Search results for: radio over fiber
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 746

Search results for: radio over fiber

536 Optical Switching Based On Bragg Solitons in A Nonuniform Fiber Bragg Grating

Authors: Abdulatif Abdusalam, Mohamed Shaban

Abstract:

In this paper, we consider the nonlinear pulse propagation through a nonuniform birefringent fiber Bragg grating (FBG) whose index modulation depth varies along the propagation direction. Here, the pulse propagation is governed by the nonlinear birefringent coupled mode (NLBCM) equations. To form the Bragg soliton outside the photonic bandgap (PBG), the NLBCM equations are reduced to the well known NLS type equation by multiple scale analysis. As we consider the pulse propagation in a nonuniform FBG, the pulse propagation outside the PBG is governed by inhomogeneous NLS (INLS) rather than NLS. We then discuss the formation of soliton in the FBG known as Bragg soliton whose central frequency lies outside but close to the PBG of the grating structure. Further, we discuss Bragg soliton compression due to a delicate balance between the SPM and the varying grating induced dispersion. In addition, Bragg soliton collision, Bragg soliton switching and possible logic gates have also been discussed.

Keywords: Bragg grating, Nonuniform fiber, Nonlinear pulse.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1856
535 Buckling Resistance of Basalt Fiber Reinforced Polymer Infill Panel Subjected to Elevated Temperatures

Authors: Viriyavudh Sim, Woo Young Jung

Abstract:

Performance of Basalt Fiber Reinforced Polymer (BFRP) sandwich infill panel system under diagonal compression was studied by means of numerical analysis. Furthermore, the variation of temperature was considered to affect the mechanical properties of BFRP, since their composition was based on polymeric material. Moreover, commercial finite element analysis platform ABAQUS was used to model and analyze this infill panel system. Consequently, results of the analyses show that the overall performance of BFRP panel had a 15% increase compared to that of GFRP infill panel system. However, the variation of buckling load in terms of temperature for the BFRP system showed a more sensitive nature compared to those of GFRP system.

Keywords: Basalt Fiber Reinforced Polymer, Buckling performance, numerical simulation, temperature dependent materials.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1108
534 Essential Micronutrient Biofortification of Sprouts Grown on Mineral Fortified Fiber Mats

Authors: Jacquelyn Nyenhuis, Jaroslaw W. Drelich

Abstract:

Diets high in processed foods have been found to lack essential micro-nutrients for optimum human development and overall health. Some micro-nutrients such as copper (Cu) have been found to enhance the inflammatory response through its oxidative functions, thereby having a role in cardiovascular disease, metabolic syndrome, diabetes and related complications. This research study was designed to determine if food crops could be bio-fortified with micro-nutrients by growing sprouts on mineral fortified fiber mats. In the feasibility study described in this contribution, recycled cellulose fibers and clay, saturated with either micro-nutrient copper ions or copper nanoparticles, were converted to a novel mineral-cellulose fiber carrier of essential micro-nutrient and of antimicrobial properties. Seeds of Medicago sativa (alfalfa), purchased from a commercial, organic supplier were germinated on engineered cellulose fiber mats. After the appearance of the first leaves, the sprouts were dehydrated and analyzed for Cu content. Nutrient analysis showed ~2 increase in Cu of the sprouts grown on the fiber mats with copper particles, and ~4 increase on mats with ionic copper as compared to the control samples. This study illustrates the potential for the use of engineered mats as a viable way to increase the micro-nutrient composition of locally-grown food crops and the need for additional research to determine the uptake, nutritional implications and risks of micro-nutrient bio-fortification.

Keywords: Bio-fortification, copper nutrient uptake, sprout, mineral-fortified mat, micro-nutrient uptake.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1948
533 Comparison of Nutritional and Chemical Parameters of Soymilk and Cow milk

Authors: Bahareh Hajirostamloo

Abstract:

