Search results for: solid waste composition and characteristics
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4205

Search results for: solid waste composition and characteristics

3935 Exploration of Floristic Composition and Management of Gujar Tal in District Jaunpur

Authors: Mayank Singh, Mahendra P. Singh

Abstract:

Present paper enumerates highlights of seasonal variation in floristic composition and ecological strategies for the management of ‘Gujar Tal’ at Jaunpur in tropical semi-arid region of eastern U.P. (India). Total composition of macrophytes recorded was 47 from 26 families with maximum 6 plant species of Cyperaceae from April, 2012 to March, 2013 at certain periodic intervals. Maximum number of plants (39) was present during winter followed by (37) rainy and (27) summer seasons. The distribution pattern depicted that maximum number of plants (27) was of marshy and swampy habitats usually transitional between land and water.

Keywords: Floristic, life form, management, weeds.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1323
3934 Dry Matter, Moisture, Ash and Crude Fibre Content in Distinct Segments of ‘Durian Kampung’ Husk

Authors: Norhanim Nordin, Rosnah Shamsudin, Azrina Azlan, Mohammad Effendy Ya’acob

Abstract:

An environmental friendly approach for disposal of voluminous durian husk waste could be implemented by substituting them into various valuable commodities, such as healthcare and biofuel products. Thus, the study of composition value in each segment of durian husk was very crucial to determine the suitable proportions of nutrients that need to be added and mixed in the product. A total of 12 ‘Durian Kampung’ fruits from Sg Ruan, Pahang were selected and each fruit husk was divided into four segments and labelled as P-L (thin neck area of white inner husk), P-B (thick bottom area of white inner husk), H (green and thorny outer husk) and W (whole combination of P-B and H). Four experiments have been carried out to determine the dry matter, moisture, ash and crude fibre content. The results show that the H segment has the highest dry matter content (30.47%), while the P-B segment has the highest percentage in moisture (81.83%) and ash (6.95%) content. It was calculated that the ash content of the P-B segment has a higher rate of moisture level which causes the ash content to increase about 2.89% from the P-L segment. These data have proven that each segment of durian husk has a significant difference in terms of composition value, which might be useful information to fully utilize every part of the durian husk in the future.

Keywords: Durian husk, crude fibre content, dry matter content, moisture content.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2104
3933 Utilization of Demolished Concrete Waste for New Construction

Authors: Asif Husain, Majid Matouq Assas

Abstract:

In recent years demolished concrete waste handling and management is the new primary challenging issue faced by the countries all over the world. It is very challenging and hectic problem that has to be tackled in an indigenous manner, it is desirable to completely recycle demolished concrete waste in order to protect natural resources and reduce environmental pollution. In this research paper an experimental study is carried out to investigate the feasibility and recycling of demolished waste concrete for new construction. The present investigation to be focused on recycling demolished waste materials in order to reduce construction cost and resolving housing problems faced by the low income communities of the world. The crushed demolished concrete wastes is segregated by sieving to obtain required sizes of aggregate, several tests were conducted to determine the aggregate properties before recycling it into new concrete. This research shows that the recycled aggregate that are obtained from site make good quality concrete. The compressive strength test results of partial replacement and full recycled aggregate concrete and are found to be higher than the compressive strength of normal concrete with new aggregate.

Keywords: Demolished, concrete waste, recycle, new concrete, fresh coarse aggregate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5768
3932 The Use of Rice Husk Ash as a Stabilizing Agent in Lateritic Clay Soil

Authors: J. O. Akinyele, R. W. Salim, K. O. Oikelome, O. T. Olateju

Abstract:

Rice Husk (RH) is the major byproduct in the processing of paddy rice. The management of this waste has become a big challenge to some of the rice producers, some of these wastes are left in open dumps while some are burn in the open space, and these two actions have been contributing to environmental pollution. This study evaluates an alternative waste management of this agricultural product for use as a civil engineering material. The RH was burn in a controlled environment to form Rice Husk Ash (RHA). The RHA was mix with lateritic clay at 0, 2, 4, 6, 8, and 10% proportion by weight. Chemical test was conducted on the open burn and controlled burn RHA with the lateritic clay. Physical test such as particle size distribution, Atterberg limits test, and density test were carried out on the mix material. The chemical composition obtained for the RHA showed that the total percentage compositions of Fe2O3, SiO2 and Al2O3 were found to be above 70% (class “F” pozzolan) which qualifies it as a very good pozzolan. The coefficient of uniformity (Cu) was 8 and coefficient of curvature (Cc) was 2 for the soil sample. The Plasticity Index (PI) for the 0, 2, 4, 6, 8. 10% was 21.0, 18.8, 16.7, 14.4, 12.4 and 10.7 respectively. The work concluded that RHA can be effectively used in hydraulic barriers and as a stabilizing agent in soil stabilization.

