Search results for: substation.
28 Optimal Design of Substation Grounding Grid Based on Genetic Algorithm Technique
Authors: Ahmed Z. Gabr, Ahmed A. Helal, Hussein E. Said
Abstract:
With the incessant increase of power systems capacity and voltage grade, the safety of grounding grid becomes more and more prominent. In this paper, the designing substation grounding grid is presented by means of genetic algorithm (GA). This approach purposes to control the grounding cost of the power system with the aid of controlling grounding rod number and conductor lengths under the same safety limitations. The proposed technique is used for the design of the substation grounding grid in Khalda Petroleum Company “El-Qasr” power plant and the design was simulated by using CYMGRD software for results verification. The result of the design is highly complying with IEEE 80-2000 standard requirements.
Keywords: Genetic algorithm, optimum grounding grid design, power system analysis, power system protection, single layer model, substation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 280227 Safety Compliance of Substation Earthing Design
Authors: A. Hellany, M.Nagrial, M. Nassereddine, J. Rizk
Abstract:
As new challenges emerge in power electrical workplace safety, it is the responsibility of the systems designer to seek out new approaches and solutions that address them. Design decisions made today will impact cost, safety and serviceability of the installed systems for 40 or 50 years during the useful life for the owner. Studies have shown that this cost is an order of magnitude of 7 to 10 times the installed cost of the power distribution equipment. This paper reviews some aspects of earthing system design in power substation surrounded by residential houses. The electrical potential rise and split factors are discussed and a few recommendations are provided to achieve a safety voltage in the area beyond the boundary of the substation.Keywords: EPR, Split Factor, Earthing Design
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 426726 Application of Neuro-Fuzzy Dynamic Programming to Improve the Reactive Power and Voltage Profile of a Distribution Substation
Authors: M. Tarafdar Haque, S. Najafi
Abstract:
Improving the reactive power and voltage profile of a distribution substation is investigated in this paper. The purpose is to properly determination of the shunt capacitors on/off status and suitable tap changer (TC) position of a substation transformer. In addition, the limitation of secondary bus voltage, the maximum allowable number of switching operation in a day for on load tap changer and on/off status of capacitors are taken into account. To achieve these goals, an artificial neural network (ANN) is designed to provide preliminary scheduling. Input of ANN is active and reactive powers of transformer and its primary and secondary bus voltages. The output of ANN is capacitors on/off status and TC position. The preliminary schedule is further refined by fuzzy dynamic programming in order to reach the final schedule. The operation of proposed method in Q/V improving is compared with the results obtained by operator operation in a distribution substation.Keywords: Neuro-fuzzy, Dynamic programming, Reactive power, Voltage profile.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 162725 Interoperability and Performance Analysis of IEC61850 Based Substation Protection System
Authors: Ming-Ta Yang, Jyh-Cherng Gu, Po-Chun Lin, Yen-Lin Huang, Chun-Wei Huang, Jin-Lung Guan
Abstract:
Since IEC61850 substation communication standard represents the trend to develop new generations of Substation Automation System (SAS), many IED manufacturers pursue this technique and apply for KEMA. In order to put on the market to meet customer demand as fast as possible, manufacturers often apply their products only for basic environment standard certification but claim to conform to IEC61850 certification. Since verification institutes generally perform verification tests only on specific IEDs of the manufacturers, the interoperability between all certified IEDs cannot be guaranteed. Therefore the interoperability between IEDs from different manufacturers needs to be tested. Based upon the above reasons, this study applies the definitions of the information models, communication service, GOOSE functionality and Substation Configuration Language (SCL) of the IEC61850 to build the concept of communication protocols, and build the test environment. The procedures of the test of the data collection and exchange of the P2P communication mode and Client / Server communication mode in IEC61850 are outlined as follows. First, test the IED GOOSE messages communication capability from different manufacturers. Second, collect IED data from each IED with SCADA system and use HMI to display the SCADA platform. Finally, problems generally encountered in the test procedure are summarized.Keywords: GOOSE, IEC61850, IED, SCADA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 536724 Lightning Protection Systems Design for Substations by Using Masts and Matlab
Authors: Le Viet Dung, K. Petcharaks
Abstract:
The economical criterion is accounted as the objective function to develop a computer program for designing lightning protection systems for substations by using masts and Matlab in this work. Masts are needed to be placed at desired locations; the program will then show mast heights whose sum is the smallest, i.e. satisfies the economical criterion. The program is helpful for engineers to quickly design a lightning protection system for a substation. To realize this work, methodology and limited conditions of the program, as well as an example of the program result, were described in this paper.Keywords: lightning, protection, substation, computer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 865023 Earth Grid Safety Consideration: Civil Upgrade Works for an Energised Substation
Authors: M. Nassereddine, A. Hellany, M. Nagrial, J. Rizk
Abstract:
The demand on High voltage (HV) infrastructures is growing due to the corresponding growth in industries and population. Many areas are being developed and therefore require additional electrical power to comply with the demand. Substation upgrade is one of the rapid solutions to ensure the continuous supply of power to customers. This upgrade requires civil modifications to structures and fences. The civil work requires excavation and steel works that may create unsafe touch conditions. This paper presents a brief theoretical overview of the touch voltage inside and around substations and uses CDEGS software to simulate a case study.
