Search results for: slip damping
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 335

Search results for: slip damping

95 A PSO-based SSSC Controller for Improvement of Transient Stability Performance

Authors: Sidhartha Panda, N. P. Padhy

Abstract:

The application of a Static Synchronous Series Compensator (SSSC) controller to improve the transient stability performance of a power system is thoroughly investigated in this paper. The design problem of SSSC controller is formulated as an optimization problem and Particle Swarm Optimization (PSO) Technique is employed to search for optimal controller parameters. By minimizing the time-domain based objective function, in which the deviation in the oscillatory rotor angle of the generator is involved; transient stability performance of the system is improved. The proposed controller is tested on a weakly connected power system subjected to different severe disturbances. The non-linear simulation results are presented to show the effectiveness of the proposed controller and its ability to provide efficient damping of low frequency oscillations. It is also observed that the proposed SSSC controller improves greatly the voltage profile of the system under severe disturbances.

Keywords: Particle swarm optimization, transient stability, power system oscillations, SSSC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2648
94 Flow Analysis of Viscous Nanofluid Due to Rotating Rigid Disk with Navier’s Slip: A Numerical Study

Authors: Khalil Ur Rehman, M. Y. Malik, Usman Ali

Abstract:

In this paper, the problem proposed by Von Karman is treated in the attendance of additional flow field effects when the liquid is spaced above the rotating rigid disk. To be more specific, a purely viscous fluid flow yield by rotating rigid disk with Navier’s condition is considered in both magnetohydrodynamic and hydrodynamic frames. The rotating flow regime is manifested with heat source/sink and chemically reactive species. Moreover, the features of thermophoresis and Brownian motion are reported by considering nanofluid model. The flow field formulation is obtained mathematically in terms of high order differential equations. The reduced system of equations is solved numerically through self-coded computational algorithm. The pertinent outcomes are discussed systematically and provided through graphical and tabular practices. A simultaneous way of study makes this attempt attractive in this sense that the article contains dual framework and validation of results with existing work confirms the execution of self-coded algorithm for fluid flow regime over a rotating rigid disk.

Keywords: Nanoparticles, Newtonian fluid model, chemical reaction, heat source/sink.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 946
93 Instability Analysis of Laminated Composite Beams Subjected to Parametric Axial Load

Authors: Alireza Fereidooni, Kamran Behdinan, Zouheir Fawaz

Abstract:

The integral form of equations of motion of composite beams subjected to varying time loads are discretized using a developed finite element model. The model consists of a straight five node twenty-two degrees of freedom beam element. The stability analysis of the beams is studied by solving the matrix form characteristic equations of the system. The principle of virtual work and the first order shear deformation theory are employed to analyze the beams with large deformation and small strains. The regions of dynamic instability of the beam are determined by solving the obtained Mathieu form of differential equations. The effects of nonconservative loads, shear stiffness, and damping parameters on stability and response of the beams are examined. Several numerical calculations are presented to compare the results with data reported by other researchers.

Keywords: Finite element beam model, Composite Beams, stability analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2177
92 Improvement of Synchronous Machine Dynamic Characteristics via Neural Network Based Controllers

Authors: S. A. Gawish, F. A. Khalifa, R. M. Mostafa

Abstract:

This paper presents Simulation and experimental study aimed at investigating the effectiveness of an adaptive artificial neural network stabilizer on enhancing the damping torque of a synchronous generator. For this purpose, a power system comprising a synchronous generator feeding a large power system through a short tie line is considered. The proposed adaptive neuro-control system consists of two multi-layered feed forward neural networks, which work as a plant model identifier and a controller. It generates supplementary control signals to be utilized by conventional controllers. The details of the interfacing circuits, sensors and transducers, which have been designed and built for use in tests, are presented. The synchronous generator is tested to investigate the effect of tuning a Power System Stabilizer (PSS) on its dynamic stability. The obtained simulation and experimental results verify the basic theoretical concepts.