Cow milk, is a product of the mammary gland and soymilk is a beverage made from soybeans; it is the liquid that remains after soybeans are soaked. In this research effort, we compared nutritional parameters of this two kind milk such as total fat, fiber, protein, minerals (Ca, Fe and P), fatty acids, carbohydrate, lactose, water, total solids, ash, pH, acidity and calories content in one cup (245 g). Results showed soymilk contains 4.67 grams of fat, 0.52 of fatty acids, 3.18 of fiber, 6.73 of protein, 4.43 of carbohydrate, 0.00 of lactose, 228.51 of water, 10.40 of total solids and 0.66 of ash, also 9.80 milligrams of Ca, 1.42 of Fe, and 120.05 of P, 79 Kcal of calories, pH=6.74 and acidity was 0.24%. Cow milk contains 8.15 grams of fat, 5.07 of fatty acids, 0.00 of fiber, 8.02 of protein, 11.37 of carbohydrate, ´Çá4.27 of lactose, 214.69 of water, 12.90 of total solids, 1.75 of ash, 290.36 milligrams of Ca, 0.12 of Fe, and 226.92 of P, 150 Kcal of calories, pH=6.90 and acidity was 0.21% . Soy milk is one of plant-based complete proteins and cow milk is a rich source of nutrients as well. Cow milk is containing near twice as much fat as and ten times more fatty acids do soymilk. Cow milk contains greater amounts of mineral (except Fe) it contain more than three hundred times the amount of Ca and nearly twice the amount of P as does soymilk but soymilk contains more Fe (ten time more) than does cow milk. Cow milk and soy milk contain nearly identical amounts of protein and water and fiber is a big plus, dairy has none. Although what we choose to drink is really a mater of personal preference and our health objectives but looking at the comparison, soy looks like healthier choices.

Keywords: Soymilk, cow milk, nutritional, comparison.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7271
532 Durability of Slurry Infiltrated Fiber Concrete to Corrosion in Chloride Environment: An Experimental Study, Part I

Authors: M. F. Alrubaie, S. A. Salih, W. A. Abbas

Abstract:

Slurry infiltrated fiber concrete (SIFCON) is considered as a special type of high strength high-performance fiber reinforced concrete, extremely strong, and ductile. The objective of this study is to investigate the durability of SIFCON to corrosion in chloride environments. Six different SIFCON mixes were made in addition to two refinance mixes with 0% and 1.5% steel fiber content. All mixes were exposed to 10% chloride solution for 180 days. Half of the specimens were partially immersed in chloride solution, and the others were exposed to weekly cycles of wetting and drying in 10% chloride solution. The effectiveness of using corrosion inhibitors, mineral admixture, and epoxy protective coating were also evaluated as protective measures to reduce the effect of chloride attack and to improve the corrosion resistance of SIFCON mixes. Corrosion rates, half-cell potential, electrical resistivity, total permeability tests had been monitored monthly. The results indicated a significant improvement in performance for SIFCON mixes exposed to chloride environment, when using corrosion inhibitor or epoxy protective coating, whereas SIFCON mix contained mineral admixture (metakaolin) did not improve the corrosion resistance at the same level. The cyclic wetting and drying exposure were more aggressive to the specimens than the partial immersion in chloride solution although the observed surface corrosion for the later was clearer.

Keywords: Chloride attack, chloride environments, corrosion inhibitor, corrosion resistance, durability, SIFCON, Slurry infiltrated fiber concrete.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 671
531 Ontology for Semantic Enrichment of Radio Frequency Identification Systems

Authors: Haitham S. Hamza, Mohamed Maher, Shourok Alaa, Aya Khattab, Hadeal Ismail, Kamilia Hosny

Abstract:

Radio Frequency Identification (RFID) has become a key technology in the emerging concept of Internet of Things (IoT). Naturally, business applications would require the deployment of various RFID systems developed by different vendors that use different data formats and structures. This heterogeneity poses a challenge in developing real-life IoT systems with RFID, as integration is becoming very complex and challenging. Semantic integration is a key approach to deal with this challenge. To do so, ontology for RFID systems need to be developed in order to annotated semantically RFID systems, and hence, facilitate their integration. Accordingly, in this paper, we propose ontology for RFID systems. The proposed ontology can be used to semantically enrich RFID systems, and hence, improve their usage and reasoning.

