Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 31097
Surface Phonon Polariton in InAlGaN Quaternary Alloys

Authors: S. S. Ng, Z. Hassan, H. Abu Hassan


III-nitride quaternary InxAlyGa1-x-yN alloys have experienced considerable interest as potential materials for optoelectronic applications. Despite these interesting applications and the extensive efforts to understand their fundamental properties, research on its fundamental surface property, i.e., surface phonon polariton (SPP) has not yet been reported. In fact, the SPP properties have been shown to provide application for some photonic devices. Hence, there is an absolute need for thorough studies on the SPP properties of this material. In this work, theoretical study on the SPP modes in InAlGaN quaternary alloys are reported. Attention is focus on the wurtzite (α-) structure InxAlyGa1-x-yN semi-crystal with different In composition, x ranging from 0 to 0.10 and constant Al composition, y = 0.06. The SPP modes are obtained through the theoretical simulation by means of anisotropy model. The characteristics of SP dispersion curves are discussed. Accessible results in terms of the experimental point of view are also given. Finally, the results revealed that the SPP mode of α-InxAlyGa1-x-yN semiconductors exhibits two-mode behavior.

Keywords: III-nitride semiconductor, attenuated total reflection, quaternary alloy, surface phonon polariton

Digital Object Identifier (DOI):

