Search results for: pulse wave
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 824

Search results for: pulse wave

794 Wave-Structure Interaction for Submerged Quarter-Circle Breakwaters of Different Radii - Reflection Characteristics

Authors: Arkal Vittal Hegde, L. Ravikiran

Abstract:

The paper presents the results of a series of experiments conducted on physical models of Quarter-circle breakwater (QBW) in a two dimensional monochromatic wave flume. The purpose of the experiments was to evaluate the reflection coefficient Kr of QBW models of different radii (R) for different submergence ratios (d/hc), where d is the depth of water and hc is the height of the breakwater crest from the sea bed. The radii of the breakwater models studied were 20cm, 22.5cm, 25cm, 27.5cm and submergence ratios used varied from 1.067 to 1.667. The wave climate off the Mangalore coast was used for arriving at the various model wave parameters. The incident wave heights (Hi) used in the flume varied from 3 to 18cm, and wave periods (T) ranged from 1.2 s to 2.2 s. The water depths (d) of 40cm, 45cm and 50cm were used in the experiments. The data collected was analyzed to compute variation of reflection coefficient Kr=Hr/Hi (where Hr=reflected wave height) with the wave steepness Hi/gT2 for various R/Hi (R=breakwater radius) values. It was found that the reflection coefficient increased as incident wave steepness increased. Also as wave height decreases reflection coefficient decreases and as structure radius R increased Kr decreased slightly.

Keywords: Incident wave steepness, Quarter-circle breakwater, Reflection coefficient, Submergence ratio.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1759
793 Designing and Manufacturing High Voltage Pulse Generator with Adjustable Pulse and Monitoring Current and Voltage: Food Processing Application

Authors: H. Mirzaee, A. Pourzaki

Abstract:

Using strength Pulse Electrical Field (PEF) in food industries is a non-thermal process that can deactivate microorganisms and increase penetration in plant and animals tissues without serious impact on food taste and quality. In this paper designing and fabricating of a PEF generator has been presented. Pulse generation methods have been surveyed and the best of them selected. The equipment by controller set can generate square pulse with adjustable parameters such as amplitude 1-5kV, frequency 0.1-10Hz, pulse width 10-100s, and duty cycle 0-100%. Setting the number of pulses, and presenting the output voltage and current waveforms on the oscilloscope screen are another advantages of this equipment. Finally, some food samples were tested that yielded the satisfactory results. PEF applying had considerable effects on potato, banana and purple cabbage. It caused increase Brix factor from 0.05 to 0.15 in potato solution. It is also so effective in extraction color material from purple cabbage. In the last experiment effects of PEF voltages on color extraction of saffron scum were surveyed (about 6% increasing yield).

Keywords: PEF, Capacitor, Switch, IGBT

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4172
792 Adaptive Transient and CW RF Interference Mitigation in HF OTH Radar: Experimental Results

Authors: Pavel Turcaj, Yuri I. Abramovich, Gordon J. Frazer

Abstract:

We introduce an adaptive technique for the joint mitigation of transients and continuous-wave radio-frequency co-channel interference (CW RFI) in high-frequency (HF) over-the-horizon radars (OTHRs). The performance of this technique is illustrated using data from an operational surface-wave radar (SECAR) and from recent experimental trials with sky-wave (SW) and sky-wave–line-of-sight (SKYLOS) HF OTHRs.

Keywords:

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1564
791 High-Intensity Nanosecond Pulsed Electric Field effects on Early Physiological Development in Arabidopsis thaliana

Authors: Wisuwat Songnuan, Phumin Kirawanich

Abstract:

The influences of pulsed electric fields on early physiological development in Arabidopsis thaliana were studied. Inside a 4-mm electroporation cuvette, pre-germination seeds were subjected to high-intensity, nanosecond electrical pulses generated using laboratory-assembled pulsed electric field system. The field strength was varied from 5 to 20 kV.cm-1 and the pulse width and the pulse number were maintained at 10 ns and 100, respectively, corresponding to the specific treatment energy from 300 J.kg-1 to 4.5 kJ.kg-1. Statistical analyses on the average leaf area 5 and 15 days following pulsed electric field treatment showed that the effects appear significant the second week after treatments with a maximum increase of 80% compared to the control (P < 0.01).

Keywords: Arabidopsis thaliana, full-wave analysis, leaf area, high-intensity nanosecond pulsed electric fields

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2146
790 A Virtual Electrode through Summation of Time Offset Pulses

Authors: Isaac Cassar, Trevor Davis, Yi-Kai Lo, Wentai Liu

Abstract:

Retinal prostheses have been successful in eliciting visual responses in implanted subjects. As these prostheses progress, one of their major limitations is the need for increased resolution. As an alternative to increasing the number of electrodes, virtual electrodes may be used to increase the effective resolution of current electrode arrays. This paper presents a virtual electrode technique based upon time-offsets between stimuli. Two adjacent electrodes are stimulated with identical pulses with too short of pulse widths to activate a neuron, but one has a time offset of one pulse width. A virtual electrode of twice the pulse width was then shown to appear in the center, with a total width capable of activating a neuron. This can be used in retinal implants by stimulating electrodes with pulse widths short enough to not elicit responses in neurons, but with their combined pulse width adequate to activate a neuron in between them.