Keywords: Adaptive artificial neural network, power system stabilizer, synchronous generator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1420
91 An Improved Tie Force Method for Progressive Collapse Resistance of Precast Concrete Cross Wall Structures

Authors: M. Tohidi, J. Yang, C. Baniotopoulos

Abstract:

Progressive collapse of buildings typically occurs  when abnormal loading conditions cause local damages, which leads  to a chain reaction of failure and ultimately catastrophic collapse. The  tie force (TF) method is one of the main design approaches for  progressive collapse. As the TF method is a simplified method, further  investigations on the reliability of the method is necessary. This study  aims to develop an improved TF method to design the cross wall  structures for progressive collapse. To this end, the pullout behavior of  strands in grout was firstly analyzed; and then, by considering the tie  force-slip relationship in the friction stage together with the catenary  action mechanism, a comprehensive analytical method was developed.  The reliability of this approach is verified by the experimental results  of concrete block pullout tests and full scale floor-to-floor joints tests  undertaken by Portland Cement Association (PCA). Discrepancies in  the tie force between the analytical results and codified specifications  have suggested the deficiency of TF method, hence an improved  model based on the analytical results has been proposed to address this  concern.

 

Keywords: Cross wall, progressive collapse, ties force method, catenary, analytical.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3640
90 Natural Convection in a Porous Medium Cavity with an Applied Vertical Magnetic Field using Lattice Boltzmann Method

Authors: H.A. Ashorynejad, M. Farhadi, K.Sedighi, A.Hasanpour

Abstract:

We report the results of an lattice Boltzmann simulation of magnetohydrodynamic damping of sidewall convection in a rectangular enclosure filled with a porous medium. In particular we investigate the suppression of convection when a steady magnetic field is applied in the vertical direction. The left and right vertical walls of the cavity are kept at constant but different temperatures while both the top and bottom horizontal walls are insulated. The effects of the controlling parameters involved in the heat transfer and hydrodynamic characteristics are studied in detail. The heat and mass transfer mechanisms and the flow characteristics inside the enclosure depended strongly on the strength of the magnetic field and Darcy number. The average Nusselt number decreases with rising values of the Hartmann number while this increases with increasing values of the Darcy number.

Keywords: Lattice Boltzmann method , Natural convection , Magnetohydrodynamic , Porous medium

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1774
89 Closed Form Optimal Solution of a Tuned Liquid Column Damper Responding to Earthquake

Authors: A. Farshidianfar, P. Oliazadeh

Abstract:

In this paper the vibration behaviors of a structure equipped with a tuned liquid column damper (TLCD) under a harmonic type of earthquake loading are studied. However, due to inherent nonlinear liquid damping, it is no doubt that a great deal of computational effort is required to search the optimum parameters of the TLCD, numerically. Therefore by linearization the equation of motion of the single degree of freedom structure equipped with the TLCD, the closed form solutions of the TLCD-structure system are derived. To find the reliability of the analytical method, the results have been compared with other researcher and have good agreement. Further, the effects of optimal design parameters such as length ratio and mass ratio on the performance of the TLCD for controlling the responses of a structure are investigated by using the harmonic type of earthquake excitation. Finally, the Citicorp Center which has a very flexible structure is used as an example to illustrate the design procedure for the TLCD under the earthquake excitation.

Keywords: Closed form solution, Earthquake excitation, TLCD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1985
88 Continuous and Discontinuous Shock Absorber Control through Skyhook Strategy in Semi-Active Suspension System (4DOF Model)

Authors: A. Shamsi, N. Choupani

Abstract:

Active vibration isolation systems are less commonly used than passive systems due to their associated cost and power requirements. In principle, semi-active isolation systems can deliver the versatility, adaptability and higher performance of fully active systems for a fraction of the power consumption. Various semi-active control algorithms have been suggested in the past. This paper studies the 4DOF model of semi-active suspension performance controlled by on–off and continuous skyhook damping control strategy. The frequency and transient responses of model are evaluated in terms of body acceleration, roll angle and tire deflection and are compared with that of a passive damper. The results show that the semi-active system controlled by skyhook strategy always provides better isolation than a conventional passively damped system except at tire natural frequencies.