Keywords: Rice husk ash, pozzolans, paddy rice, lateritic clay.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2784
3931 Motivations and Obstacles in the Implementation of Public Policies Encouraging the Sorting of Organic Waste: The Case of a Metropolis of 400,000 Citizens

Authors: J. P. Méreaux, E. Lamy, J. C. Lopez

Abstract:

In the face of new regulations related to waste management, it has become essential to understand the organizational process that accompanies this change. Through an experiment on the sorting of food waste in the community of Grand Reims, this research explores the acceptability, the behavior and the tools needed to manage the change. Our position within a private company, SUEZ, a key player in the waste management sector, has allowed us to set up a driven team with concerned public organizations. The research was conducted through a theoretical study combined with semi-structured interviews. This qualitative method allowed us to conduct exchanges with users to assess the motivations and obstacles linked to the sorting of bio-waste. The results revealed the action levers necessary for the project's sustainability. Making the sorting gestures accessible and simplified makes it possible to target all populations. Playful communication adapted to each type of persona allows the user and stakeholders to be placed at the heart of the strategy. These recommendations are spotlighted thanks to the combination of theoretical and operational contributions, with the aim of facilitating the new public management and inducing the notion of performance while providing an example of added value.

Keywords: Bio-waste, Corporate Social Responsibility, CSR, stakeholders, public policies.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 79
3930 Temperature Effect on the Solid-State Synthesis of Dehydrated Zinc Borates

Authors: N. Tugrul, N. Baran Acarali, A. S. Kipcak, E. Moroydor Derun, S. Piskin

Abstract:

Turkey has 72 % of total world boron reserves on the basis of B2O3.Borates that is a refined form of boron minerals have a wide range of applications. Zinc borates can be used as multifunctional synergistic additives. The most important properties are low solubility in water and high dehydration temperature. Zinc borates dehydrate above 290°C and anhydrous zinc borate has thermal resistance about 400°C. Zinc borates can be synthesized using several methods such as hydrothermal and solid-state processes. In this study, the solid-state method was applied between 500 and 800°C using the starting materials of ZnO and H3BO3 with 1:4 mole ratio. The reaction time was determined as 4 hours after some preliminary experiments. After the synthesis, the crystal structure and the morphology of the products were examined by XRay Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR) and Raman Spectrometer. As a result the form of ZnB4O7 was synthesized with the highest crystal score at 800°C.

Keywords: Raman, solid-state method, zinc borate, XRD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2251
3929 Mathematical Modelling of Transport Phenomena in Radioactive Waste-Cement-Bentonite Matrix

Authors: Ilija Plecas, Uranija Kozmidis-Luburic, Radojica Pesic

Abstract:

The leaching rate of 137Cs from spent mix bead (anion and cation) exchange resins in a cement-bentonite matrix has been studied. Transport phenomena involved in the leaching of a radioactive material from a cement-bentonite matrix are investigated using three methods based on theoretical equations. These are: the diffusion equation for a plane source an equation for diffusion coupled to a firstorder equation and an empirical method employing a polynomial equation. The results presented in this paper are from a 25-year mortar and concrete testing project that will influence the design choices for radioactive waste packaging for a future Serbian radioactive waste disposal center.

Keywords: bentonite, cement , radioactive waste, composite, disposal, diffusion

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2248
3928 Neutralization of Alkaline Waste-Waters using a Blend of Microorganisms

Authors: Rita Kumar, Alka Sharma, Purnima Dhall, Niha M. Kulshreshtha, Anil Kumar

Abstract:

The efficient operation of any biological treatment process requires pre-treatment of incompatible pollutants such as acids, bases, oil, toxic substances, etc. which hamper the treatment of other major components which are otherwise degradable. The pre-treatment of alkaline waste-waters, generated from various industries like textile, paper & pulp, potato-processing industries, etc., having a pH of 10 or higher, is essential. The pre-treatment, i.e., neutralization of such alkaline waste-waters can be achieved by chemical as well as biological means. However, the biological pretreatment offers better package over the chemical means by being safe and economical. The biological pre-treatment can be accomplished by using a blend of microorganisms able to withstand such harsh alkaline conditions. In the present study, for the proper pre-treatment of alkaline waste-waters, a package of alkalophilic bacteria is formulated to neutralise the alkaline pH of the industrial waste-waters. The developed microbial package is cost-effective as well as environmental friendly.

