i that corresponds to a person’s identity, from the

empirical posterior distribution from the AP-CDE estimates.

Further, one randomly draws the ZN,i component from a

N(�0, I) distribution. With this choice of z̃i, we synthesize new

images for the i-th subject ỹi = T−1

θ̂
(z̃i). As shown in Fig. 6,

there is a clear trend of change in the lighting conditions,

caused by the changing values of (xB,i, xC,i).

IV. DATA APPLICATION

In the application study, we use 18001 images of leaves

from strawberry plants, which either are healthy or have one

of the three types of diseases: powdery mildew, anthracnose

and fusarium wilt. This forms the labels of the four classes,

which can be treated as the predictor variable x. The AP-CDE

model is expected to conditionally estimate the densities of the

images as well as do a supervised dimensional reduction.
Considering that the backgrounds of the images cause

overfitting problem because the similarities between

Fig. 6 Synthesized face photos with gradually changing light azimuth angles
(left to right) and elevations (top to bottom)

backgrounds rather than between the characteristics of

the diseases take account for the major contribution on the

distinction of the several groups [50], we use the method

mentioned in [50] to remove the backgrounds of all images.

This segmentation also enhanced the quality of density

estimation by reducing the redundant information. The

images are resized to 128× 128 resolution. To improve visual

quality in generating samples, we follow [32] to use 5-bit

images. Then they dequantize the pixel values as stated in

the Section III. The data are split into training set which

includes 16000 images and the testing set which includes

2001 images.

For the parameters of Glow, the parameters are set to L = 6
and K = 32. For the conditional likelihood of x | zP , again,

the authors use fx|z ∝ gλx|z , where g is the likelihood function

of the multinomial logistic regression through the origin and

λ = 1000. The subvector zP,i is chosen to be the output of

the last level, which has dimension 384× 2× 2.

Table III shows the average bits per dimension results for

all models on the training and testing sets. The proposed

AP-CDE model outperforms the other competitors on density

estimation, while gets results as good as Glow. Fig. 7 (b)

shows generated images for each of the four classes. As a

comparison, Fig. 7 (a) shows the real images for each of the
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TABLE III
THE AVERAGE BITS PER DIMENSION ON THE TRAINING AND THE

TESTING SETS OF THE LEAVES OF STRAWBERRY PLANTS DATA FOR ALL

MODELS

Models Glow Glow-Mix Glow-CDE Glow-NCDE AP-CDE

Training set 4.16 4.25 4.19 4.18 4.16
Testing set 4.17 4.26 4.22 4.18 4.17

four classes. The second column shows the generated powdery

mildew images, which clearly have some white spots on the

leaves; the third column shows the generated anthracnose

images, which have purple spots on the leaves; and the fourth

column shows the generated fusarium wilt images.

(a) Real images (b) Generated images

Fig. 7 Real images and generated images using the AP-CDE model for the
leaves of strawberry plants

For this complex dataset, the proposed model still captures

some features of the diseases of the strawberry plants, and

gives 20.8% classification error on the testing set, where the

label is predicted via the logistic regression model on the

zP,i. We also validate the model using the method stated

in Section II-C and the independent classification model for

which the ResNet101 is used gets 82.7% accuracy on the new

generated images. This means the AP-CDE model is helpful

for conditional generating more images of leaves of strawberry

plants. Fig. 8 plots the latent representations produced by these

models. For Glow and Glow-Mix, the UMAP [24] is used to

reduce the dimension of latent zi and plot its output in 2D.

(a) Glow (b) Glow-Mix

(c) AP-CDE, the first two dimensions (d) AP-CDE, the third and fourth
dimensions

Fig. 8 The latent variables mapping from the leaves of strawberry plants
images produced from the models; the UMAP is used to reduce the

dimensions to 2 for Glow and Glow-Mix models

For the latent zP,i produced by AP-CDE, the plot between

the first and the second dimension is provided, as well as the

plot between the third and the fourth dimension. The Glow

and Glow-Mix models do not provide any useful dimension

reduction, while the latent variables provided by AP-CDE are

separated over the four classes.

V. DISCUSSION

The paper extends the normalizing flow neural network

to the task of CDE. It produces a generative model for

high-dimensional data that can incorporate information from

external predictors. Importantly, by using only a subset of the

one-to-one transform from the high-dimensional data, a useful

dimension reduction is achieved, in which the low-dimensional

representation is empirically sufficient to characterize the

changes of the response variable due to the predictor.

A number of neural network-based models for CDE have

appeared in the literature (see, e.g., recent reviews [51],

[52]). Nevertheless, we want to emphasize the versatility and

simplicity of the proposed approach. AP-CDE can work with

any existing normalizing flow network architecture, with only

a modification of the base distribution density from a normal

one to the product of a prior distribution and a likelihood

function.

There are several interesting directions for future work.

First, there is a connection of the strategy for new photo

synthesis —“keeping zP , sampling z̃N and pulling back via

T−1”— to the popular practice of “data augmentation in

deep learning” [53]. Conventionally, to counter the small

training sample problem, especially in image modeling, one

relies on techniques such as geometric transformations, color

space augmentation and random erasing. Nevertheless, there

is a recent trend in using another neural network for data

augmentation, such as adversarial training and neural style

transfer. The proposed AP-CDE can be considered another

solution. Second, the normalizing flow networks can be

too flexible, in the sense that they could transform a data
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distribution approximately to any latent distribution. This

is likely why the unsupervised mixture of Gaussian latent

distribution fails to explain the variations in the observed

space. The proposal of using the predictor-conditional

distribution shows that there is room to make the latent

variable more interpretable; nevertheless, caution should be

taken and additional validation methods could be developed.

SUPPLEMENTARY MATERIALS

Additional experiment results are provided in the

Supplementary Materials.
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