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1532


[1] J. Li, K. B. Nam, K. H. Kim, J. Y. Lin, and H. X. Jiang, "Growth and optical properties of InxAlyGa1-x-yN quaternary alloys," Appl. Phys. Lett., vol. 78, No. 1, pp. 61-63, 2001. (And references therein).
[2] F. G. McIntosh, K. S. Boutros, J. C. Roberts, S. M. Bedair, E. L. Piner, and N. A. El-Masry, "Growth and characterization of AlInGaN quaternary alloys," Appl. Phys. Lett., vol. 68, No. 1, pp. 40-42, 1996.
[3] Y. A. Chang, S. H. Yen, T. C. Wang, H. C. Kuo, Y. K. Kuo, T. C. Lu, and S. C. Wang, "Experimental and theoretical analysis on ultraviolet 370 nm AlGaInN light-emitting diodes," Semicond. Sci. Technol., vol. 21, No. 5, pp. 598-603, 2006.
[4] J. P. Liu , R. Q. Jin, J. C. Zhang, J. F. Wang, M. Wu, J. J. Zhu, D. G. Zhao, Y. T. Wang, and H. Yang, "Indium mole fraction effect on the structural and optical properties of quaternary AlInGaN epilayers," J. Phys. D: Appl. Phys., vol. 37, No. 15, pp. 2060-2063, 2004. (And references therein).
[5] Y. Liu, T. Egawa, H. Ishikawa, B. J. Zhang, and M. S. Hao, "Influence of Growth Temperature on Quaternary AlInGaN Epilayers for Ultraviolet Emission Grown by Metalorganic Chemical Vapor Deposition," Jpn. J. Appl. Phys., vol. 43, No. 5A, pp. 2414-2418, 2004. (And references therein).
[6] L. Zhang and J. J. Shi, "Surface phonon polariton modes of wurtzite structure AlxGa1-xN thin film," Phys. Status Solidi B, vol. 246, No. 1, pp. 164-169, 2009.
[7] L. Zhang, "Surface phonon and confined phonon polaritons in wurtizte nitride thin-film structures," Surf. Rev. Lett., vol. 15, No. 4, pp. 493-501, 2008.
[8] J. Bao and X. X. Liang, "Surface and interface phonon-polaritons in bilayer systems of polar ternary mixed crystals," J. Appl. Phys., vol. 104, No. 3, pp. 033545-1 - 033545-7, 2008.
[9] S. S. Ng, Z. Hassan, and H. Abu Hassan, "Composition dependence of surface shonon polariton mode in wurtzite InxGa1-xN (0 Ôëñ x Ôëñ 1) ternary alloy," Chin. Phys. Lett., vol. 25, No. 12, pp. 4378-4380, 2008.
[10] S. S. Ng, Z. Hassan, and H. Abu Hassan, "Surface phonon polariton of wurtzite GaN thin film grown on c-plane sapphire substrate," Solid State Commun., vol. 145, No. 11-12, pp. 535-538, 2008.
[11] M. D. He, L. L. Wang, W. Q. Huang, X. J. Wang, and B. S. Zou, "Surface phonon polaritons in a semi-infinite superlattice with a cap layer consisting of ternary crystal," Phys. Lett. A, vol. 360, No. 4-5, pp. 638-644, 2007.
[12] S. S. Ng, Z. Hassan, and H. Abu Hassan, "Surface phonon polariton mode of wurtzite structure AlxGa1−xN (0 Ôëñ x Ôëñ 1) thin films," Appl. Phys. Lett., vol. 91, No. 8, pp. 081909-1 - 081909-3, 2007.
[13] S. S. Ng, Z. Hassan, and H. Abu Hassan, "Experimental and theoretical studies of surface phonon polariton of AlN thin film," Appl. Phys. Lett., vol. 90, No. 8, pp. 081902-1 - 081902-3, 2007.
[14] V. Y. Davydov, A. V. Subashiev, T. S. Cheng, C. T. Foxon, I. N. Goncharuk, A. N. Smirnovn, and R. V. Zolotareva, "Raman scattering by surface polaritons in cubic GaN epitaxial Layers," Solid State Commun., vol. 104, No. 7, pp. 397-400, 1997.
[15] K. Torii, T. Koga, T. Sota, T. Azuhata, S. F. Chichibu, and S. Nakamura, "An attenuated-total-reflection study on the surface phonon-polariton in GaN," J. Phys.: Condens. Matter, vol. 12, No. 31, pp. 7041-7044, 2000.
[16] M. S. Anderson, "Enhanced infrared absorption with dielectric nanoparticles," Appl. Phys. Lett., vol. 83, No. 14, pp. 2964-2966, 2003.
[17] J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, "Coherent emission of light by thermal sources, Nature, vol. 416, pp. 61-64, 2002.
[18] A. J. Huber, N. Ocelic, R. Hillenbrand, "Local excitation and interference of surface phonon polaritons studied by near-field infrared microscopy," J. Microscopy, vol. 229, No. 3, pp. 389-395, 2008.
[19] M. G. Cottam and D. R. Tilley, Introduction to surface and superlattice excitons. New York: Cambridge University Press, 1989.
[20] D. N. Mirlin, "Surface Polaritons," in Surface Polaritons, V. M. Agranovich and D. L. Mills, Eds. Amsterdam: North-Holland, 1982, pp. 3-67.
[21] S. Adachi, Optical properties of crystalline and amorphous semiconductors: Materials and fundamental principles, Boston: Kluwer Academic, 1998, p. 38.
[22] C. K. Williams, T. H. Glisson, J. R. Hauser and M. A. Littlejohn, "Energy bandgap and lattice constant contours of III-V quaternary alloys of the form AxByCzD or ABxCyDz," J. Electron. Mater., vol. 7, no. 5, pp. 639-646, 1978.
[23] V. Y. Davydov, V. V. Emtsev, I. N. Goncharuk, A. N. Smirnov, V. D. Petrikov, V. V. Mamutin, V. A. Vekshin, S. V. Ivanov, M. B. Smirnov, and T. Inushima, "Experimental and theoretical studies of phonons in hexagonal InN," Appl. Phys. Lett., vol. 75, No. 21, pp. 3297-3299, 1999.
[24] B. Abbar, B. Bouhafs, H. Aourag, G. Nouet, and P. Ruterana, "Firstprinciples calculations of optical properties of AlN, GaN, and InN compounds under hydrostatic pressure," Phys. Status Solidi B, vol. 228, No. 2, pp. 457-460, 2001.
[25] V. Y. Davydov, Y. E. Kitaev, I. N. Goncharuk, A. N. Smirnov, J. Graul, O. Semchinova, D. Uffmann, M. B. Smirnov, A. P. Mirgorodsky, and R. A., Evarestov, "Phonon dispersion and Raman scattering in hexagonal GaN and AlN," Phys. Rev. B, vol. 58, No. 19, pp. 12899-12907, 1998.
[26] G. Yu, N. L. Rowell, and D. J. Lockwood, "Anisotropic infrared optical properties of GaN and sapphire," J. Vac. Sci. Technol. A, vol. 22, No. 4, pp. 1110-1114, 2004.
[27] U. Haboek, H. Siegle, A. Hoffmann, and C. Thomsen, "Lattice dynamics in GaN and AlN probed with first- and second-order Raman spectroscopy," Phys. Status Solidi C, vol. 0, No. 6, pp. 1710-1731, 2003.
[28] C. Persson, R. Ahyja, A. Ferreira da Silva, and B. Johansson, "Firstprinciple calculations of optical properties of wurtzite AlN and GaN," J. Cryst. Growth, vol. 231, No. 3, 2001, pp. 407-414.
[29] A. Otto, "Spectroscopy of Surface Polaritons by Attenuated Total Reflection," in Optical Properties of Solids: New Developments, B. O. Seraphin, Ed. Norton-Holland: Amsterdam, 1976, p. 677.
[30] PIKE Technologies, Inc., "ATR-Theory and Applications," PIKE Technologies, Madison, Application Note, 2005.
[31] H. Grille, Ch. Schnittler, and F. Bechstedt, "Phonons in ternary group-III nitride alloys," Phys. Rev. B, vol. 61, No. 9, pp.6091-6105, 2000.