Keywords: alkaline, alkalophilic bacteria, biological, pollutants, textile.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3046
3927 Comparison of Transparent Nickel Doped Cobalt Sulfide and Platinum Counter Electrodes Used in Quasi-Solid State Dye Sensitized Solar Cells

Authors: Dimitra Sygkridou, Dimitrios Karageorgopoulos, Elias Stathatos, Evangelos Vitoratos

Abstract:

Transparent nickel doped cobalt sulfide was fabricated on a SnO2:F electrode and tested as an efficient electrocatalyst and as an alternative to the expensive platinum counter electrode. In order to investigate how this electrode could affect the electrical characteristics of a dye-sensitized solar cell, we manufactured cells with the same TiO2 photoanode sensitized with dye (N719) and employing the same quasi-solid electrolyte, altering only the counter electrode used. The cells were electrically and electrochemically characterized and it was observed that the ones with the Ni doped CoS2 outperformed the efficiency of the cells with the Pt counter electrode (3.76% and 3.44% respectively). Particularly, the higher efficiency of the cells with the Ni doped CoS2 counter electrode (CE) is mainly because of the enhanced photocurrent density which is attributed to the enhanced electrocatalytic ability of the CE and the low charge transfer resistance at the CE/electrolyte interface.

Keywords: Counter electrodes, dye-sensitized solar cells, quasisolid state electrolyte, transparency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2215
3926 Modeling of Kepler-Poinsot Solid Using Isomorphic Polyhedral Graph

Authors: Hidetoshi Nonaka

Abstract:

This paper presents an interactive modeling system of uniform polyhedra using the isomorphic graphs. Especially, Kepler-Poinsot solids are formed by modifications of dodecahedron and icosahedron.

Keywords: Kepler-Poinsot solid, Shape modeling, Polyhedralgraph, Graph drawing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1750
3925 Taguchi Robust Design for Optimal Setting of Process Wastes Parameters in an Automotive Parts Manufacturing Company

Authors: Charles Chikwendu Okpala, Christopher Chukwutoo Ihueze

Abstract:

As a technique that reduces variation in a product by lessening the sensitivity of the design to sources of variation, rather than by controlling their sources, Taguchi Robust Design entails the designing of ideal goods, by developing a product that has minimal variance in its characteristics and also meets the desired exact performance. This paper examined the concept of the manufacturing approach and its application to brake pad product of an automotive parts manufacturing company. Although the firm claimed that only defects, excess inventory, and over-production were the few wastes that grossly affect their productivity and profitability, a careful study and analysis of their manufacturing processes with the application of Single Minute Exchange of Dies (SMED) tool showed that the waste of waiting is the fourth waste that bedevils the firm. The selection of the Taguchi L9 orthogonal array which is based on the four parameters and the three levels of variation for each parameter revealed that with a range of 2.17, that waiting is the major waste that the company must reduce in order to continue to be viable. Also, to enhance the company’s throughput and profitability, the wastes of over-production, excess inventory, and defects with ranges of 2.01, 1.46, and 0.82, ranking second, third, and fourth respectively must also be reduced to the barest minimum. After proposing -33.84 as the highest optimum Signal-to-Noise ratio to be maintained for the waste of waiting, the paper advocated for the adoption of all the tools and techniques of Lean Production System (LPS), and Continuous Improvement (CI), and concluded by recommending SMED in order to drastically reduce set up time which leads to unnecessary waiting.

Keywords: Taguchi Robust Design, signal to noise ratio, Single Minute Exchange of Dies, lean production system, waste.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 919
3924 Valorization of Residues from Forest Industry for the Generation of Energy

Authors: M. A. Amezcua-Allieri, E. Torres, J. A. Zermeño Eguía-Lis, M. Magdaleno, L. A. Melgarejo, E. Palmerín, A. Rosas, D. López, J. Aburto

Abstract:

The use of biomass to produce renewable energy is one of the forms that can be used to reduce the impact of energy production. Like any other energy resource, there are limitations for biomass use, and it must compete not only with fossil fuels but also with other renewable energy sources such as solar or wind energy. Combustion is currently the most efficient and widely used waste-to-energy process, in the areas where direct use of biomass is possible, without the need to make large transfers of raw material. Many industrial facilities can use agricultural or forestry waste, straw, chips, bagasse, etc. in their thermal systems without making major transformations or adjustments in the feeding to the ovens, making this waste an attractive and cost-effective option in terms of availability, access, and costs. In spite of the facilities and benefits, the environmental reasons (emission of gases and particulate material) are decisive for its use for energy purpose. This paper describes a valorization of residues from forest industry to generate energy, using a case study.