Keywords: Semi-active suspension system, Skyhook, Vibration isolation, 4DOF model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2670
87 Mechanical Characteristics and Modeling of Multiple Trench Friction Pendulum System with Multi-intermediate Sliding Plates

Authors: C. S. Tsai, Yung-Chang Lin

Abstract:

In order to upgrade the seismic resistibility of structures and enhance the functionality of an isolator, a new base isolator called the multiple trench friction pendulum system (MTFPS) is proposed in this study. The proposed MTFPS isolator is composed of a trench concave surface and several intermediate sliding plates in two orthogonal directions. Mathematical formulations have been derived to examine the characteristics of the proposed MTFPS isolator possessing multiple intermediate sliding plates. By means of mathematical formulations, it can be inferred that the natural period and damping effect of the MTFPS isolator with several intermediate sliding plates can be altered continually and controllably during earthquakes. Furthermore, results obtained from shaking table tests demonstrate that the proposed isolator provides good protection to structures for prevention of damage from strong earthquakes.

Keywords: Friction Pendulum System, Multiple Friction Pendulum System, Base Isolation, Earthquake Engineering

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1797
86 Creeping Insulation - Hong Kong Green Wall

Authors: X. L. Zhang, K. L. Li, R. M. Skitmore

Abstract:

Hong Kong is a densely populated city suffering badly from the urban heat island effect. Green wall offers a means of ameliorating the situation but there are doubts over its suitability in Hong Kong’s unique environment. In this paper, we look at the potential for green walls in Hong Kong first by summarizing some of the Chinese green walling systems and associated vegetation in use, then by an introduction to three existing green walls in Hong Kong, and finally through a small experiment aimed at identifying the likely main effects of green walled housing.

The results indicate that green walling in Hong Kong is likely to provide enhanced internal house environment in terms of warm weather temperature reduction, stabilization and damping, with direct energy savings in air-conditioning and indirect district benefits of reduced heat island effect and carbon emissions. The green walling insulation properties also suggest the possibility of warmer homes in winter and/or energy savings in mechanical heating provision.

Keywords: Case studies, experiment, green wall, Hong Kong.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3179
85 Real-Coded Genetic Algorithm for Robust Power System Stabilizer Design

Authors: Sidhartha Panda, C. Ardil

Abstract:

Power system stabilizers (PSS) are now routinely used in the industry to damp out power system oscillations. In this paper, real-coded genetic algorithm (RCGA) optimization technique is applied to design robust power system stabilizer for both singlemachine infinite-bus (SMIB) and multi-machine power system. The design problem of the proposed controller is formulated as an optimization problem and RCGA is employed to search for optimal controller parameters. By minimizing the time-domain based objective function, in which the deviation in the oscillatory rotor speed of the generator is involved; stability performance of the system is improved. The non-linear simulation results are presented under wide range of operating conditions; disturbances at different locations as well as for various fault clearing sequences to show the effectiveness and robustness of the proposed controller and their ability to provide efficient damping of low frequency oscillations.

Keywords: Particle swarm optimization, power system stabilizer, low frequency oscillations, power system stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2012
84 Fuzzy Control of a Quarter-Car Suspension System

Authors: M. M. M. Salem, Ayman A. Aly

Abstract:

An active suspension system has been proposed to improve the ride comfort. A quarter-car 2 degree-of-freedom (DOF) system is designed and constructed on the basis of the concept of a four-wheel independent suspension to simulate the actions of an active vehicle suspension system. The purpose of a suspension system is to support the vehicle body and increase ride comfort. The aim of the work described in the paper was to illustrate the application of fuzzy logic technique to the control of a continuously damping automotive suspension system. The ride comfort is improved by means of the reduction of the body acceleration caused by the car body when road disturbances from smooth road and real road roughness. The paper describes also the model and controller used in the study and discusses the vehicle response results obtained from a range of road input simulations. In the conclusion, a comparison of active suspension fuzzy control and Proportional Integration derivative (PID) control is shown using MATLAB simulations.