Keywords: Earth safety, High Voltage, AC interference, Earthing Design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 222122 Impact of Harmonic Resonance and V-THD in Sohar Industrial Port–C Substation
Authors: R. S. Al Abri, M. H. Albadi, M. H. Al Abri, U. K. Al Rasbi, M. H. Al Hasni, S. M. Al Shidi
Abstract:
This paper presents an analysis study on the impacts of the changes of the capacitor banks, the loss of a transformer, and the installation of distributed generation on the voltage total harmonic distortion and harmonic resonance. The study is applied in a real system in Oman, Sohar Industrial Port–C Substation Network. Frequency scan method and Fourier series analysis method are used with the help of EDSA software. Moreover, the results are compared with limits specified by national Oman distribution code.Keywords: Power quality, capacitor bank, voltage total harmonics distortion, harmonic resonance, frequency scan.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 206821 Power Frequency Magnetic Field Survey in Indoor Power Distribution Substation in Egypt
Authors: Ahmed Hossam_ ElDin, Ahmed Farag, Ibrahim Madi., Hanaa Karawia
Abstract:
In our modern society electricity is vital to our health, safety, comfort and well-being. While our daily use of electricity is often taken for granted, public concern has arisen about potential adverse health effects from electric and magnetic – electromagnetic – fields (EMFs) produced by our use of electricity. This paper aims to compare between the measured magnetic field values and the simulated models for the indoor medium to low voltage (MV/LV) distribution substations. To calculate the magnetic flux density in the substations, interactive software SUBCALC is used which is based on closed form solution of the Biot-Savart law with 3D conductor model. The comparison between the measured values and the simulated models was acceptable. However there were some discrepancies, as expected, may be due to the current variation during measurements.Keywords: Distribution substation, magnetic field, measurement, simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 229820 Investigation and Congestion Management to Solvethe Over-Load Problem of Shiraz Substation in FREC
Authors: M Nayeripour, E. Azad, A. Roosta, T. Niknam
Abstract:
In this paper, the transformers over-load problem of Shiraz substation in Fars Regional Electric Company (FREC) is investigated for a period of three years plan. So the suggestions for using phase shifting transformer (PST) and unified power flow controller (UPFC) in order to solve this problem are examined in details and finally, some economical and practical designs will be given in order to solve the related problems. Practical consideration and using the basic and fundamental concept of powers in transmission lines in order to find the economical design are the main advantages of this research. The simulation results of the integrated overall system with different designs compare them base on economical and practical aspects to solve the over-load and loss-reduction.
Keywords: Congestion management, Phase shifting transformer(PST), Unified power flow controller (UPFC), Transmission lines.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 199919 Optimal Analysis of Grounding System Design for Distribution Substation
Authors: T. Lantharthong, N. Rugthaicharoencheep, A. Phayomhom
Abstract:
This paper presents the electrical effect of two neighboring distribution substation during the construction phase. The size of auxiliary grounding grid have an effect on entire grounding system. The bigger the size of auxiliary grounding grid, the lower the GPR and maximum touch voltage, with the exception that when the two grids are unconnected, i.e. the bigger the size of auxiliary grounding grid, the higher the maximum step voltage. The results in this paper could be served as design guideline of grounding system, and perhaps remedy of some troublesome grounding grids in power distribution’s system. Modeling and simulation is carried out on the Current Distribution Electromagnetic interference Grounding and Soil structure (CDEGS) program. The simulation results exhibit the design and analysis of power system grounding and perhaps could be set as a standard in grounding system design and modification in distribution substations.
