Effect of Zinc Oxide on Characteristics of Active Flux TIG Welds of 1050 Aluminum Plates
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32794
Effect of Zinc Oxide on Characteristics of Active Flux TIG Welds of 1050 Aluminum Plates

Authors: H. Fazlinejad, A. Halvaee


In this study, characteristics of ATIG welds using ZnO flux on aluminum was investigated and compared with TIG welds. Autogenously AC-ATIG bead on plate welding was applied on Al1050 plate with a coating of ZnO as the flux. Different levels of welding current and flux layer thickness was considered to study the effect of heat input and flux quantity on ATIG welds and was compared with those of TIG welds. Geometrical investigation of the weld cross sections revealed that penetration depth of the ATIG welds with ZnO flux, was increased up to 2 times in some samples compared to the TIG welds. Optical metallographic and Scanning Electron Microscopy (SEM) observations revealed similar microstructures in TIG and ATIG welds. Composition of the ATIG welds slag was also analyzed using X-ray diffraction. In both TIG and ATIG samples, the lowest values of microhardness were observed in the HAZ.

Keywords: ATIG, active flux, weld penetration, Al 1050, ZnO.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.2571874

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 771


[1] Li M., Shengsun H., Bao H., Junqi S., Yonghui W., ̒Activating Flux Design for Laser Welding of Ferritic Stainless Steel ̒, Trans. Tianjin Univ. 2014, 20, 429-434.
[2] Pakdil M., C¸am G., Koc¸ak M., Erim S., “Microstructural and mechanical characterization of laser beam welded AA6056”, Mater. Sci. and Eng., 2011, 528(24), 7350– 7356
[3] Cam G., Ventzke V., Dos Santos J. F., Kocak M., Jennequin G., and Gonthier-Maurin P., “Characterisation of electron beam welded aluminum alloy”, Scie. and Tech. of Weld. Join., 1999, 4(5), 317-323.
[4] Dey, V., Pratihar, D. K., Datta, G. L., Jha, M. N., Saha, T. K., and Bapat, A. V., ̒Optimization and prediction of weldment profile in bead-on-plate welding of Al-1100 plates using electron beam ̒, Int. J Adv. Manuf. Tech., 2010, 48, 513–528.
[5] Sibillano T., Ancona A.; Berardi V.; Schingaro E.; Basile G.; Mario Lugarà P., ̒A study of the shielding gas influence on the laser beam welding of AA5083 aluminium alloys by in-process spectroscopic investigation ̒, Opt. Las. Eng., 2006, 44, 1039-1051.
[6] Zhao Y.B., Lei Z.L., Chen Y.B., Tao W, “A comparative study of laser-arc double-sided welding and double-sided arc welding of 6 mm 5A06 aluminum alloy”, Mater. Des., 2011, 32(4), 2165–2171.
[7] Hirose A., Todaka H., and Kobayashi KF, “CO2 Laser Beam Welding of 6061-T6 Aluminum Alloy Thin Plate”, Metall. Mater. Trans A, 1997, 28(12), 2657-2662.
[8] Çam G., Koçak M., Progress in joining of advanced materials: part 1: solid state joining, fusion joining, and joining of intermetallics, Sci. Techno. Weld. Goin., 1998, 3(3), 105-126, Taylor & Francis.
[9] Cam G., Ventzke V., Dos Santos J. F., Kocak M., Jennequin G., Gonthier-Maurin P., Penasa M., Rivela C., Boisselier D., ̒Characterization of laser and electron beam welded Al alloys ̒, Prakt. Metallorg., 1999, 36(2), 59-89.
[10] Shyu S.W., Huang H. Y., Tseng K. H. and Chou C. P. “Study of the performance of stainless steel A-TIG welds”, J. Mater. Eng. and Perform, 2008, 17, 193-201.
[11] Niagaj J., ̒ ̒The use of activating fluxes for the welding of high-alloy steels by A-TIG method” Weld. Int., 2003, 17(4), 257-261.
[12] Qing-ming L., Hong W. X., Zeng Z., Jun W, “Effect of activating flux on arc shape and arc voltage in tungsten inert gas welding”, Trans. Nonferrous Met. Soc. Chi., 2007, 17, 486- 490.