Keywords: IoT, RFID, Semantic, sparql, Ontology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1827
530 Experimental and Theoretical Study on Hygrothermal Aging Effect on Mechanical Behavior of Fiber Reinforced Plastic Laminates

Authors: S. Larbi, R. Bensaada, S. Djebali, A. Bilek

Abstract:

The manufacture of composite parts is a major issue in many industrial domains. Polymer composite materials are ideal for structural applications where high strength-to-weight and stiffness-to-weight ratios are required. However, exposition to extreme environment conditions (temperature, humidity) affects mechanical properties of organic composite materials and lead to an undesirable degradation. Aging mechanisms in organic matrix are very diverse and vary according to the polymer and the aging conditions such as temperature, humidity etc. This paper studies the hygrothermal aging effect on the mechanical properties of fiber reinforced plastics laminates at 40 °C in different environment exposure. Two composite materials are used to conduct the study (carbon fiber/epoxy and glass fiber/vinyl ester with two stratifications for both the materials [904/04] and [454/04]). The experimental procedure includes a mechanical characterization of the materials in a virgin state and exposition of specimens to two environments (seawater and demineralized water). Absorption kinetics for the two materials and both the stratifications are determined. Three-point bending test is performed on the aged materials in order to determine the hygrothermal effect on the mechanical properties of the materials.

Keywords: FRP laminates, hygrothermal aging, mechanical properties, theory of laminates.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1180
529 Reducing Variation of Dyeing Process in Textile Manufacturing Industry

Authors: M. Zeydan, G. Toğa

Abstract:

This study deals with a multi-criteria optimization problem which has been transformed into a single objective optimization problem using Response Surface Methodology (RSM), Artificial Neural Network (ANN) and Grey Relational Analyses (GRA) approach. Grey-RSM and Grey-ANN are hybrid techniques which can be used for solving multi-criteria optimization problem. There have been two main purposes of this research as follows. 1. To determine optimum and robust fiber dyeing process conditions by using RSM and ANN based on GRA, 2. To obtain the best suitable model by comparing models developed by different methodologies. The design variables for fiber dyeing process in textile are temperature, time, softener, anti-static, material quantity, pH, retarder, and dispergator. The quality characteristics to be evaluated are nominal color consistency of fiber, maximum strength of fiber, minimum color of dyeing solution. GRA-RSM with exact level value, GRA-RSM with interval level value and GRA-ANN models were compared based on GRA output value and MSE (Mean Square Error) performance measurement of outputs with each other. As a result, GRA-ANN with interval value model seems to be suitable reducing the variation of dyeing process for GRA output value of the model.

Keywords: Artificial Neural Network, Grey Relational Analysis, Optimization, Response Surface Methodology

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3498
528 Dynamic Bandwidth Allocation in Fiber-Wireless (FiWi) Networks

Authors: Eman I. Raslan, Haitham S. Hamza, Reda A. El-Khoribi

Abstract:

Fiber-Wireless (FiWi) networks are a promising candidate for future broadband access networks. These networks combine the optical network as the back end where different passive optical network (PON) technologies are realized and the wireless network as the front end where different wireless technologies are adopted, e.g. LTE, WiMAX, Wi-Fi, and Wireless Mesh Networks (WMNs). The convergence of both optical and wireless technologies requires designing architectures with robust efficient and effective bandwidth allocation schemes. Different bandwidth allocation algorithms have been proposed in FiWi networks aiming to enhance the different segments of FiWi networks including wireless and optical subnetworks. In this survey, we focus on the differentiating between the different bandwidth allocation algorithms according to their enhancement segment of FiWi networks. We classify these techniques into wireless, optical and Hybrid bandwidth allocation techniques.

Keywords: Fiber-Wireless (FiWi), dynamic bandwidth allocation (DBA), passive optical networks (PON), media access control (MAC).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2078
527 Low Nonlinear Effects Index-Guiding Nanostructured Photonic Crystal Fiber

Authors: S. Olyaee, M. Seifouri, A. Nikoosohbat, M. Shams Esfand Abadi

Abstract:

Photonic Crystal Fibers (PCFs) can be used in optical communications as transmission lines. For this reason, the PCFs with low confinement loss, low chromatic dispersion, and low nonlinear effects are highly suitable transmission media. In this paper, we introduce a new design of index-guiding nanostructured photonic crystal fiber (IG-NPCF) with ultra-low chromatic dispersion, low nonlinearity effects, and low confinement loss. Relatively low dispersion is achieved in the wavelength range of 1200 to 1600nm using the proposed design. According to the new structure of nanostructured PCF presented in this study, the chromatic dispersion slope is -30(ps/km.nm) and the confinement loss reaches below 10-7 dB/km. While in the wavelength range mentioned above at the same time an effective area of more than 50.2μm2 is obtained.