Keywords: Bioenergy, forest waste, life-cycle assessment, waste-to-energy, electricity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 758
3923 Maximizing Nitrate Absorption of Agricultural Waste Water in a Tubular Microalgae Reactor by Adapting the Illumination Spectrum

Authors: J. Martin, A. Dannenberg, G. Detrell, R. Ewald, S. Fasoulas

Abstract:

Microalgae-based photobioreactors (PBR) for Life Support Systems (LSS) are currently being investigated for future space missions such as a crewed base on planets or moons. Biological components may help reducing resupply masses by closing material mass flows with the help of regenerative components. Via photosynthesis, the microalgae use CO2, water, light and nutrients to provide oxygen and biomass for the astronauts. These capabilities could have synergies with Earth applications that tackle current problems and the developed technologies can be transferred. For example, a current worldwide discussed issue is the increased nitrate and phosphate pollution of ground water from agricultural waste waters. To investigate the potential use of a biological system based on the ability of the microalgae to extract and use nitrate and phosphate for the treatment of polluted ground water from agricultural applications, a scalable test stand is being developed. This test stand investigates the maximization of intake rates of nitrate and quantifies the produced biomass and oxygen. To minimize the required energy, for the uptake of nitrate from artificial waste water (AWW) the Flashing Light Effect (FLE) and the adaption of the illumination spectrum were realized. This paper describes the composition of the AWW, the development of the illumination unit and the possibility of non-invasive process optimization and control via the adaption of the illumination spectrum and illumination cycles. The findings were a doubling of the energy related growth rate by adapting the illumination setting.

Keywords: Microalgae, illumination, nitrate uptake, flashing light effect.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 579
3922 Effects of Crushed Waste Aggregate from the Manufacture of Clay Bricks on Rendering Cement Mortar Performance

Authors: Benmalek M. Larbi, R. Harbi, S. Boukor

Abstract:

This paper reports an experimental work that aimed to investigate the effects of clay brick waste, as part of fine aggregate, on rendering mortar performance. The brick, in crushed form, was from a local brick manufacturer that was rejected due to being of-standard. It was used to replace 33.33 %, 50 %, 66.66 % and 100 % by weight of the quarry sand in mortar. Effects of the brick replacement on the mortar key properties intended for wall plastering were investigated; these are workability, compressive strength, flexural strength, linear shrinkage, water absorption by total immersion and by capillary suction. The results showed that as the brick replacement level increased, the mortar workability reduced. The linear shrinkage increases over time and decreases with the introduction of brick waste. The compressive and flexural strengths decrease with the increase of brick waste because of their great water absorption.

Keywords: Clay brick waste, mortar, properties, quarry sand.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1902
3921 A Review on Application of Phase Change Materials in Textiles Finishing

Authors: Mazyar Ahrari, Ramin Khajavi, Mehdi Kamali Dolatabadi, Tayebeh Toliyat, Abosaeed Rashidi

Abstract:

Fabric as the first and most common layer that is in permanent contact with human skin is a very good interface to provide coverage, as well as heat and cold insulation. Phase change materials (PCMs) are organic and inorganic compounds which have the capability of absorbing and releasing noticeable amounts of latent heat during phase transitions between solid and liquid phases at a low temperature range. PCMs come across phase changes (liquid-solid and solid-liquid transitions) during absorbing and releasing thermal heat; so, in order to use them for a long time, they should have been encapsulated in polymeric shells, so-called microcapsules. Microencapsulation and nanoencapsulation methods have been developed in order to reduce the reactivity of a PCM with outside environment, promoting the ease of handling, decreasing the diffusion and evaporation rates. Methods of incorporation of PCMs in textiles such as electrospinning and determining thermal properties had been summarized. Paraffin waxes catch a lot of attention due to their high thermal storage density, repeatability of phase change, thermal stability, small volume change during phase transition, chemical stability, non-toxicity, non-flammability, non-corrosive and low cost and they seem to play a key role in confronting with climate change and global warming. In this article, we aimed to review the researches concentrating on the characteristics of PCMs and new materials and methods of microencapsulation.