[13] Sire S., Marya S., “On the selective silica application to improve welding performance of the tungsten arc process for a plain carbon steel and for aluminum”, C. R. Mecanique, 2002, 330(2), 83–89.
[14] Huang Y., Fand D., Fan Q., ̒Study of mechanism of activating flux increasing weld penetration of AC A-TIG welding for aluminum alloy ̒, Front. Mech. Eng. Chi., 2007, 2(4), 442–447.
[15] Dey, H. C., Albert, S. K., Bhaduri, A. K., Kamachi Mudali, ̒Activated flux TIG welding of titanium Weld ̒, World, 2013, 57(6), 903-912.
[16] Jayakrishnan S., Chakravarthy P., Muhammed Rijas A., “Effect of Flux Gap and Particle Size on the Depth of Penetration in FBTIG Welding of Aluminum”, Trans. Indian Inst. Met., 2016,1-7
[17] Liu G., Liu M., Yi Y., Zhang Y., Lou Y., Xu L., “Activated flux tungsten inert gas welding of 8 mm-thick AISI 304 austenitic stainless steel”, J. Cent. South Univ., 2015, 22(3), 800-805.
[18] Prilutsky V. P., Akhonin S. V., “TIG welding of titanium alloys using fluxes”, Weld. World, 2014, 58(2), 245-251.
[19] Ramkumar, K. D., Varma, J. L. N., Chaitanya, G. et al., “Experimental investigations on the SiO2 flux-assisted GTA welding of super-austenitic stainless steels”, Int. J. Adv. Manu. Tech., 2015, 1-12.
[20] Ahmadi E., Ebrahimi A. R., “Welding of 316L Austenitic Stainless Steel with Activated Tungsten Inert Gas Process”, J. Mater. Eng. Perf., 2015, 24, 1065–1071.
[21] Santhana Babu A. V. Giridharan P. K., “Productivity improvement in flux assisted TIG welding̒”, Int. J. des. Manu. Tech., 6(2), 2012, 55-62.
[22] Zhang Z., Liu L., Sun H., Wang L., “AC TIG welding with single-component oxide activating flux for AZ31B magnesium alloys”, J Mater Sci., 2008, 43, 1382–1388.
[23] Bonnefois B., Coudreuse L., Charles J., “A-TIG welding of high nitrogen alloyed stainless steels: a metallurgically high-performance welding process”, Weld. Int., 2004, 18(3) 208-212.
[24] Lu Sh., Fuji H., Sugiyama H. and Nogi K., “Mechanism and optimization of oxide fluxes for deep penetration in gas tungsten arc welding”, Metal. Mater. Trans. A, 2003, 34(9), 1901-1907.
[25] Modenesi P. J., Apolinário E. R., Pereira I. M., “TIG welding with single-component fluxes”, J. Mater. Process. Tech., 2000, 99, 260-265.
[26] Ru¨ckert G., Huneau B., Marya S., “Optimizing the design of silica coating for productivity gains during the TIG welding of 304L stainless steel”, Mater. Des. 2007, 28, 2387–2393.
[27] Huang H. Y., “Effects of shielding gas composition and activating flux on GTAW weldments”, Mater. Des., 2009, 30, 2404–2409.
[28] Zhao, Y., Shi, Y. & Lei, Y., “The Study of Surface-Active Element Oxygen on Flow Patterns and Penetration in A-TIG Welding”, Metall. and Mater. Trans. B 2006, 37(3), 485-493
[29] Huang H. Y., “Effects of activating flux on the welded joint characteristics in gas metal arc welding”, Mater. Design, 31, 2010, 2488–2495.
[30] Zhang R., Fan d., Katayama S., “Electron beam welding with activating flux”, Trans. JWRI, 2006, 35(2), 19-22.
[31] Perumal K., Vivek N., Venkataaramanan M. S., Gurubalaji R., “Experimental investigation on TIG welded of austenitic stainless steel L304”, Int. J. Sci. Eng. Res., 7(2), 2016, 123-129.
[32] Paniagua-Mercado A. M., López-Hirata V. M., Méndez-Sánchez A. F., Saucedo-Muñoz M. L., “Effect of Active and Nonactive Fluxes on the Mechanical Properties and Microstructure in Submerged-Arc Welds of A-36 Steel Plates”, Mater. Manu. Proc., 22(3), 295-297.
[33] Richetti A., Silva H. D., Groetelaars PJ., Oliveira O. M., “Application of Flux Prepared way in welding plasma with keyhole”, 13th POSMEC – Symp. Grad. Prog. in Mech. Eng.
[34] Mathers G., “The welding of aluminum and its alloys”, First published 2002, Woodhead Publishing Ltd ̒, Ch.2, 16-32.
