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Abstract—Fault diagnosis of composite asynchronous sequential
machines with parallel composition is addressed in this paper. An
adversarial input can infiltrate one of two submachines comprising
the composite asynchronous machine, causing an unauthorized state
transition. The objective is to characterize the condition under
which the controller can diagnose any fault occurrence. Two control
configurations, state feedback and output feedback, are considered in
this paper. In the case of output feedback, the exact estimation of
the state is impossible since the current state is inaccessible and the
output feedback is given as the form of burst. A simple example is
provided to demonstrate the proposed methodology.
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I. Introduction

AS a novel automatic control scheme for event-driven

systems, corrective control has been successfully used

to solve various control problems of asynchronous sequential

machines. The efficiency of corrective control is remarkable

especially in fault diagnosis and fault tolerant control

for asynchronous sequential machines; refer to [1]–[3] for

theoretical development of this topic, and to [4], [5] for

experimental verification on FPGA-based asynchronous digital

systems.

In this paper, we address the problem of fault diagnosis

for a composite asynchronous sequential machine made of

parallel composition of two single input/state asynchronous

sequential machines. Parallel composition is widely used

in manufacturing systems [6] and modeling and control

of discrete event systems [7]. The main objective is to

diagnose any unauthorized state transition occurring to a

single submachine comprising the composite machine. Two

control configurations, state feedback and output feedback, are

considered separately in fault diagnosis. When state feedback

is available, the controller knows the state at which the fault

occurs as well as the state reached by the machine as the

result of the fault. On the other hand, the output feedback

makes it impossible for the controller to derive the current

state. In particular, we assume that the output feedback value

is transmitted as the form of burst, a quick succession of

output characters [8]. Since exact identification of the current

state is impossible, we derive the change of state uncertainty

throughout the unauthorized transition. Fault detectability is
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also examined to investigate whether the end of an authorized

transition can be determined by the controller. Note that the

construction of a fault tolerant controller is not discussed in

this paper.

Recent study on control of composite asynchronous

sequential machines can be found in [9] where fault tolerant

control for composite asynchronous sequential machines with

cascade connection is addressed, and in [10] where model

matching of switched asynchronous sequential machines is

addressed. Note that the present study differs from both [9],

[10] since they do not use the modeling formalism of parallel

composition.

II. Modeling

A major part of this content is borrowed from our prior

work (e.g, [9], [11]). A composite asynchronous sequential

machine Σ � Σ1��Σ2 consists of parallel composition of two

input/state asynchronous sequential machines Σ1 and Σ2 with

Σ1 � �A, X, x0, f1�

Σ2 � �A,Y, y0, f2� (1)

where X and Y are the state set of Σ1 and Σ2, respectively,

x0 � X and y0 � Y are the initial states, and f1 : X � A � X
and f2 : Y � A � Y are the state transition functions partially

defined on X�A and Y�A. The input set A is further divided

into A � An ��Ad where An and Ad are the set of normal and

adversarial inputs, respectively.

Σ1 (and Σ2) is operated with the feature of asynchrony.

A valid state–input pair �x, v�� � X � A of Σ1 is a stable

combination if f1�x, v�� � x; otherwise, it is a transient

combination. Owing to the absence of a synchronizing clock,

Σ1 stays at a stable combination �x, v�� indefinitely. If the input

v� changes to another value v for which �x, v� is a transient

combination, Σ1 engages in a series of transient transitions

f1�x, v� � x1

f1�x1, v� � x2 (2)

...

where v remains fixed. If no infinite cycles exist, Σ1 reaches

the next stable state xk such that xk � f1�xk, v� at the end

of the chain with k transient transitions x, x1, . . . , xk�1. Since

the transition speed of asynchronous sequential machines

is instantaneous (ideally zero), the meaningful behavior of

asynchronous sequential machines can be represented only by
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stable states. To this end, we introduce the stable recursion

function s as follows [1]:

s1 : X � A � X

s1�x, v� � x� (3)

where x� is the next stable state of a valid state–input

combination �x, v�. A sequence of transient transitions from

a stable state to the corresponding next stable state, as

represented by s1, is called stable transition. The domain of

s1 can be expanded to X � A� in a natural way as follows,

where A� is the set of all nonempty strings of characters in

A.

s1�x, v1v2 � � � vk� � s1�s1�x, v1�, v2 � � � vk�,

v1v2 � � � vk � A�. (4)

Note that the aforementioned definitions and properties are

equally applied to Σ2.
Σ is described as an input/output asynchronous sequential

machine

Σ � Σ1��Σ2 � �A,Z, X � Y, �x0, y0�, s, h� (5)

where Z is the output set, X�Y are the state set with the initial

state �x0, y0�, s : X � Y � A � X � Y and h : X � Y � Z are

the stable recursion function and output function, respectively.