Keywords: Grounding System, Touch Voltage, Step Voltage, Safety Criteria.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 268018 Using Game Engines in Lightning Shielding: The Application of the Rolling Spheres Method on Virtual As-Built Power Substations
Authors: Yuri A. Gruber, Matheus Rosendo, Ulisses G. A. Casemiro, Klaus de Geus, Rafael T. Bee
Abstract:
Lightning strikes can cause severe negative impacts to the electrical sector causing direct damage to equipment as well as shutdowns, especially when occurring in power substations. In order to mitigate this problem, a meticulous planning of the power substation protection system is of vital importance. A critical part of this is the distribution of shielding wires through the substation, which creates a 3D imaginary protection mesh similar to a circus tarpaulin. Equipment enclosed in the volume defined by that 3D mesh is considered protected against lightning strikes. The use of traditional methods of longitudinal cutting analysis based on 2D CAD tools makes the process laborious and the results obtained may not guarantee satisfactory protection of electrical equipment. This work describes the application of a Game Engine to the problem of lightning protection of power substations providing the visualization of the 3D protection mesh, the amount of protected components and the highlight of equipment which remain unprotected. In addition, aspects regarding the implementation and the advantages of approaching the problem using Unreal® Engine 4 are described. In order to validate results, a comparison with traditional 2D methods is applied to the same case study to which the proposed technique has been applied. Finally, a comparative study involving different levels of protection using the technique developed in this work is presented, showing that modern game engines can be a powerful accessory for simulations in several areas of engineering.
Keywords: Game engine, rolling spheres method, substation protection, UE4, Unreal® Engine 4.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 123817 Effect of Distributed Generators on the Optimal Operation of Distribution Networks
Authors: J. Olamaei , T. Niknam, M. Nayeripour
Abstract:
This paper presents an approach for daily optimal operation of distribution networks considering Distributed Generators (DGs). Due to private ownership of DGs, a cost based compensation method is used to encourage DGs in active and reactive power generation. The objective function is summation of electrical energy generated by DGs and substation bus (main bus) in the next day. A genetic algorithm is used to solve the optimal operation problem. The approach is tested on an IEEE34 buses distribution feeder.
Keywords: Distributed Generator, Daily Optimal Operation, Genetic Algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 163016 Replacement of Power Transformers basis on Diagnostic Results and Load Forecasting
Authors: G. Gavrilovs, O. Borscevskis
Abstract:
This paper describes interconnection between technical and economical making decision. The reason of this dealing could be different: poor technical condition, change of substation (electrical network) regime, power transformer owner budget deficit and increasing of tariff on electricity. Establishing of recommended practice as well as to give general advice and guidance in economical sector, testing, diagnostic power transformers to establish its conditions, identify problems and provide potential remedies.Keywords: Diagnostic results, load forecasting, power supplysystem, replacement of power transformer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 206515 Dependence of Particle Initiated PD Characteristics on Size and Position of Metallic Particle Adhering to the Spacer Surface in GIS
Authors: F. N. Budiman, Y. Khan, A. A. Khan, A. Beroual, N. H. Malik, A. A. Al-Arainy
Abstract:
It is well known that metallic particles reduce the reliability of Gas-Insulated Substation (GIS) equipments by initiating partial discharge (PDs) that can lead to breakdown and complete failure of GIS. This paper investigates the characteristics of PDs caused by metallic particle adhering to the solid spacer. The PD detection and measurement were carried out by using IEC 60270 method with particles of different sizes and at different positions on the spacer surface. The results show that a particle of certain size at certain position possesses a unique PD characteristic as compared to those caused by particles of different sizes and/or at different positions. Therefore PD characteristics may be useful for the particle size and position identification.Keywords: Particle, partial discharge, GIS, spacer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 161514 Role of GIS in Distribution Power Systems
Authors: N. Rezaee, M Nayeripour, A. Roosta, T. Niknam
Abstract:
With the prevalence of computer and development of information technology, Geographic Information Systems (GIS) have long used for a variety of applications in electrical engineering. GIS are designed to support the analysis, management, manipulation and mapping of spatial data. This paper presents several usages of GIS in power utilities such as automated route selection for the construction of new power lines which uses a dynamic programming model for route optimization, load forecasting and optimizing planning of substation-s location and capacity with comprehensive algorithm which involves an accurate small-area electric load forecasting procedure and simulates the different cost functions of substations.