Keywords: Fuzzy logic control, ride comfort, vehicle dynamics, active suspension system, quarter-car model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4148
83 An Experimental and Numerical Investigation on Gas Hydrate Plug Flow in the Inclined Pipes and Bends

Authors: M. M. Shabani, O. J. Nydal, R. Larsen

Abstract:

Gas hydrates can agglomerate and block multiphase oil and gas pipelines when water is present at hydrate forming conditions. Using "Cold Flow Technology", the aim is to condition gas hydrates so that they can be transported as a slurry mixture without a risk of agglomeration. During the pipeline shut down however, hydrate particles may settle in bends and build hydrate plugs. An experimental setup has been designed and constructed to study the flow of such plugs at start up operations. Experiments have been performed using model fluid and model hydrate particles. The propagations of initial plugs in a bend were recorded with impedance probes along the pipe. The experimental results show a dispersion of the plug front. A peak in pressure drop was also recorded when the plugs were passing the bend. The evolutions of the plugs have been simulated by numerical integration of the incompressible mass balance equations, with an imposed mixture velocity. The slip between particles and carrier fluid has been calculated using a drag relation together with a particle-fluid force balance.

Keywords: Cold Flow Technology, Gas Hydrate Plug Flow Experiments, One Dimensional Incompressible Two Fluid Model, Slurry Flow in Inclined Pipes and Bends, Transient Slurry Flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2060
82 Theoretical Study on the Forced Vibration of One Degree of Freedom System, Equipped with Inerter, under Load-Type or Displacement-Type Excitation

Authors: Barenten Suciu

Abstract:

In this paper, a theoretical study on the forced vibration of one degree of freedom system equipped with inerter, working under load-type or displacement-type excitation, is presented. Differential equations of movement are solved under cosinusoidal excitation, and explicit relations for the magnitude, resonant magnitude, phase angle, resonant frequency, and critical frequency are obtained. Influence of the inertance and damping on these dynamic characteristics is clarified. From the obtained results, one concludes that the inerter increases the magnitude of vibration and the phase angle of the damped mechanical system. Moreover, the magnitude ratio and difference of phase angles are not depending on the actual type of excitation. Consequently, such kind of similitude allows for the comparison of various theoretical and experimental results, which can be broadly found in the literature.

Keywords: One degree of freedom vibration, inerter, parallel connection, load-type excitation, displacement-type excitation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 813
81 Numerical Analysis of Dynamic Responses of the Plate Subjected to Impulsive Loads

Authors: Behzad Mohammadzadeh, Huyk Chun Noh

Abstract:

Plate is one of the popular structural elements used in a wide range of industries and structures. They may be subjected to blast loads during explosion events, missile attacks or aircraft attacks. This study is to investigate dynamic responses of the rectangular plate subjected to explosive loads. The effects of material properties and plate thickness on responses of the plate are to be investigated. The compressive pressure is applied to the surface of the plate. Different amounts of thickness in the range from 1mm to 30mm are considered for the plate to evaluate the changes in responses of the plate with respect to plate thickness. Two different properties are considered for the steel. First, the analysis is performed by considering only the elastic-plastic properties for the steel plate. Later on damping is considered to investigate its effects on the responses of the plate. To do analysis, numerical method using a finite element based package ABAQUS is applied. Finally, dynamic responses and graphs showing the relation between maximum displacement of the plate and aim parameters are provided.

Keywords: Impulsive loaded plates, dynamic analysis, abaqus, material nonlinearity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1783
80 A Numerical Approach for Static and Dynamic Analysis of Deformable Journal Bearings

Authors: D. Benasciutti, M. Gallina, M. Gh. Munteanu, F. Flumian

Abstract:

This paper presents a numerical approach for the static and dynamic analysis of hydrodynamic radial journal bearings. In the first part, the effect of shaft and housing deformability on pressure distribution within oil film is investigated. An iterative algorithm that couples Reynolds equation with a plane finite elements (FE) structural model is solved. Viscosity-to-pressure dependency (Vogel- Barus equation) is also included. The deformed lubrication gap and the overall stress state are obtained. Numerical results are presented with reference to a typical journal bearing configuration at two different inlet oil temperatures. Obtained results show the great influence of bearing components structural deformation on oil pressure distribution, compared with results for ideally rigid components. In the second part, a numerical approach based on perturbation method is used to compute stiffness and damping matrices, which characterize the journal bearing dynamic behavior.