To prohibit unpredictable outcomes caused by the absence

of a synchronizing clock, Σc is assumed to comply with the

principle of fundamental mode operations [12] whereby a

variable must change its value when both C and Σ are in

stable states, and no two or more variables may be changed

simultaneously. Under the assumption of fundamental mode

operations, we naturally assume that once the input u � A
changes, one of Σ1 and Σ2 takes a stable transition in the

first, and only after the end of the transition does the second

asynchronous sequential machine initiate its stable transition.

Which asynchronous sequential machine among Σ1 and Σ2

takes the first transition is nondeterministic. Regardless of the

order, however, the next stable states reached by Σ1 and Σ2

are always deterministic. Thus we represent Σ as a stable-state

machine described only by s as

s�x, y, u� :�

����
���

�s1�x, u�, s2�y, u�� s1�x, u�! and s2�y, u�!
�s1�x, u�, y� s1�x, u�! and s2�y, u�¡
�x, s2�y, u�� s1�x, u�¡ and s2�y, u�!
undefined otherwise

(6)

where s1�x, u�! and s1�x, u�¡ mean that s1�x, u� is defined and

undefined, respectively.
The output of Σ is given as the form of burst [8], a

quick succession of output characters. For a stable transition

s�x, y, u� � �x�, y��, assume that Σ1 and Σ2 traverse a

series of transient states x1, . . . , xk and y1, . . . , yl, respectively.

According to the foregoing discussion, either Σ1 or Σ2 may

conduct its stable transition in the first, followed by that of the

other asynchronous sequential machine. Hence the trajectory

of state pairs is one of the following two strings.

(i) �x, y��x1, y� � � � �xk, y��x�, y��x�, y1� � � � �x�, yl��x�, y��

(ii) �x, y��x, y1� � � � �x, yl��x, y���x1, y�� � � � �xk, y���x�, y�� (7)

where (i) is the outcome with the assumption that Σ1 takes the

first transition and (ii) is the outcome with the reverse order.

To address the nondeterministic feature, we assign two output

bursts b1, b2 � Z� for each stable transition s�x, y, u� � �x�, y��
by defining a mapping

B : X � Y � A � P�Z�� (8)

as (P�Z�� is the power set of Z�)

B�x, y, u� :� 	b1, b2


b1 :� β�h�x, y�h�x1, y� � � � h�xk, y�h�x�, y�h�x�, y1� � � � h�x�, y���
(9)

b2 :� β�h�x, y�h�x, y1� � � � h�x, yl�h�x, y��h�x1, y�� � � � h�x�, y���

where β��� replaces each segment of repeating characters by

a single one, e.g., β�z1z1z2z2� � z1z2. For later usage, denote

by b f
1
, b f

2
� Z the last character of b1 and b2. By definition,

b f
1
� b f

2
� h�x�, y��. (10)

Also, denote by b�1
1
, b�1

2
� Z� the string obtained by

removing b f
1

and b f
2

from b1 and b2, respectively. Then,

b�1
1

:� β�h�x, y�h�x1, y� � � � h�x�, y�h�x�, y1� � � � h�x�, yl��

b�1
2

:� β�h�x, y�h�x, y1� � � � h�x, y��h�x1, y�� � � � h�xk, y���.
(11)

v C u z*

x

y

w

w

Fig. 1 Corrective control system for a composite asynchronous sequential
machine Σ � Σ1��Σ2