Keywords: Geographic information systems (GIS), optimallocation and capacity, power distribution planning, route selection, spatial load forecasting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 550313 Dynamic Load Modeling for KHUZESTAN Power System Voltage Stability Studies
Authors: M. Sedighizadeh, A. Rezazadeh
Abstract:
Based on the component approach, three kinds of dynamic load models, including a single –motor model, a two-motor model and composite load model have been developed for the stability studies of Khuzestan power system. The study results are presented in this paper. Voltage instability is a dynamic phenomenon and therefore requires dynamic representation of the power system components. Industrial loads contain a large fraction of induction machines. Several models of different complexity are available for the description investigations. This study evaluates the dynamic performances of several dynamic load models in combination with the dynamics of a load changing transformer. Case study is steel industrial substation in Khuzestan power systems.Keywords: Dynamic load, modeling, Voltage Stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 185812 Microgrid: Low Power Network Topology and Control
Authors: Amit Sachan
Abstract:
The network designing and data modeling developments which are the two significant research tasks in direction to tolerate power control of Microgrid concluded using IEC 61850 data models and facilities. The current casing areas of IEC 61580 include infrastructures in substation automation systems, among substations and to DERs. So, for LV microgrid power control, previously using the IEC 61850 amenities to control the smart electrical devices, we have to model those devices as IEC 61850 data models and design a network topology to maintenance all-in-one communiqué amid those devices. In adding, though IEC 61850 assists modeling a portion by open-handed several object models for common functions similar measurement, metering, monitoring…etc., there are motionless certain missing smithereens for building a multiplicity of functions for household appliances like tuning the temperature of an electric heater or refrigerator.
Keywords: IEC 61850, RCMC, HCMC, DER Unit Controller.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 249711 Effect of Integrity of the Earthing System on the Rise of Earth Potential
Authors: N. Ullah, A. Haddad, F. Van Der Linde
Abstract:
This paper investigates the effects of breaks in bonds, breaks in the earthing system and breaks in earth wire on the rise of the earth potential (EPR) in a substation and at the transmission tower bases using various models of an L6 tower. Different approaches were adopted to examine the integrity of the earthing system and the terminal towers. These effects were investigated to see the associated difference in the EPR magnitudes with respect to a healthy system at various locations. Comparisons of the computed EPR magnitudes were then made between the healthy and unhealthy system to detect any difference. The studies were conducted at power frequency for a uniform soil with different soil resistivities. It was found that full breaks in the double bond of the terminal towers increase the EPR significantly at the fault location, while they reduce EPR at the terminal tower bases. A fault on the isolated section of the grid can result in EPR values up to 8 times of those on a healthy system at higher soil resistivities, provided that the extended earthing system stays connected to the grid.Keywords: Bonding, earthing, EPR, integrity, system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 172610 Reliability Modeling and Data Analysis of Vacuum Circuit Breaker Subject to Random Shocks
Authors: Rafik Medjoudj, Rabah Medjoudj, D. Aissani
Abstract:
The electrical substation components are often subject to degradation due to over-voltage or over-current, caused by a short circuit or a lightning. A particular interest is given to the circuit breaker, regarding the importance of its function and its dangerous failure. This component degrades gradually due to the use, and it is also subject to the shock process resulted from the stress of isolating the fault when a short circuit occurs in the system. In this paper, based on failure mechanisms developments, the wear out of the circuit breaker contacts is modeled. The aim of this work is to evaluate its reliability and consequently its residual lifetime. The shock process is based on two random variables such as: the arrival of shocks and their magnitudes. The arrival of shocks was modeled using homogeneous Poisson process (HPP). By simulation, the dates of short-circuit arrivals were generated accompanied with their magnitudes. The same principle of simulation is applied to the amount of cumulative wear out contacts. The objective reached is to find the formulation of the wear function depending on the number of solicitations of the circuit breaker.