Keywords: Thermoregulation, phase change materials, microencapsulation, thermal energy storage, nanoencapsulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1894
3920 Retail Strategy to Reduce Waste Keeping High Profit Utilizing Taylor's Law in Point-of-Sales Data

Authors: Gen Sakoda, Hideki Takayasu, Misako Takayasu

Abstract:

Waste reduction is a fundamental problem for sustainability. Methods for waste reduction with point-of-sales (POS) data are proposed, utilizing the knowledge of a recent econophysics study on a statistical property of POS data. Concretely, the non-stationary time series analysis method based on the Particle Filter is developed, which considers abnormal fluctuation scaling known as Taylor's law. This method is extended for handling incomplete sales data because of stock-outs by introducing maximum likelihood estimation for censored data. The way for optimal stock determination with pricing the cost of waste reduction is also proposed. This study focuses on the examination of the methods for large sales numbers where Taylor's law is obvious. Numerical analysis using aggregated POS data shows the effectiveness of the methods to reduce food waste maintaining a high profit for large sales numbers. Moreover, the way of pricing the cost of waste reduction reveals that a small profit loss realizes substantial waste reduction, especially in the case that the proportionality constant  of Taylor’s law is small. Specifically, around 1% profit loss realizes half disposal at =0.12, which is the actual  value of processed food items used in this research. The methods provide practical and effective solutions for waste reduction keeping a high profit, especially with large sales numbers.

Keywords: Food waste reduction, particle filter, point of sales, sustainable development goals, Taylor's Law, time series analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 804
3919 Surface Phonon Polariton in InAlGaN Quaternary Alloys

Authors: S. S. Ng, Z. Hassan, H. Abu Hassan

Abstract:

III-nitride quaternary InxAlyGa1-x-yN alloys have experienced considerable interest as potential materials for optoelectronic applications. Despite these interesting applications and the extensive efforts to understand their fundamental properties, research on its fundamental surface property, i.e., surface phonon polariton (SPP) has not yet been reported. In fact, the SPP properties have been shown to provide application for some photonic devices. Hence, there is an absolute need for thorough studies on the SPP properties of this material. In this work, theoretical study on the SPP modes in InAlGaN quaternary alloys are reported. Attention is focus on the wurtzite (α-) structure InxAlyGa1-x-yN semi-crystal with different In composition, x ranging from 0 to 0.10 and constant Al composition, y = 0.06. The SPP modes are obtained through the theoretical simulation by means of anisotropy model. The characteristics of SP dispersion curves are discussed. Accessible results in terms of the experimental point of view are also given. Finally, the results revealed that the SPP mode of α-InxAlyGa1-x-yN semiconductors exhibits two-mode behavior.

Keywords: III-nitride semiconductor, attenuated total reflection, quaternary alloy, surface phonon polariton.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1805
3918 Streamwise Conduction of Nanofluidic Flow in Microchannels

Authors: Yew Mun Hung, Ching Sze Lim, Tiew Wei Ting, Ningqun Guo

Abstract:

The effect of streamwise conduction on the thermal characteristics of forced convection for nanofluidic flow in rectangular microchannel heat sinks under isothermal wall has been investigated. By applying the fin approach, models with and without streamwise conduction term in the energy equation were developed for hydrodynamically and thermally fully-developed flow. These two models were solved to obtain closed form analytical solutions for the nanofluid and solid wall temperature distributions and the analysis emphasized details of the variations induced by the streamwise conduction on the nanofluid heat transport characteristics. The effects of the Peclet number, nanoparticle volume fraction, thermal conductivity ratio on the thermal characteristics of forced convection in microchannel heat sinks are analyzed. Due to the anomalous increase in the effective thermal conductivity of nanofluid compared to its base fluid, the effect of streamwise conduction is expected to be more significant. This study reveals the significance of the effect of streamwise conduction under certain conditions of which the streamwise conduction should not be neglected in the forced convective heat transfer analysis of microchannel heat sinks.

Keywords: fin approach, microchannel heat sink, nanofluid, streamwise conduction

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1699
3917 Optimization of NaOH Thermo-Chemical Pretreatment to Enhance Solubilisation of Organic Food Waste by Response Surface Methodology

Authors: H. Junoh, K. Palanisamy, C. H. Yip, F. L. Pua

Abstract:

This study investigates the influence of low temperature thermo-chemical pretreatment of organic food waste on performance of COD solubilisation. Both temperature and alkaline agent were reported to have effect on solubilizing any possible biomass including organic food waste. The three independent variables considered in this pretreatment were temperature (50-90oC), pretreatment time (30-120 minutes) and alkaline concentration, sodium hydroxide, NaOH (0.7-15 g/L). The maximal condition obtained were 90oC, 15 g/L NaOH for 2 hours. Solubilisation has potential in enhancing methane production by providing high amount of soluble components at early stage during anaerobic digestion.