Fig. 1 illustrates the corrective control system for a

composite asynchronous sequential machine Σ. C is the

corrective controller, v � An is the externa input, u � An

is the control input generated by C, x and y are the state

of Σ1 and Σ2, z is the output of Σ, and w1,w2 � Ad are

the adversarial inputs occurring to Σ1 and Σ2. w1 are w2

override the control input u � An and cause the corresponding

asynchronous sequential machine to undergo an unauthorized

state transition. For instance, when Σ1 has been staying at

a stable state x when w1 occurs such that s1�x,w1�!, Σ1

undergoes the unauthorized transition from x to s1�x,w1�!. The

next operation of Σ would be incorrect if Σ is not counteracted

from this fault immediately.
In this paper, we consider two control configuration

separately — (i) state feedback and (ii) output feedback where

the feedback value is given as output burst. In Fig. 1, the

route of state feedback is marked in dashed lines to highlight

our setting. In the case of state feedback, both x and y are

transmitted to C. Hence the formulation of C is written as

C � �An � X � Y, An,Ξ, ξ0, φ, η� with �x, y� (12)
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where An�X�Y is the input set (v, x, and y), An is the output

set serving as the control input u, Ξ is the state set, ξ0 � Ξ
is the initial state, φ : Ξ � X � Y � An � Ξ is the recursion

function, and η : Ξ� Z is the output function. In the case of

output feedback, on the other hand, output burst termed z� in

Fig. 1 is relayed to C as the output feedback. Hence the form

of C is

C � �An � Z�, An,Ξ, ξ0, φ, η� with z� (13)

The objective of fault diagnosis by C also depends on the

control configuration as follows.

(i) In the case of state feedback, C must identify the original

state of Σ at which the unauthorized state transition

initiates and the deviated state reached by Σ as the result

of the fault.

(ii) As mentioned earlier, the exact observation of the state

is impossible in the case of output feedback. Instead, we

must specify a state set, one element of which Σ stays at

the moment of the fault occurrence, and another state set

representing all the possible states that can be reached by

Σ as the result of the fault.

III. Fault Diagnosis

A. State Feedback

Provided that state feedback x and y are available in the

architecture of Fig. 1, let us discuss fault diagnosis on w1 and

w1. First, assume that Σ has been staying at a stable state

�x̄, ȳ� when w1 occurs, enforcing Σ1 to reach s1�x̄,w1� � x�.
C can diagnose the occurrence of w1 by observing that the

state feedback of Σ1 changes to x� while the external input v
remains fixed. Since only one variable can change at a time

under the principle of fundamental mode operations, w2 never

happens at the moment w1 happens. Thus the next state Σ

reaches by w1 is �x�, ȳ�.
The foregoing discussion is equally applied to an occurrence

of w2. If w2 occurs to Σ2 such that s2�ȳ,w2� � y�, C
can diagnose this fault by observing that the state feedback

changes from �x̄, ȳ� to �x̄, y�� while the external input v remains

fixed.

In summary, when full state feedback is available to C, one

can diagnose any fault event as follows in line with the change

of state feedback.

(i) �x̄, ȳ� � �x�, ȳ�: w1 occurs to Σ1 such that s1�x̄,w1� � x�.
(ii) �x̄, ȳ� � �x̄, y��: w2 occurs to Σ2 such that s2�ȳ,w2� � y�.

B. Output Feedback

Since the exact identification of the current state of Σ is

impossible in the control configuration of output feedback,

we introduce the notion of state uncertainty in this paper. Let

χ � X � Y be uncertainty about the state of Σ. χ implies that

the current state of Σ is unknown but an element of χ. Suppose

that Σ stays at a stable state with the external input v � An, the

output z � Z, and the output burst b � Z�. The latter means

that z is the last character of b, i.e., z � b f . Although direct

access to the current state is impossible, the information on v,

z, and b allows us to estimate all the possible states where Σ

may stay, that is, the state uncertainty χ. The more information

we have access to, the more we can reduce the size of the state

uncertainty χ. First, we express the state uncertainty solely in

terms of the output. Define E1�z� � X � Y as

E1�z� :� ��x, y� � X � Y	h�x, y� � z
. (14)

Using v, we can reduce the state uncertainty further since

the current state makes a stable combination with v as well

as it provides the output z. Let E2�v, z� denote the set of such

states:

E2�v, z� :� ��x, y� � E1�z�	s�x, y, v� � �x, y�
. (15)

If we know the previous state uncertainty, further reduction

of the state uncertainty is possible. Let χ� � X be the previous

state uncertainty, that is, Σ has experienced a stable transition

from a state with the state uncertainty χ� to the current state.

What we deduce from χ� is that the current state is the next

stable state of a state in χ� with the external input v. E3�χ
�, v, z�

represents those states as follows.

E3�χ
�, v,z� :�

��x, y� � E2�v, z�	��x̂, ŷ� � χ� s.t. s�x̂, ŷ, v� � �x, y�
.
(16)

Access to the output burst b further reduces the state

uncertainty in association with χ�. To this end, define another

mapping E4 : P�X� � An � Z � Z� � P�X� as follows.