Keywords: reliability, short-circuit, models of shocks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19379 A Novel Method to Evaluate Line Loadability for Distribution Systems with Realistic Loads
Authors: K. Nagaraju, S. Sivanagaraju, T. Ramana, V. Ganesh
Abstract:
This paper presents a simple method for estimation of additional load as a factor of the existing load that may be drawn before reaching the point of line maximum loadability of radial distribution system (RDS) with different realistic load models at different substation voltages. The proposed method involves a simple line loadability index (LLI) that gives a measure of the proximity of the present state of a line in the distribution system. The LLI can use to assess voltage instability and the line loading margin. The proposed method also compares with the existing method of maximum loadability index [10]. The simulation results show that the LLI can identify not only the weakest line/branch causing system instability but also the system voltage collapse point when it is near one. This feature enables us to set an index threshold to monitor and predict system stability on-line so that a proper action can be taken to prevent the system from collapse. To demonstrate the validity of the proposed algorithm, computer simulations are carried out on two bus and 69 bus RDS.Keywords: line loadability index, line loading margin, maximum line loadability, system stability, radial distribution system
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19598 Quasi Multi-Pulse Back-to-Back Static Synchronous Compensator Employing Line Frequency Switching 2-Level GTO Inverters
Authors: A.M. Vural, K.C. Bayindir
Abstract:
Back-to-back static synchronous compensator (BtBSTATCOM) consists of two back-to-back voltage-source converters (VSC) with a common DC link in a substation. This configuration extends the capabilities of conventional STATCOM that bidirectional active power transfer from one bus to another is possible. In this paper, VSCs are designed in quasi multi-pulse form in which GTOs are triggered only once per cycle in PSCAD/EMTDC. The design details of VSCs as well as gate switching circuits and controllers are fully represented. Regulation modes of BtBSTATCOM are verified and tested on a multi-machine power system through different simulation cases. The results presented in the form of typical time responses show that practical PI controllers are almost robust and stable in case of start-up, set-point change, and line faults.
Keywords: Flexible AC Transmission Systems (FACTS), Backto-Back Static Synchronous Compensator (BtB-STATCOM), quasi multi-pulse voltage source converter, active power transfer; voltage control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21467 Technique for Grounding System Design in Distribution Substation
Authors: N. Rugthaicharoencheep, A. Charlangsut, B. Ainsuk, A. Phayomhom
Abstract:
This paper presents the significant factor and give some suggestion that should know before design. The main objective of this paper is guide the first step for someone who attends to design of grounding system before study in details later. The overview of grounding system can protect damage from fault such as can save a human life and power system equipment. The unsafe conditions have three cases. Case 1) maximum touch voltage exceeds the safety criteria. In this case, the conductor compression ratio of the ground gird should be first adjusted to have optimal spacing of ground grid conductors. If it still over limit, earth resistivity should be consider afterward. Case 2) maximum step voltage exceeds the safety criteria. In this case, increasing the number of ground grid conductors around the boundary can solve this problem. Case 3) both of maximum touch and step voltage exceed the safety criteria. In this case, follow the solutions explained in case 1 and case 2. Another suggestion, vary depth of ground grid until maximum step and touch voltage do not exceed the safety criteria.Keywords: Grounding System, Touch Voltage, Step Voltage, Safety Criteria.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35286 High-Frequency Spectrum Analysis of VFTO Generated inside Gas Insulated Substations
Authors: M. A. Abd-Allah, A. Said, Ebrahim A. Badran
Abstract:
Worldwide many electrical equipment insulation failures have been reported caused by switching operations, while those equipments had previously passed all the standard tests and complied with all quality requirements. The problem is mostly associated with high-frequency overvoltages generated during opening or closing of a switching device. The transients generated during switching operations in a Gas Insulated Substation (GIS) are associated with high frequency components in the order of few tens of MHz. The frequency spectrum of the VFTO generated in the 220/66 kV Wadi-Hoff GIS is analyzed using Fast Fourier Transform technique. The main frequency with high voltage amplitude due to the operation of disconnector (DS5) is 5 to 10 MHz, with the highest amplitude at 9 MHz. The main frequency with high voltage amplitude due to the operation of circuit breaker (CB5) is 1 to 25 MHz, with the highest amplitude at 2 MHz. Mitigating techniques damped the oscillating frequencies effectively. The using of cable terminal reduced the frequency oscillation effectively than that of OHTL terminal. The using of a shunt capacitance results in vanishing the high frequency components. Ferrite rings reduces the high frequency components effectively especially in the range 2 to 7 MHz. The using of RC and RL filters results in vanishing the high frequency components.