Keywords: Journal bearing, finite elements, deformation, dynamic analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1994
79 Robust Power System Stabilizer Design Using Particle Swarm Optimization Technique

Authors: Sidhartha Panda, N. P. Padhy

Abstract:

Power system stabilizers (PSS) are now routinely used in the industry to damp out power system oscillations. In this paper, particle swarm optimization (PSO) technique is applied to design a robust power system stabilizer (PSS). The design problem of the proposed controller is formulated as an optimization problem and PSO is employed to search for optimal controller parameters. By minimizing the time-domain based objective function, in which the deviation in the oscillatory rotor speed of the generator is involved; stability performance of the system is improved. The non-linear simulation results are presented under wide range of operating conditions; disturbances at different locations as well as for various fault clearing sequences to show the effectiveness and robustness of the proposed controller and their ability to provide efficient damping of low frequency oscillations. Further, all the simulations results are compared with a conventionally designed power system stabilizer to show the superiority of the proposed design approach.

Keywords: Particle swarm optimization, power system stabilizer, low frequency oscillations, power system stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2316
78 Retrofitting of Beam-Column Joint Using CFRP and Steel Plate

Authors: N. H. Hamid, N. D. Hadi, K. D. Ghani

Abstract:

This paper presents the retrofitting of beam-column joint using CFRP (Carbon Fiber Reinforced Polymer) and steel plate. This specimen was tested until failure up to 1.0% drift. This joint suffered severe damages and diagonal cracks at upper crack at upper column before retrofitted. CFRP were wrapped at corbel, bottom and top of the column. Steel plates with bonding were attached to the two beams and the jointing system. This retrofitted specimen is tested again under lateral cyclic loading up 1.75% drift. Visual observations show that the cracks started at joint when 0.5% drift applied at top of column. Damage of retrofitted beam-column joint occurred inside the CFRP and it cannot be seen from outside. Analysis of elastic stiffness, lateral strength, ductility, hysteresis loops and equivalent viscous damping shows that these values are higher than before retrofitting. Therefore, it is recommended to use this type of retrofitting method for beam-column joint with corbel which suffers severe damage after the earthquake.

Keywords: Beam-Column joint, ductility, stiffness, retrofitting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5922
77 Prediction of Rubberised Concrete Strength by Using Artificial Neural Networks

Authors: A. M. N. El-Khoja, A. F. Ashour, J. Abdalhmid, X. Dai, A. Khan

Abstract:

In recent years, waste tyre problem is considered as one of the most crucial environmental pollution problems facing the world. Thus, reusing waste rubber crumb from recycled tyres to develop highly damping concrete is technically feasible and a viable alternative to landfill or incineration. The utilization of waste rubber in concrete generally enhances the ductility, toughness, thermal insulation, and impact resistance. However, the mechanical properties decrease with the amount of rubber used in concrete. The aim of this paper is to develop artificial neural network (ANN) models to predict the compressive strength of rubberised concrete (RuC). A trained and tested ANN was developed using a comprehensive database collected from different sources in the literature. The ANN model developed used 5 input parameters that include: coarse aggregate (CA), fine aggregate (FA), w/c ratio, fine rubber (Fr), and coarse rubber (Cr), whereas the ANN outputs were the corresponding compressive strengths. A parametric study was also conducted to study the trend of various RuC constituents on the compressive strength of RuC.