Keywords: Optical communication systems, nanostructured, index-guiding, dispersion, confinement loss, photonic crystal fiber.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2909
526 Limiting Fiber Extensibility as Parameter for Damage in Venous Wall

Authors: Lukas Horny, Rudolf Zitny, Hynek Chlup, Tomas Adamek, Michal Sara

Abstract:

An inflation–extension test with human vena cava inferior was performed with the aim to fit a material model. The vein was modeled as a thick–walled tube loaded by internal pressure and axial force. The material was assumed to be an incompressible hyperelastic fiber reinforced continuum. Fibers are supposed to be arranged in two families of anti–symmetric helices. Considered anisotropy corresponds to local orthotropy. Used strain energy density function was based on a concept of limiting strain extensibility. The pressurization was comprised by four pre–cycles under physiological venous loading (0 – 4kPa) and four cycles under nonphysiological loading (0 – 21kPa). Each overloading cycle was performed with different value of axial weight. Overloading data were used in regression analysis to fit material model. Considered model did not fit experimental data so good. Especially predictions of axial force failed. It was hypothesized that due to nonphysiological values of loading pressure and different values of axial weight the material was not preconditioned enough and some damage occurred inside the wall. A limiting fiber extensibility parameter Jm was assumed to be in relation to supposed damage. Each of overloading cycles was fitted separately with different values of Jm. Other parameters were held the same. This approach turned out to be successful. Variable value of Jm can describe changes in the axial force – axial stretch response and satisfy pressure – radius dependence simultaneously.

Keywords: Constitutive model, damage, fiber reinforcedcomposite, limiting fiber extensibility, preconditioning, vena cavainferior.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1426
525 Optimal One Bit Time Reversal For UWB Impulse Radio In Multi-User Wireless Communications

Authors: Hung Tuan Nguyen

Abstract:

In this paper, with the purpose of further reducing the complexity of the system, while keeping its temporal and spatial focusing performance, we investigate the possibility of using optimal one bit time reversal (TR) system for impulse radio ultra wideband multi-user wireless communications. The results show that, by optimally selecting the number of used taps in the pre-filter the optimal one bit TR system can outperform the full one bit TR system. In some cases, the temporal and spatial focusing performance of the optimal one bit TR system appears to be compatible with that of the original TR system. This is a significant result as the overhead cost is much lower than it is required in the original TR system.

Keywords: Time reversal, optimal one bit, UWB, multi-user interference, inter symbol interference

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1515
524 Active Fiber Composites for Smart Damping of Doubly Curved Laminated Shells

Authors: Saroj Kumar Sarangi, M. C. Ray

Abstract:

This paper deals with the analysis of active constrained layer damping (ACLD) of doubly curved laminated composite shells using active fiber composite (AFC) materials. The constraining layer of the ACLD treatment has been considered to be made of the AFC materials. A three dimensional energy based finite element model of the smart doubly curved laminated composite shell integrated with a patch of such ACLD treatment has been developed to demonstrate the performance of the patch on enhancing the damping characteristics of the doubly curved laminated composite shells. Particular emphasis has been placed on studying the effect of variation of piezoelectric fiber orientation angle in the constraining AFC layer on the control authority of the ACLD patch.

Keywords: Active constrained layer damping, Active fibercomposites, Finite element modeling, First order shear deformationtheory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1597
523 Properties of Bio-Phenol Formaldehyde Composites Filled with Empty Fruit Bunch Fiber

Authors: Sharifah Nabihah Syed Jaafar, Umar Adli Amran, Rasidi Roslan, Chia Chin Hua, Sarani Zakaria

Abstract:

Bio-composites derived from plant fiber and/or bioderived polymer, are likely more ecofriendly and demonstrate competitive performance with petroleum based composites. In this research, the bio phenol-formaldehyde (bio-PF) was used as a matrix and oil palm empty fruit bunch fiber (EFB) as reinforcement. The matrix was synthesized via liquefaction and condensation to enhance the combination of phenol and formaldehyde, during the process. Then, the bio-PF was mixed with different percentage of EFB (5%, 10%, 15% and 20%) and molded at 180oC. The samples that viewed under scanning electron microscopy (SEM) showed an excellent wettability and interaction between EFB and matrix. Samples of 10% EFB gave the optimum properties of impact and hardness meanwhile sample 15% of EFB gave the highest reading of flexural modulus (MOE) and flexural strength (MOR). For thermal stability analysis, it was found that the weight loss and the activation energy (Ea) of the bio-composites samples were decreased as the filler content increased.