Keywords: Food waste, pretreatments, respond surface methodology, ANOVA, anaerobic digestion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2241
3916 Evaluation of Sensory Attributes of Snack from Maize-Moringa Seed Flour Blends

Authors: O. Aluko, M. R. Brai, A. O. Adelore

Abstract:

Healthy snack (cookie) was produced from corn flour and moringa seed flour blends. The samples were mixed in various proportions and analysed for proximate composition and functional characteristics. The healthy snack (cookies) was evaluated for sensory parameters of Colour, Crispness, Taste, Aroma and Overall Acceptability. The proximate analysis of the flour obtained from different proportion showed that proximate composition increased with increase in substitution level of moringa seed flour especially with protein, fat and crude fibre. The protein contents of samples range from 1.75 to 6.58, fat from 0.60 to 6.80, while fibre from 0.85 to 2.06. There was no significance difference in the functional properties of the blend when compared with 100% corn flour. Sensory evaluation results shows a significant difference in Colour, Taste, Crispness, Aroma and Overall Acceptability of healthy snack (cookies) sample from different blends at 5% significance level.

Keywords: Healthy snack, moringa.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3776
3915 Optimization of Growth Conditions for Acidic Protease Production from Rhizopus oligosporus through Solid State Fermentation of Sunflower Meal

Authors: Abdul Rauf, Muhammad Irfan, Muhammad Nadeem, Ishtiaq Ahmed, Hafiz Muhammad Nasir Iqbal

Abstract:

Rhizopus oligosporus was used in the present study for the production of protease enzyme under SSF. Sunflower meal was used as by-product of oil industry incorporated with organic salts was employed for the production of protease enzyme. The main purpose of the present was to study different parameters of protease productivity, its yields and to optimize basal fermentation conditions. The optimal conditions found for protease production using sunflower meal as a substrate in the present study were inoculum size (1%), substrate (Sunflower meal), substrate concentration (20 g), pH (3), cultivation period (72 h), incubation temperature (35oC), substrate to diluent-s ratio (1:2) and tween 81 (1 mL). The maximum production of protease in the presence of cheaper substrate at low concentration and stability at acidic pH, these characteristics make the strain and its enzymes useful in different industry.

Keywords: Acidic protease, Rhizopus oligosporus, Mediaoptimization, Solid state Fermentation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2956
3914 Semisolid Structure and Parameters for A360 Aluminum Alloy Prepared by Mechanical Stirring

Authors: MM.Kaykha, A. Kamarei, M. Safari, V. Arbabi

Abstract:

Semisolid metal processing uses solid–liquid slurries containing fine and globular solid particles uniformly distributed in a liquid matrix, which can be handled as a solid and flow like a liquid. In the recent years, many methods have been introduced for the production of semisolid slurries since it is scientifically sound and industrially viable with such preferred microstructures called thixotropic microstructures as feedstock materials. One such process that needs very low equipment investment and running costs is the cooling slope. In this research by using a mechanical stirrer slurry maker constructed by the authors, the effects of mechanical stirring parameters such as: stirring time, stirring temperature and stirring Speed on micro-structure and mechanical properties of A360 aluminum alloy in semi-solid forming, are investigated. It is determined that mold temperature and holding time of part in temperature of 580ºC have a great effect on micro-structure and mechanical properties(stirring temperature of 585ºC, stirring time of 20 minutes and stirring speed of 425 RPM). By optimizing the forming parameters, dendrite microstructure changes to globular and mechanical properties improves. This is because of breaking and globularzing dendrites of primary α-AL.

Keywords: Semi-Solid Forming, Mechanical properties, Shear Rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2146
3913 Effect of Zinc Oxide on Characteristics of Active Flux TIG Welds of 1050 Aluminum Plates

Authors: H. Fazlinejad, A. Halvaee

Abstract:

In this study, characteristics of ATIG welds using ZnO flux on aluminum was investigated and compared with TIG welds. Autogenously AC-ATIG bead on plate welding was applied on Al1050 plate with a coating of ZnO as the flux. Different levels of welding current and flux layer thickness was considered to study the effect of heat input and flux quantity on ATIG welds and was compared with those of TIG welds. Geometrical investigation of the weld cross sections revealed that penetration depth of the ATIG welds with ZnO flux, was increased up to 2 times in some samples compared to the TIG welds. Optical metallographic and Scanning Electron Microscopy (SEM) observations revealed similar microstructures in TIG and ATIG welds. Composition of the ATIG welds slag was also analyzed using X-ray diffraction. In both TIG and ATIG samples, the lowest values of microhardness were observed in the HAZ.