Keywords: Rubberized concrete, compressive strength, artificial neural network, prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 853
76 Hydrodynamic Modeling of Infinite Reservoir using Finite Element Method

Authors: M. A. Ghorbani, M. Pasbani Khiavi

Abstract:

In this paper, the dam-reservoir interaction is analyzed using a finite element approach. The fluid is assumed to be incompressible, irrotational and inviscid. The assumed boundary conditions are that the interface of the dam and reservoir is vertical and the bottom of reservoir is rigid and horizontal. The governing equation for these boundary conditions is implemented in the developed finite element code considering the horizontal and vertical earthquake components. The weighted residual standard Galerkin finite element technique with 8-node elements is used to discretize the equation that produces a symmetric matrix equation for the damreservoir system. A new boundary condition is proposed for truncating surface of unbounded fluid domain to show the energy dissipation in the reservoir, through radiation in the infinite upstream direction. The Sommerfeld-s and perfect damping boundary conditions are also implemented for a truncated boundary to compare with the proposed far end boundary. The results are compared with an analytical solution to demonstrate the accuracy of the proposed formulation and other truncated boundary conditions in modeling the hydrodynamic response of an infinite reservoir.

Keywords: Reservoir, finite element, truncated boundary, hydrodynamic pressure

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2268
75 Numerical Investigation of the Evaporation and Mixing of UWS in a Diesel Exhaust Pipe

Authors: Tae Hyun Ahn, Gyo Woo Lee, Man Young Kim

Abstract:

Because of high thermal efficiency and low CO2 emission, diesel engines are being used widely in many industrial fields although it makes many PM and NOx which give both human health and environment a negative effect. NOx regulations for diesel engines, however, are being strengthened and it is impossible to meet the emission standard without NOx reduction devices such as SCR (Selective Catalytic Reduction), LNC (Lean NOx Catalyst), and LNT (Lean NOx Trap). Among the NOx reduction devices, urea-SCR system is known as the most stable and efficient method to solve the problem of NOx emission. But this device has some issues associated with the ammonia slip phenomenon which is occurred by shortage of evaporation and thermolysis time, and that makes it difficult to achieve uniform distribution of the injected urea in front of monolith. Therefore, this study has focused on the mixing enhancement between urea and exhaust gases to enhance the efficiency of the SCR catalyst equipped in catalytic muffler by changing inlet gas temperature and spray conditions to improve the spray uniformity of the urea water solution. Finally, it can be found that various parameters such as inlet gas temperature and injector and injection angles significantly affect the evaporation and mixing of the urea water solution with exhaust gases, and therefore, optimization of these parameters are required.

Keywords: Evaporation, Injection, Selective Catalytic Reduction (SCR), Thermolysis, UWS (Urea-Water-Solution).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2850
74 Modeling of Electrokinetic Mixing in Lab on Chip Microfluidic Devices

Authors: Virendra J. Majarikar, Harikrishnan N. Unni

Abstract:

This paper sets to demonstrate a modeling of electrokinetic mixing employing electroosmotic stationary and time-dependent microchannel using alternate zeta patches on the lower surface of the micromixer in a lab on chip microfluidic device. Electroosmotic flow is amplified using different 2D and 3D model designs with alternate and geometric zeta potential values such as 25, 50, and 100 mV, respectively, to achieve high concentration mixing in the electrokinetically-driven microfluidic system. The enhancement of electrokinetic mixing is studied using Finite Element Modeling, and simulation workflow is accomplished with defined integral steps. It can be observed that the presence of alternate zeta patches can help inducing microvortex flows inside the channel, which in turn can improve mixing efficiency. Fluid flow and concentration fields are simulated by solving Navier-Stokes equation (implying Helmholtz-Smoluchowski slip velocity boundary condition) and Convection-Diffusion equation. The effect of the magnitude of zeta potential, the number of alternate zeta patches, etc. are analysed thoroughly. 2D simulation reveals that there is a cumulative increase in concentration mixing, whereas 3D simulation differs slightly with low zeta potential as that of the 2D model within the T-shaped micromixer for concentration 1 mol/m3 and 0 mol/m3, respectively. Moreover, 2D model results were compared with those of 3D to indicate the importance of the 3D model in a microfluidic design process.