Keywords: GIS, VFTO, Mitigation Techniques, Frequency spectrum, FFT, EMTP/ATP.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25255 Vibration and Operation Technical Consideration before Field Balance of Gas Turbine Utilities (In Iran Power Plants SIEMENS V94.2 Gas Turbines)
Authors: Omid A. Zargar
Abstract:
One of the most challenging times in operation of big industrial plant or utilities is the time that alert lamp of Bently Nevada connection in main board substation turn on and show the alert condition of machine. All of the maintenance groups usually make a lot of discussion with operation and together rather this alert signal is real or fake. This will be more challenging when condition monitoring vibrationdata shows 1X(X=current rotor frequency) in fast Fourier transform(FFT) and vibration phase trends show 90 degree shift between two non-contact probedirections with overall high radial amplitude amounts. In such situations, CM (condition monitoring) groups usually suspicious about unbalance in rotor. In this paper, four critical case histories related to SIEMENS V94.2 Gas Turbines in Iran power industry discussed in details. Furthermore, probe looseness and fake (unreal) trip in gas turbine power plants discussed. In addition, critical operation decision in alert condition in power plants discussed in details.
Keywords: Gas turbine, field balance, turbine compressors, balancing tools, balancing data collectors.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 41224 The Calculation of Electromagnetic Fields (EMF) in Substations of Shopping Centers
Authors: Adnan Muharemovic, Hidajet Salkic, Mario Klaric, Irfan Turkovic, Aida Muharemovic
Abstract:
In nature, electromagnetic fields always appear like atmosphere static electric field, the earth's static magnetic field and the wide-rang frequency electromagnetic field caused by lightening. However, besides natural electromagnetic fields (EMF), today human beings are mostly exposed to artificial electromagnetic fields due to technology progress and outspread use of electrical devices. To evaluate nuisance of EMF, it is necessary to know field intensity for every frequency which appears and compare it with allowed values. Low frequency EMF-s around transmission and distribution lines are time-varying quasi-static electromagnetic fields which have conservative component of low frequency electrical field caused by charges and eddy component of low frequency magnetic field caused by currents. Displacement current or field delay are negligible, so energy flow in quasi-static EMF involves diffusion, analog like heat transfer. Electrical and magnetic field can be analyzed separately. This paper analysis the numerical calculations in ELF-400 software of EMF in distribution substation in shopping center. Analyzing the results it is possible to specify locations exposed to the fields and give useful suggestion to eliminate electromagnetic effect or reduce it on acceptable level within the non-ionizing radiation norms and norms of protection from EMF.Keywords: Electromagnetic Field, Density of Electromagnetic Flow, Place of Proffesional Exposure, Place of Increased Sensitivity
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38563 Reduction of Power Losses in Distribution Systems
Authors: Y. Al-Mahroqi, I.A. Metwally, A. Al-Hinai, A. Al-Badi
Abstract:
Losses reduction initiatives in distribution systems have been activated due to the increasing cost of supplying electricity, the shortage in fuel with ever-increasing cost to produce more power, and the global warming concerns. These initiatives have been introduced to the utilities in shape of incentives and penalties. Recently, the electricity distribution companies in Oman have been incentivized to reduce the distribution technical and non-technical losses with an equal annual reduction rate for 6 years. In this paper, different techniques for losses reduction in Mazoon Electricity Company (MZEC) are addressed. In this company, high numbers of substation and feeders were found to be non-compliant with the Distribution System Security Standard (DSSS). Therefore, 33 projects have been suggested to bring non-complying 29 substations and 28 feeders to meet the planed criteria and to comply with the DSSS. The largest part of MZEC-s network (South Batinah region) was modeled by ETAP software package. The model has been extended to implement the proposed projects and to examine their effects on losses reduction. Simulation results have shown that the implementation of these projects leads to a significant improvement in voltage profile, and reduction in the active and the reactive power losses. Finally, the economical analysis has revealed that the implementation of the proposed projects in MZEC leads to an annual saving of about US$ 5 million.Keywords: Losses Reduction, Technical Losses, Non-Technical Losses, Cost Analysis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 93682 Small Scale Solar-Photovoltaic and Wind Pump-Storage Hydroelectric System for Remote Residential Applications