Keywords: ATIG, active flux, weld penetration, Al 1050, ZnO.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 783
3912 The Evaluation of Costs and Greenhouse Gas Reduction Using Technologies for Energy from Sewage Sludge

Authors: Futoshi Kakuta, Takashi Ishida

Abstract:

Sewage sludge is a biomass resource that can create a solid fuel and electricity. Utilizing sewage sludge as a renewable energy can contribute to the reduction of greenhouse gases. In Japan, the "National Plan for the Promotion of Biomass Utilization" and the “Priority Plan for Social Infrastructure Development" were approved at cabinet meetings in December 2010 and August 2012, respectively, to promote the energy utilization of sewage sludge. This study investigated costs and greenhouse gas emission in different sewage sludge treatments with technologies for energy from sewage sludge. Expenses were estimated based on capital costs and O&M costs including energy consumption of solid fuel plants and biogas power generation plants for sewage sludge. Results showed that the cost of sludge digestion treatment with solid fuel technologies was 8% lower than landfill disposal. The greenhouse gas emission of sludge digestion treatment with solid fuel technologies was also 6,390t as CO2 smaller than landfill disposal. Biogas power generation reduced the electricity of a wastewater treatment plant by 30% and the cost by 5%.

Keywords: Global warming counter measure, energy technology, solid fuel production, biogas.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1681
3911 Residual Modulus of Elasticity of Self-Compacting Concrete Incorporated Unprocessed Waste Fly Ash after Expose to the Elevated Temperature

Authors: Mohammed Abed, Rita Nemes, Salem Nehme

Abstract:

The present study experimentally investigated the impact of incorporating unprocessed waste fly ash (UWFA) on the residual mechanical properties of self-compacting concrete (SCC) after exposure to elevated temperature. Three mixtures of SCC have been produced by replacing the cement mass by 0%, 15% and 30% of UWFA. Generally, the fire resistance of SCC has been enhanced by replacing the cement up to 15% of UWFA, especially in case of residual modulus of elasticity which considers more sensitive than other mechanical properties at elevated temperature. However, a strong linear relationship has been observed between the residual flexural strength and modulus of elasticity, where both of them affected significantly by the cracks appearance and propagation as a result of elevated temperature. Sustainable products could be produced by incorporating unprocessed waste powder materials in the production of concrete, where the waste materials, CO2 emissions, and the energy needed for processing are reduced.

Keywords: Self-compacting high-performance concrete, unprocessed waste fly ash, fire resistance, residual modulus of elasticity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 664
3910 Fatty Acid and Amino Acid Composition in Mene maculata in The Sea of Maluku

Authors: Semuel Unwakoly, Reinner Puppela, Maresthy Rumalean, Healthy Kainama

Abstract:

Fish is a kind of food that contains many nutritions, one of those is the long chain of unsaturated fatty acids as omega-3 and omega-6 fatty acids and essential amino acid in enough amount for the necessity of our body. Like pelagic fish that found in the sea of Maluku. This research was done to identify fatty acids and amino acids composition in Moonfish (M. maculata) using transesterification reaction steps and Gas Chromatograph-Mass Spectrophotometer (GC-MS) and High-Performance Liquid Chromatography (HPLC). The result showed that fatty acids composition in Moonfish (M. maculata) contained tridecanoic acid (2.84%); palmitoleic acid (2.65%); palmitic acid (35.24%); oleic acid (6.2%); stearic acid (14.20%); and 5,8,11,14-eicosatetraenoic acid (1.29%) and 12 amino acids composition that consist of 7 essential amino acids, were leucine, isoleucine, valine, phenylalanine, methionine, lysine, and histidine, and also 5 non-essential amino acid, were tyrosine, glycine, alanine, glutamic acid, and arginine.Thus, these fishes can be used by the people to complete the necessity of essential fatty acid and amino acid.

Keywords: Moonfish (M. maculata), fatty acid, amino acid, GC-MS, HPLC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 838
3909 On Fault Diagnosis of Asynchronous Sequential Machines with Parallel Composition

Authors: Jung-Min Yang

Abstract:

Fault diagnosis of composite asynchronous sequential machines with parallel composition is addressed in this paper. An adversarial input can infiltrate one of two submachines comprising the composite asynchronous machine, causing an unauthorized state transition. The objective is to characterize the condition under which the controller can diagnose any fault occurrence. Two control configurations, state feedback and output feedback, are considered in this paper. In the case of output feedback, the exact estimation of the state is impossible since the current state is inaccessible and the output feedback is given as the form of burst. A simple example is provided to demonstrate the proposed methodology.