Keywords: COMSOL, electrokinetic, electroosmotic, microfluidics, zeta potential.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1154
73 Investigating the Impact of Wind Speed on Active and Reactive Power Penetration to the Distribution Network

Authors: Sidhartha Panda, N.P.Padhy

Abstract:

Wind power is among the most actively developing distributed generation (DG) technology. Majority of the wind power based DG technologies employ wind turbine induction generators (WTIG) instead of synchronous generators, for the technical advantages like: reduced size, increased robustness, lower cost, and increased electromechanical damping. However, dynamic changes of wind speed make the amount of active/reactive power injected/drawn to a WTIG embedded distribution network highly variable. This paper analyzes the effect of wind speed changes on the active and reactive power penetration to the wind energy embedded distribution network. Four types of wind speed changes namely; constant, linear change, gust change and random change of wind speed are considered in the analysis. The study is carried out by three-phase, non-linear, dynamic simulation of distribution system component models. Results obtained from the investigation are presented and discussed.

Keywords: Wind turbine induction generator, distribution network, active and reactive power, wind speed.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2403
72 Fuzzy Logic Control of a Semi-Active Quarter Car System

Authors: Devdutt, M. L. Aggarwal

Abstract:

The development of vehicles having best ride comfort and safety of travelling passengers is of great interest for automotive manufacturers. The effect of transmitted vibrations from car body to passenger seat is required to be controlled for achieving the same. The application of magneto-rheological (MR) shock absorber in suspension system has been considered to achieve significant benefits in this regard. This paper introduces a secondary suspension controlled semi-active quarter car system using MR shock absorber for effective vibration control. Fuzzy logic control system is used for design of controller for actual damping force generation by MR shock absorber. Performance evaluations are done related to passenger seat acceleration and displacement in time and frequency domains, in order to see the effectiveness of the proposed semi-active suspension system. Simulation results show that the semi-active suspension system provides better results compared to passive suspension system in terms of passenger ride comfort improvement.

Keywords: Fuzzy logic control, MR shock absorber, Quarter car model, Semi-active suspension system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3099
71 A Superior Delay Estimation Model for VLSI Interconnect in Current Mode Signaling

Authors: Sunil Jadav, Rajeevan Chandel Munish Vashishath

Abstract:

Today’s VLSI networks demands for high speed. And in this work the compact form mathematical model for current mode signalling in VLSI interconnects is presented.RLC interconnect line is modelled using characteristic impedance of transmission line and inductive effect. The on-chip inductance effect is dominant at lower technology node is emulated into an equivalent resistance. First order transfer function is designed using finite difference equation, Laplace transform and by applying the boundary conditions at the source and load termination. It has been observed that the dominant pole determines system response and delay in the proposed model. The novel proposed current mode model shows superior performance as compared to voltage mode signalling. Analysis shows that current mode signalling in VLSI interconnects provides 2.8 times better delay performance than voltage mode. Secondly the damping factor of a lumped RLC circuit is shown to be a useful figure of merit.

Keywords: Current Mode, Voltage Mode, VLSI Interconnect.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2412
70 Genetically Optimized TCSC Controller for Transient Stability Improvement

Authors: Sidhartha Panda, N.P.Padhy, R.N.Patel

Abstract:

This paper presents a procedure for modeling and tuning the parameters of Thyristor Controlled Series Compensation (TCSC) controller in a multi-machine power system to improve transient stability. First a simple transfer function model of TCSC controller for stability improvement is developed and the parameters of the proposed controller are optimally tuned. Genetic algorithm (GA) is employed for the optimization of the parameter-constrained nonlinear optimization problem implemented in a simulation environment. By minimizing an objective function in which the oscillatory rotor angle deviations of the generators are involved, transient stability performance of the system is improved. The proposed TCSC controller is tested on a multi-machine system and the simulation results are presented. The nonlinear simulation results validate the effectiveness of proposed approach for transient stability improvement in a multimachine power system installed with a TCSC. The simulation results also show that the proposed TCSC controller is also effective in damping low frequency oscillations.