Keywords: EFB, liquefaction, phenol formaldehyde, lignin.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2062
522 The effects of Garlic Oil (Allium sativa), Turmeric Powder (Curcuma longa Linn) and Monensin on Total Apparent Digestibility of Nutrients in Baloochi Lambs

Authors: Ahmad Khalesizadeh, Alireza Vakili, Mohsen Danesh Mesgaran, Reza Valizadeh

Abstract:

The objective of this study was to determine the effects of garlic oil (Allium sativa), turmeric powder (Curcuma longa Linn) and Monensin on Total apparent digestibility of nutrients in Baloochi lambs. The experiment was designed as a 4 x 4 Latin square using 4 ruminally baloochi lambs with 4 treatments in four 28-d periods. Treatments were control (no additive), garlic oil (0. 4 g/d), monensin (0. 2 g/d) and turmeric powder (20 g/d). Total apparent digestibility's (% of intake) of organic matter (OM), dry matter (DM), crud protein (CP), ether extract(EE), non fiber carbohydrate (NFC), acid detergent fiber (ADF) and neutral detergent fiber (NDF) in the total tract were not influenced by addition of either additives.

Keywords: apparent digestibility, essential oil, garlic oil, monensin, turmeric

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2049
521 A Cooperative Weighted Discriminator Energy Detector Technique in Fading Environment

Authors: Muhammad R. Alrabeiah, Ibrahim S. Alnomay

Abstract:

The need in cognitive radio system for a simple, fast, and independent technique to sense the spectrum occupancy has led to the energy detection approach. Energy detector is known by its dependency on noise variation in the system which is one of its major drawbacks. In this paper, we are aiming to improve its performance by utilizing a weighted collaborative spectrum sensing, it is similar to the collaborative spectrum sensing methods introduced previously in the literature. These weighting methods give more improvement for collaborative spectrum sensing as compared to no weighting case. There is two method proposed in this paper: the first one depends on the channel status between each sensor and the primary user while the second depends on the value of the energy measured in each sensor.

Keywords: Cognitive radio, Spectrum sensing, Collaborative sensors, Weighted Decisions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1685
520 Radiation Effects in the PVDF/Graphene Oxide Nanocomposites

Authors: Juliana V. Pereira, Adriana S. M. Batista, Jefferson P. Nascimento, Clascídia A. Furtado, Luiz O. Faria

Abstract:

Exposure to ionizing radiation has been found to induce changes in poly(vinylidene fluoride) (PVDF) homopolymers. The high dose gamma irradiation process induces the formation of C=C and C=O bonds in its [CH2-CF2]n main chain. The irradiation also provokes crosslinking and chain scission. All these radio-induced defects lead to changes in the PVDF crystalline structure. As a consequence, it is common to observe a decrease in the melting temperature (TM) and melting latent heat (LM) and some changes in its ferroelectric features. We have investigated the possibility of preparing nanocomposites of PVDF with graphene oxide (GO) through the radio-induction of molecular bonds. In this work, we discuss how the gamma radiation interacts with the nanocomposite crystalline structure.

Keywords: Gamma irradiation, grapheme oxide, nanocomposites, PVDF.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1163
519 Effects of Signaling on the Performance of Directed Diffusion Routing Protocol

Authors: Apidet Booranawong

Abstract:

In an original directed diffusion routing protocol, a sink requests sensing data from a source node by flooding interest messages to the network. Then, the source finds the sink by sending exploratory data messages to all nodes that generate incoming interest messages. This protocol signaling can cause heavy traffic in the network, an interference of the radio signal, collisions, great energy consumption of sensor nodes, etc. According to this research problem, this paper investigates the effect of sending interest and exploratory data messages on the performance of directed diffusion routing protocol. We demonstrate the research problem occurred from employing directed diffusion protocol in mobile wireless environments. For this purpose, we perform a set of experiments by using NS2 (network simulator 2). The radio propagation models; Two-ray ground reflection with and without shadow fading are included to investigate the effect of signaling. The simulation results show that the number of times of sent and received protocol signaling in the case of sending interest and exploratory data messages are larger than the case of sending other protocol signals, especially in the case of shadowing model. Additionally, the number of exploratory data message is largest in one round of the protocol procedure.