Keywords: Asynchronous sequential machines, parallel composition, fault diagnosis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 931
3908 Identification of the Best Blend Composition of Natural Rubber-High Density Polyethylene Blends for Roofing Applications

Authors: W. V. W. H. Wickramaarachchi, S. Walpalage, S. M. Egodage

Abstract:

Thermoplastic elastomer (TPE) is a multifunctional polymeric material which possesses a combination of excellent properties of parent materials. Basically, TPE has a rubber phase and a thermoplastic phase which gives processability as thermoplastics. When the rubber phase is partially or fully crosslinked in the thermoplastic matrix, TPE is called as thermoplastic elastomer vulcanizate (TPV). If the rubber phase is non-crosslinked, it is called as thermoplastic elastomer olefin (TPO). Nowadays TPEs are introduced into the commercial market with different products. However, the application of TPE as a roofing material is limited. Out of the commercially available roofing products from different materials, only single ply roofing membranes and plastic roofing sheets are produced from rubbers and plastics. Natural rubber (NR) and high density polyethylene (HDPE) are used in various industrial applications individually with some drawbacks. Therefore, this study was focused to develop both TPO and TPV blends from NR and HDPE at different compositions and then to identify the best blend composition to use as a roofing material. A series of blends by varying NR loading from 10 wt% to 50 wt%, at 10 wt% intervals, were prepared using a twin screw extruder. Dicumyl peroxide was used as a crosslinker for TPV. The standard properties for a roofing material like tensile properties tear strength, hardness, impact strength, water absorption, swell/gel analysis and thermal characteristics of the blends were investigated. Change of tensile strength after exposing to UV radiation was also studied. Tensile strength, hardness, tear strength, melting temperature and gel content of TPVs show higher values compared to TPOs at every loading studied, while water absorption and swelling index show lower values, suggesting TPVs are more suitable than TPOs for roofing applications. Most of the optimum properties were shown at 10/90 (NR/HDPE) composition. However, high impact strength and gel content were shown at 20/80 (NR/HDPE) composition. Impact strength, as being an energy absorbing property, is the most important for a roofing material in order to resist impact loads. Therefore, 20/80 (NR/HDPE) is identified as the best blend composition. UV resistance and other properties required for a roofing material could be achieved by incorporating suitable additives to TPVs.

Keywords: Thermoplastic elastomer, natural rubber, high density polyethylene, roofing material.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 892
3907 Optimization and Kinetic Study of Gaharu Oil Extraction

Authors: Muhammad Hazwan H., Azlina M.F., Hasfalina C.M., Zurina Z.A., Hishamuddin J

Abstract:

Gaharu that produced by Aquilaria spp. is classified as one of the most valuable forest products traded internationally as it is very resinous, fragrant and highly valuable heartwood. Gaharu has been widely used in aromatheraphy, medicine, perfume and religious practices. This work aimed to determine the factors affecting solid liquid extraction of gaharu oil using hexane as solvent under experimental condition. The kinetics of extraction was assumed and verified based on a second-order mechanism. The effect of three main factors, which were temperature, reaction time and solvent to solid ratio were investigated to achieve maximum oil yield. The optimum condition were found at temperature 65°C, 9 hours reaction time and solvent to solid ratio of 12:1 with 14.5% oil yield. The kinetics experimental data agrees and well fitted with the second order extraction model. The initial extraction rate (h) was 0.0115 gmL-1min-1; the extraction capacity (Cs) was 1.282gmL-1; the second order extraction constant (k) was 0.007 mLg-1min-1 and coefficient of determination, R2 was 0.945.

Keywords: Gaharu, solid liquid extraction, optimization, kinetics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3221
3906 Radiation Effects and Defects in InAs, InP Compounds and Their Solid Solutions InPxAs1-x

Authors: N. Kekelidze, B. Kvirkvelia, E. Khutsishvili, T. Qamushadze, D. Kekelidze, R. Kobaidze, Z. Chubinishvili, N. Qobulashvili, G. Kekelidze

Abstract:

On the basis of InAs, InP and their InPxAs1-x solid solutions, the technologies were developed and materials were created where the electron concentration and optical and thermoelectric properties do not change under the irradiation with Ф = 2∙1018 n/cm2 fluences of fast neutrons high-energy electrons (50 MeV, Ф = 6·1017 e/cm2) and 3 MeV electrons with fluence Ф = 3∙1018 e/cm2. The problem of obtaining such material has been solved, in which under hard irradiation the mobility of the electrons does not decrease, but increases. This material is characterized by high thermal stability up to T = 700 °C. The complex process of defects formation has been analyzed and shown that, despite of hard irradiation, the essential properties of investigated materials are mainly determined by point type defects.

Keywords: InAs, InP, solid solutions, irradiation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 970