Authors: Seshi Reddy Kasu, Florian Misoc
Abstract:
The use of hydroelectric pump-storage system at large scale, MW-size systems, is already widespread around the world. Designed for large scale applications, pump-storage station can be scaled-down for small, remote residential applications. Given the cost and complexity associated with installing a substation further than 100 miles from the main transmission lines, a remote, independent and self-sufficient system is by far the most feasible solution. This article is aiming at the design of wind and solar power generating system, by means of pumped-storage to replace the wind and /or solar power systems with a battery bank energy storage. Wind and solar pumped-storage power generating system can reduce the cost of power generation system, according to the user's electricity load and resource condition and also can ensure system reliability of power supply. Wind and solar pumped-storage power generation system is well suited for remote residential applications with intermittent wind and/or solar energy. This type of power systems, installed in these locations, could be a very good alternative, with economic benefits and positive social effects. The advantage of pumped storage power system, where wind power regulation is calculated, shows that a significant smoothing of the produced power is obtained, resulting in a power-on-demand system’s capability, concomitant to extra economic benefits.Keywords: Battery bank, photo-voltaic, pump-storage, wind energy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 41191 Thermal Securing of Electrical Contacts inside Oil Power Transformers
Authors: Ioan Rusu
Abstract:
In the operation of power transformers of 110 kV/MV from substations, these are traveled by fault current resulting from MV line damage. Defect electrical contacts are heated when they are travelled from fault currents. In the case of high temperatures when 135 °C is reached, the electrical insulating oil in the vicinity of the electrical faults comes into contact with these contacts releases gases, and activates the electrical protection. To avoid auto-flammability of electro-insulating oil, we designed a security system thermal of electrical contact defects by pouring fire-resistant polyurethane foam, mastic or mortar fire inside a cardboard electro-insulating cylinder. From practical experience, in the exploitation of power transformers of 110 kV/MT in oil electro-insulating were recorded some passing disconnecting commanded by the gas protection at internal defects. In normal operation and in the optimal load, nominal currents do not require thermal secure contacts inside electrical transformers, contacts are made at the fabrication according to the projects or to repair by solder. In the case of external short circuits close to the substation, the contacts inside electrical transformers, even if they are well made in sizes of Rcontact = 10‑6 Ω, are subjected to short-circuit currents of the order of 10 kA-20 kA which lead to the dissipation of some significant second-order electric powers, 100 W-400 W, on contact. At some internal or external factors which action on electrical contacts, including electrodynamic efforts at short-circuits, these factors could be degraded over time to values in the range of 10-4 Ω to 10-5 Ω and if the action time of protection is great, on the order of seconds, power dissipation on electrical contacts achieve high values of 1,0 kW to 40,0 kW. This power leads to strong local heating, hundreds of degrees Celsius and can initiate self-ignition and burning oil in the vicinity of electro-insulating contacts with action the gas relay. Degradation of electrical contacts inside power transformers may not be limited for the duration of their operation. In order to avoid oil burn with gas release near electrical contacts, at short-circuit currents 10 kA-20 kA, we have outlined the following solutions: covering electrical contacts in fireproof materials that would avoid direct burn oil at short circuit and transmission of heat from electrical contact along the conductors with heat dissipation gradually over time, in a large volume of cooling. Flame retardant materials are: polyurethane foam, mastic, cement (concrete). In the normal condition of operation of transformer, insulating of conductors coils is with paper and insulating oil. Ignition points of its two components respectively are approximated: 135 °C heat for oil and 200 0C for paper. In the case of a faulty electrical contact, about 10-3 Ω, at short-circuit; the temperature can reach for a short time, a value of 300 °C-400 °C, which ignite the paper and also the oil. By burning oil, there are local gases that disconnect the power transformer. Securing thermal electrical contacts inside the transformer, in cardboard tube with polyurethane foams, mastik or cement, ensures avoiding gas release and also gas protection working.
Keywords: Power transformer, oil insulatation, electric contacts, gases, gas relay.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 647