[35] Dhandha K. H, Badheka V. J., “Effect of activating fluxes on weld bead morphology of P91 steel bead-on-plate welds by flux assisted tungsten inert gas welding process”, J. Manu. Proc., 2015, 17, 48–57.
[36] Huang H. Y., Shyu S. W., Tseng K. H., Chou C. P., “Evaluation of TIG flux welding on the characteristics of stainless steel”, Scie. Tech. Weld. Join., 2005, 10(5), 566-573.
[37] Choudhary S., Duhan R., “Effect of Activated Flux on Properties of SS 304 Using TIG Welding”, Int. J. Engineering Trans. B: Apps., 2015, 28(2), 290-295.
[38] Kumar, SA; Sathiya, P., “Experimental Investigation of the A-TIG Welding Process of Incoloy 800H”, Mater. Manu. Proc., 2015, 30(9), 1154-1159.
[39] Zhang Z., Fan F., Wang J., Liu L., ̒Effects of Oxide on Plasma in Arc Welding With Activating Fluxes ̒, IEEE Trans. Plasma Sci., 2014, 43, 465-471.
[40] Vora J. J., Badheka V. J., “Improved Penetration with the Use of Oxide Fluxes in Activated TIG Welding of Low Activation Ferritic /Martensitic Steel”, Trans. Indian Inst. Met., 2016, 69(9), 1755–1764.
[41] Bang, K.-S. Chirieleison G., Liu S., “Gas tungsten arc welding of titanium using flux cored wire with magnesium fluoride”, Sci. Tech. Weld. Join., 2005, 10(5), 617-623.
[42] Kou S., “Welding metallurgy ̒, 2nd edition., John Wiley & Sons, Inc., New Jersey, 2003, Ch. 4.2.
[43] Limmaneevichitr C., Kou S., “Experiments to Simulate Effect of Marangoni Convection on Weld Pool Shape”, Weld. J., 2000, 79(8), 231-237.
[44] Yushchenko K. A., Kovalenko, D. V., Krivtsun I. V., Demchenko V. F., Kovalenko I. V., Lesnoy A. B., “Experimental Studies and Mathematical Modelling of Penetration in TIG and A-TIG Stationary Arc Welding of Stainless Steel”, Weld. World, 2009, 53(9), 253-263.
[45] Heiple, C. R., and Roper, J. R, “Mechanism for minor element effect on GTA fusion zone geometry”, Weld. J., 1982, 61(4), 97-102.
[46] Limmaneevichitr C., Kou S., “Visualization of Marangoni Convection in Simulated Weld Pools”, Weld. J., 2000, 79(5), 126–135.
[47] Leconte S., Paillard P., Chapelle P., Henrion G., Saindrenan J., “Effect of oxide fluxes on activation mechanisms of tungsten inert gas process”, Scie. Tech. Weld. Join.,11(4), 2006 - 389-397.
[48] Arata Y., Matsuda F., Matsui A., “Effect of Welding Condition on Solidification Structure in Weld Metal of Aluminum AIIoy Sheets”, Trans. JWRI, 1974, 3(1), 89-97.
[49] Karalis D. G., Pantelis D. I., Papazoglou V. J., “On the investigation of 7075 aluminum alloy welding using concentrated solar energy”, Solar Ener. Mater. Solar Cells, 2005, 86(2),145–163.
[50] Prasad Rao K., Ramanaiah N., Viswanathan N., “Partially melted zone cracking in AA6061 welds”, Mater. Des., 2008, 29,179–186.
[51] Huang C., Kou S., “Partially Melted Zone in Aluminum Welds — Liquation Mechanism and Directional Solidification”, Weld. J, 2000, 113-120.
[52] Manti R., Dwivedi D. K., Agarwal A, “Pulse TIG Welding of Two Al-Mg-Si Alloy”, J. Mater. Eng. Perf., 2008, 17(5), 667–673.
[53] Norman A. F., Drazhner V., Prangnell P. B, “Effect of welding parameters on the solidification microstructure of autogenous TIG welds in an Al–Cu–Mg–Mn alloy”, Materials Science and Engineering A259, 1999, 259(1), 53–64.
[54] Monteiro VM., Diniz SB., Meirelles BG., Da Silva LC., Dos Santos Paula A., Microstructural and mechanical study of aluminum alloys submitted to distinct soaking times during solution heat treatment ̒, Tec. Metal. Mater. Miner., 2014, São Paulo, 11(4), 332-339.
[55] Çam G., Güçlüer S., Çakan A., Serindag H. T., “Mechanical properties of friction stir butt-welded Al-5086 H32 plate”, Mat.-wiss. u. Werkstofftech., 2009, 40(8), 638–642.
[56] Çam G., Mistikoglu S., “Recent developments in friction stir welding of Al-alloys treatment”, J. Mater. Eng. Perf. (JMEPEG), 2014, 23(6),1936-1953.