E4�χ
�, v, z, b� :�

��x, y� � E3�χ
�, v, z�	��x̂, ŷ� � χ� s.t. B�x̂, ŷ, v� � b
.

(17)

Summing up the above analysis, we address the formulation

of χ, uncertainty about the current state of Σ, with respect to

the previous uncertainty χ�, the external input v, the output z,

and the output burst b.

χ � E4�χ
�, v, z, b�. (18)

Assume now that in the control configuration of Fig. 1 with

output feedback, Σ has been staying at a stable combination

with the state uncertainty χ�. Assume further that the output

is observed to change to z with the output burst b, while the

external input v remains unchanged. Then one of adversarial

inputs w1 and w2 must have occurred, causing an unauthorized

state transition. The controller C can perceive the fault

occurrence by observing a change of the output. Further, C can

estimate that the current state of Σ is one of χ � E4�χ
�, v, z, b�

as presented above.

To preserve fundamental mode operations, the input must

not change while Σ undergoes any transitions. Thus C must

determine not only state uncertainty updated after the end of

an unauthorized transition, but also whether Σ has reached a

next stable state by the adversarial input. Assume again that

Σ experiences an unauthorized state transition in which the

state uncertainty changes from χ� to χ with v � An, z � Z,

and b � Z�. This unauthorized transition is said to be fault
detectable if it can be determined from inputs and outputs

of Σ whether the (unknown) next stable state in χ has been

reached. Once χ� and χ are identified, we can induce all the
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possible output bursts that may occur in this unauthorized state

transition. Denote by

B�χ�, χ� � Z� (19)

such a set of bursts. It is known that to determine the

termination of a transition only with output burst, the last

character of the burst must differ from the one that is generated

right before the last one [8]. In formal terms, we must ensure

b�1 � b to discern the end of a transition having the output

burst b. Since this condition must be valid for any possible

outcome associated with χ� and χ, we induce the following

condition for fault detectability of the unauthorized transition

from χ� to χ.

�b � B�χ�, χ�, b�1 � b. (20)

IV. Example

x x

x

b

a b c
a b

c d

x

d w

d

c b c

y yb w

a bd

a b

y

c d

w

b w

Fig. 2 Σ � Σ1��Σ2

Consider an instance of the composite asynchronous

machine Σ � Σ1��Σ2 shown in Fig. 2 where X � �x1, x2, x3, x4	
with x0 � x1, Y � �y1, y2, y3	 with y0 � y1, An � �a, b, c, d	,

Z � �1, 2, . . . , 5	, and Ad � �w1,w2	. For simplicity, we set

fi � si, �i � 1, 2. The output function h is defined in Table I.
Since fault detectability is self-evident in the case of

state feedback, let us investigate fault detectability of the

closed-loop system with output feedback. As an example

instance, assume that Σ has been staying at a stable

combination with χ� � ��x1, y3�, �x3, y3�	 and v � b when

the output feedback z changes from 3 to 2 with output burst

32. Using the derived formula of state uncertainty, we easily

derive that

χ � E4�χ
�, b, 2, 32� � ��x1, y1�, �x3, y1�	. (21)

Further, we have

B�χ�, χ� � �b�	 � �32	. (22)

Since b��1 � b�, this unauthorized state transition is

fault detectable. Referring to Fig. 2, we know that w2 is

the adversarial input that causes this transition. The other

unauthorized transition caused by w1 is also fault detectable,

derivation of which is omitted.

TABLE I
Output Function h

�x, y� �x1, y1� �x2, y1� �x3, y1� �x4, y1�
h�x, y� 2 1 2 3

�x, y� �x1, y2� �x2, y2� �x3, y2� �x4, y2�
h�x, y� 5 1 5 4

�x, y� �x1, y3� �x2, y3� �x3, y3� �x4, y3�
h�x, y� 3 2 3 1

V. Summary

We have investigated fault diagnosis of a class of composite

asynchronous sequential machines with parallel composition.

We have examined whether an unauthorized state transition

can be identified in the closed-loop system of composite

asynchronous sequential machines endowed with state or

output feedback. Specifically, in the case of output feedback

with output burst, uncertainty about the state of the machine is

updated according to the available information of the machine.

The condition for fault detectability is also derived in the

framework of corrective control. The proposed scheme has

been validated using a simple example instance.
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