Keywords: Directed diffusion, Flooding, Interest message, Exploratory data message, Radio propagation model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1747
518 Effect of Chemical Modifier on the Properties of Polypropylene (PP) / Coconut Fiber (CF) in Automotive Application

Authors: K. Shahril, A. Nizam, M. Sabri, A. Siti Rohana, H. Salmah

Abstract:

Chemical modifier (Acrylic Acid) is used as filler treatment to improve mechanical properties and swelling behavior of polypropylene/coconut fiber (PP/CF) composites by creating more adherent bonding between CF filler and PP Matrix. Treated (with chemical modifier) and untreated (without chemical modifier) composites were prepared in the formulation of 10 wt%, 20 wt%, 30 wt%, and 40 wt%. The mechanical testing indicates that composite with 10 wt% of untreated composite has the optimum value of tensile strength, and the composite with chemical modifier shows the tensile strength was increased. By increasing of filler loading, elastic modulus was increased while the elongation at brake was decreased. Meanwhile, the swelling test discerned that the increase of filler loading increased the water absorption of composites and the presence of chemical modifier reduced the equilibrium water absorption percentage.

Keywords: Coconut fiber, polypropylene, acid acrylic, ethanol, chemical modifier, composites.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1234
517 The Effect of Clamping Restrain on the Prediction of Drape Simulation Software Tool

Authors: T.A. Adegbola, IEA Aghachi, E.R. Sadiku

Abstract:

To investigates the effect of fiberglass clamping process improvement on drape simulation prediction. This has great effect on the mould and the fiber during manufacturing process. This also, improves the fiber strain, the quality of the fiber orientation in the area of folding and wrinkles formation during the press-forming process. Drape simulation software tool was used to digitalize the process, noting the formation problems on the contour sensitive part. This was compared with the real life clamping processes using single and double frame set-ups to observe the effects. Also, restrains are introduced by using clips, and the G-clamps with predetermine revolution to; restrain the fabric deformation during the forming process.The incorporation of clamping and fabric restrain deformation improved on the prediction of the simulation tool. Therefore, for effective forming process, incorporation of clamping process into the drape simulation process will assist in the development of fiberglass application in manufacturing process.

Keywords: clamping, fiberglass, drape simulation, pressforming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1508
516 Blind Spot Area Tracking Solution Using 1x12 POF-Based Optical Couplers

Authors: Mohammad Syuhaimi Ab-Rahman, Mohd Hadi Guna Safnal, Mohd Hazwan Harun, Mohd.Saiful Dzulkefly Zan, Kasmiran Jumari

Abstract:

Optical 1x12 fused-taper-twisted polymer optical fiber (POF) couplers has been fabricated by a perform technique. Characterization of the coupler which proposed to be used in passive night vision application to tracking a blind sport area was reported. During the development process of fused-taper-twisted POF couplers was carried out, red LED fully utilized to be injected into the couplers to test the quality of fabricated couplers. Some characterization parameters, such as optical output power, POFs attenuation characteristics and power losses on the network were observed. The maximum output power efficiency of the coupler is about 40%, but it can be improved gradually through experience and practice.

Keywords: polymer optical fiber (POF), customer-made, fused-taper-twisted fiber, optical coupler, small world communication, home network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1378
515 A Constitutive Model of Ligaments and Tendons Accounting for Fiber-Matrix Interaction

Authors: Ratchada Sopakayang, Gerhard A. Holzapfel

Abstract:

In this study, a new constitutive model is developed to describe the hyperelastic behavior of collagenous tissues with a parallel arrangement of collagen fibers such as ligaments and tendons. The model is formulated using a continuum approach incorporating the structural changes of the main tissue components: collagen fibers, proteoglycan-rich matrix and fiber-matrix interaction. The mechanical contribution of the interaction between the fibers and the matrix is simply expressed by a coupling term. The structural change of the collagen fibers is incorporated in the constitutive model to describe the activation of the fibers under tissue straining. Finally, the constitutive model can easily describe the stress-stretch nonlinearity which occurs when a ligament/tendon is axially stretched. This study shows that the interaction between the fibers and the matrix contributes to the mechanical tissue response. Therefore, the model may lead to a better understanding of the physiological mechanisms of ligaments and tendons under axial loading.