Keywords: Genetic algorithm, TCSC, transient stability, multimachinepower system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2340
69 Investigations into Effect of Neural Network Predictive Control of UPFC for Improving Transient Stability Performance of Multimachine Power System

Authors: Sheela Tiwari, R. Naresh, R. Jha

Abstract:

The paper presents an investigation in to the effect of neural network predictive control of UPFC on the transient stability performance of a multimachine power system. The proposed controller consists of a neural network model of the test system. This model is used to predict the future control inputs using the damped Gauss-Newton method which employs ‘backtracking’ as the line search method for step selection. The benchmark 2 area, 4 machine system that mimics the behavior of large power systems is taken as the test system for the study and is subjected to three phase short circuit faults at different locations over a wide range of operating conditions. The simulation results clearly establish the robustness of the proposed controller to the fault location, an increase in the critical clearing time for the circuit breakers, and an improved damping of the power oscillations as compared to the conventional PI controller.

Keywords: Identification, Neural networks, Predictive control, Transient stability, UPFC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2030
68 Numerical Analysis of Concrete Crash Barriers

Authors: J. Kala, P. Hradil, V. Salajka

Abstract:

Reinforced concrete crash barriers used in road traffic must meet a number of criteria. Crash barriers are laid lengthwise, one behind another, and joined using specially designed steel locks. While developing BSV reinforced concrete crash barriers (type ŽPSV), experiments and calculations aimed to optimize the shape of a newly designed lock and the reinforcement quantity and distribution in a crash barrier were carried out. The tension carrying capacity of two parallelly joined locks was solved experimentally. Based on the performed experiments, adjustments of nonlinear properties of steel were performed in the calculations. The obtained results served as a basis to optimize the lock design using a computational model that takes into account the plastic behaviour of steel and the influence of the surrounding concrete [6]. The response to the vehicle impact has been analyzed using a specially elaborated complex computational model, comprising both the nonlinear model of the damping wall or crash barrier and the detailed model of the vehicle [7].

Keywords: Crash Barrier, impact, static analysis, concrete nonlinear model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3201
67 Chaotic Oscillations of Diaphragm Supported by Nonlinear Springs with Hysteresis

Authors: M. Sasajima, T. Yamaguchi, Y. Koike, A. Hara

Abstract:

This paper describes vibration analysis using the finite element method for a small earphone, especially for the diaphragm shape with a low-rigidity. The viscoelastic diaphragm is supported by multiple nonlinear concentrated springs with linear hysteresis damping. The restoring forces of the nonlinear springs have cubic nonlinearity. The finite elements for the nonlinear springs with hysteresis are expressed and are connected to the diaphragm that is modeled by linear solid finite elements in consideration of a complex modulus of elasticity. Further, the discretized equations in physical coordinates are transformed into the nonlinear ordinary coupled equations using normal coordinates corresponding to the linear natural modes. We computed the nonlinear stationary and non-stationary responses due to the internal resonance between modes with large amplitude in the nonlinear springs and elastic modes in the diaphragm. The non-stationary motions are confirmed as the chaos due to the maximum Lyapunov exponents with a positive number. From the time histories of the deformation distribution in the chaotic vibration, we identified nonlinear modal couplings.

Keywords: Nonlinear Vibration, Finite Element Method, Chaos , Small Earphone.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1735
66 A Meta-Model for Tubercle Design of Wing Planforms Inspired by Humpback Whale Flippers

Authors: A. Taheri

Abstract:

Inspired by topology of humpback whale flippers, a meta-model is designed for wing planform design. The net is trained based on experimental data using cascade-forward artificial neural network (ANN) to investigate effects of the amplitude and wavelength of sinusoidal leading edge configurations on the wing performance. Afterwards, the trained ANN is coupled with a genetic algorithm method towards an optimum design strategy. Finally, flow physics of the problem for an optimized rectangular planform and also a real flipper geometry planform is simulated using Lam-Bremhorst low Reynolds number turbulence model with damping wall-functions resolving to the wall. Lift and drag coefficients and also details of flow are presented along with comparisons to available experimental data. Results show that the proposed strategy can be adopted with success as a fast-estimation tool for performance prediction of wing planforms with wavy leading edge at preliminary design phase.  

Keywords: Humpback whale flipper, cascade-forward ANN, GA, CFD, Bionics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3391