Keywords: Hyperelasticity, constitutive model, fiber-matrix interaction, ligament, tendon.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 831
514 Mesoporous Material Nanofibers by Electrospinning

Authors: Sh. Sohrabnezhad, A. Jafarzadeh

Abstract:

In this paper, MCM-41 mesoporous material nanofibers were synthesized by an electrospinning technique. The nanofibers were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), x-ray diffraction (XRD), and nitrogen adsorption–desorption measurement. Tetraethyl orthosilicate (TEOS) and polyvinyl alcohol (PVA) were used as a silica source and fiber forming source, respectively. TEM and SEM images showed synthesis of MCM-41 nanofibers with a diameter of 200 nm. The pore diameter and surface area of calcined MCM-41 nanofibers was 2.2 nm and 970 m2/g, respectively. The morphology of the MCM-41 nanofibers depended on spinning voltages.

Keywords: Electrospinning, electron microscopy, fiber technology, porous materials, X-ray techniques.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1774
513 Designing of the Heating Process for Fiber- Reinforced Thermoplastics with Middle-Wave Infrared Radiators

Authors: B. Engel, M. Junge

Abstract:

Manufacturing components of fiber-reinforced thermoplastics requires three steps: heating the matrix, forming and consolidation of the composite and terminal cooling the matrix. For the heating process a pre-determined temperature distribution through the layers and the thickness of the pre-consolidated sheets is recommended to enable forming mechanism. Thus, a design for the heating process for forming composites with thermoplastic matrices is necessary. To obtain a constant temperature through thickness and width of the sheet, the heating process was analyzed by the help of the finite element method. The simulation models were validated by experiments with resistance thermometers as well as with an infrared camera. Based on the finite element simulation, heating methods for infrared radiators have been developed. Using the numeric simulation many iteration loops are required to determine the process parameters. Hence, the initiation of a model for calculating relevant process parameters started applying regression functions.

Keywords: Fiber-reinforced thermoplastics, heating strategies, middle-wave infrared radiator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1693
512 Selective Separation of Lead and Mercury Ions from Synthetic Produced Water via a Hollow Fiber Supported Liquid Membrane

Authors: S. Suren, U. Pancharoen

Abstract:

A double module hollow fiber supported liquid membrane (HFSLM) was applied to selectively separate lead and mercury ions from dilute synthetic produced water. The experiments were investigated on several variables: types of extractants (D2EHPA, Cyanex 471, Aliquat 336, and TOA), concentration of the selected extractant and operating time. The results clearly showed that the double module HFSLM could selectively separate Pb(II) and Hg(II) in feed solution at a very low concentration to less than the regulatory discharge limit of 0.2 and 0.005 mg/L issued by the Ministry of Industry and the Ministry of Natural Resource Environment, Thailand. The highest extractions of lead and mercury ions from synthetic produced water were 96% and 100% using 0.03 M D2EHPA and 0.06 M Aliquat 336 as the extractant for the first and second modules.

Keywords: Hollow fiber, Lead ions, Liquid membrane, Mercury ions, Selective separation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2291
511 Durability of Lime Treated Soil Reinforced by Natural Fiber under Bending Force

Authors: Vivi Anggraini, Afshin Asadi, Bujang B. K. Huat

Abstract:

Earth structures constructed of marine clay soils have tendency to crack. In order to improve the flexural strength and brittleness, a technique of mixing short fibers is introduced to the soil lime mixture. Coir fiber was used in this study as reinforcing elements. An experimental investigation consisting primarily of flexural tensile tests was conducted to examine the influence of coir fibers on the flexural behaviour of the reinforced soils. The test results that the coir fibers were effective in improving the flexural strength and Young’s modulus of all soils examined and ductility after peak strength for reinforced marine clay soil treated by lime. 5% lime treated soil and 1% coir fiber reinforced soil specimens’ demonstrated good strength and durability when submerged in water and retained 45% of their air-cured strengths.

Keywords: Flexural strength, Durabilty, Lime, Coir Fibers, Bending force, Ductility.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2343
510 Study Punching Shear of Steel Fiber Reinforced Self Compacting Concrete Slabs by Nonlinear Analysis

Authors: Khaled S. Ragab

Abstract:

This paper deals with behavior and capacity of punching shear force for flat slabs produced from steel fiber reinforced self compacting concrete (SFRSCC) by application nonlinear finite element method. Nonlinear finite element analysis on nine slab specimens was achieved by using ANSYS software. A general description of the finite element method, theoretical modeling of concrete and reinforcement are presented. The nonlinear finite element analysis program ANSYS is utilized owing to its capabilities to predict either the response of reinforced concrete slabs in the post elastic range or the ultimate strength of a flat slabs produced from steel fiber reinforced self compacting concrete (SFRSCC). In order to verify the analytical model used in this research using test results of the experimental data, the finite element analysis were performed then a parametric study of the effect ratio of flexural reinforcement, ratio of the upper reinforcement, and volume fraction of steel fibers were investigated. A comparison between the experimental results and those predicted by the existing models are presented. Results and conclusions may be useful for designers, have been raised, and represented.

Keywords: Nonlinear FEM, Punching shear behavior, Flat slabs and Steel fiber reinforced self compacting concrete (SFRSCC).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4218
509 Modal Propagation Properties of Elliptical Core Optical Fibers Considering Stress-Optic Effects

Authors: M. Shah Alam, Sarkar Rahat M. Anwar

Abstract:

The effect of thermally induced stress on the modal properties of highly elliptical core optical fibers is studied in this work using a finite element method. The stress analysis is carried out and anisotropic refractive index change is calculated using both the conventional plane strain approximation and the generalized plane strain approach. After considering the stress optical effect, the modal analysis of the fiber is performed to obtain the solutions of fundamental and higher order modes. The modal effective index, modal birefringence, group effective index, group birefringence, and dispersion of different modes of the fiber are presented. For propagation properties, it can be seen that the results depend much on the approach of stress analysis.

Keywords: Birefringence, dispersion, elliptical core fiber, optical mode analysis, stress-optic effect, stress analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2245
508 Design Modification of Lap Joint of Fiber Metal Laminates (CARALL)

Authors: Shaher Bano, Samia Fida, Asif Israr

Abstract:

The synergistic effect of properties of metals and fibers reinforced laminates has diverted attention of the world towards use of robust composite materials known as fiber-metal laminates in many high performance applications. In this study, modification of an adhesively bonded joint as a single lap joint of carbon fibers based CARALL FML has done to increase interlaminar shear strength of the joint. The effect of different configurations of joint designs such as spews, stepped and modification in adhesive by addition of nano-fillers was studied. Both experimental and simulation results showed that modified joint design have superior properties as maximum force experienced stepped joint was 1.5 times more than the simple lap joint. Addition of carbon nano-tubes as nano-fillers in the adhesive joint increased the maximum force due to crack deflection mechanism.

Keywords: Adhesive joint, carbon reinforced aluminium laminate, CARALL, fiber metal laminates, spews.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1049
507 Crack Opening Investigation in Fiberconcrete

Authors: Arturs Macanovskis, Vitalijs Lusis, Andrejs Krasnikovs

Abstract:

This work had three stages. In the first stage was examined pull-out process for steel fiber was embedded into a concrete by one end and was pulled out of concrete under the angle to pulling out force direction. Angle was varied. On the obtained forcedisplacement diagrams were observed jumps. For such mechanical behavior explanation, fiber channel in concrete surface microscopical experimental investigation, using microscope KEYENCE VHX2000, was performed. At the second stage were obtained diagrams for load- crack opening displacement for breaking homogeneously reinforced and layered fiberconcrete prisms (with dimensions 10x10x40cm) subjected to 4-point bending. After testing was analyzed main crack. At the third stage elaborated prediction model for the fiberconcrete beam, failure under bending, using the following data: a) diagrams for fibers pulling out at different angles; b) experimental data about steel-straight fibers locations in the main crack. Experimental and theoretical (modeling) data were compared.

Keywords: Fiberconcrete, pull-out, fiber channel, layered fiberconcrete.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1771