Keywords: Electrical stimulation, Neuroprosthesis, Retinal implant, Retinal Prosthesis, Virtual electrode.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1742
789 Near Shore Wave Manipulation for Electricity Generation

Authors: K. D. R. Jagath-Kumara, D. D. Dias

Abstract:

The sea waves carry thousands of GWs of power globally. Although there are a number of different approaches to harness offshore energy, they are likely to be expensive, practically challenging, and vulnerable to storms. Therefore, this paper considers using the near shore waves for generating mechanical and electrical power. It introduces two new approaches, the wave manipulation and using a variable duct turbine, for intercepting very wide wave fronts and coping with the fluctuations of the wave height and the sea level, respectively. The first approach effectively allows capturing much more energy yet with a much narrower turbine rotor. The second approach allows using a rotor with a smaller radius but captures energy of higher wave fronts at higher sea levels yet preventing it from totally submerging. To illustrate the effectiveness of the first approach, the paper contains a description and the simulation results of a scale model of a wave manipulator. Then, it includes the results of testing a physical model of the manipulator and a single duct, axial flow turbine in a wave flume in the laboratory. The paper also includes comparisons of theoretical predictions, simulation results, and wave flume tests with respect to the incident energy, loss in wave manipulation, minimal loss, brake torque, and the angular velocity.

Keywords: Near-shore sea waves, Renewable energy, Wave energy conversion, Wave manipulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1934
788 Experimenting with Error Performance of Systems Employing Pulse Shaping Filters on a Software-Defined-Radio Platform

Authors: Chia-Yu Yao

Abstract:

This paper presents experimental results on testing the symbol-error-rate (SER) performance of quadrature amplitude modulation (QAM) systems employing symmetric pulse-shaping square-root (SR) filters designed by minimizing the roughness function and by minimizing the peak-to-average power ratio (PAR). The device used in the experiments is the 'bladeRF' software-defined-radio platform. PAR is a well-known measurement, whereas the roughness function is a concept for measuring the jitter-induced interference. The experimental results show that the system employing minimum-roughness pulse-shaping SR filters outperforms the system employing minimum-PAR pulse-shaping SR filters in the sense of SER performance.

Keywords: Pulse-shaping filters, jitter, inter-symbol interference, symmetric FIR filters, QAM

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1132
787 Numerical Analysis of Wave and Hydrodynamic Models for Energy Balance and Primitive Equations

Authors: Worachat Wannawong, Usa W. Humphries, Prungchan Wongwises, Suphat Vongvisessomjai, Wiriya Lueangaram

Abstract:

A numerical analysis of wave and hydrodynamic models is used to investigate the influence of WAve and Storm Surge (WASS) in the regional and coastal zones. The numerical analyzed system consists of the WAve Model Cycle 4 (WAMC4) and the Princeton Ocean Model (POM) which used to solve the energy balance and primitive equations respectively. The results of both models presented the incorporated surface wave in the regional zone affected the coastal storm surge zone. Specifically, the results indicated that the WASS generally under the approximation is not only the peak surge but also the coastal water level drop which can also cause substantial impact on the coastal environment. The wave–induced surface stress affected the storm surge can significantly improve storm surge prediction. Finally, the calibration of wave module according to the minimum error of the significant wave height (Hs) is not necessarily result in the optimum wave module in the WASS analyzed system for the WASS prediction.

Keywords: energy balance equation, numerical analysis, primitiveequation, storm surge, wave.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1888
786 Turbulence Modeling and Wave-Current Interactions

Authors: A.-C. Bennis, F. Dumas, F. Ardhuin, B. Blanke

Abstract:

The mechanics of rip currents are complex, involving interactions between waves, currents, water levels and the bathymetry, that present particular challenges for numerical models. Here, the effects of a grid-spacing dependent horizontal mixing on the wave-current interactions are studied. Near the shore, wave rays diverge from channels towards bar crests because of refraction by topography and currents, in a way that depends on the rip current intensity which is itself modulated by the horizontal mixing. At low resolution with the grid-spacing dependent horizontal mixing, the wave motion is the same for both coupling modes because the wave deviation by the currents is weak. In high resolution case, however, classical results are found with the stabilizing effect of the flow by feedback of waves on currents. Lastly, wave-current interactions and the horizontal mixing strongly affect the intensity of the three-dimensional rip velocity.

Keywords: Numerical modeling, Rip currents, Turbulence modeling, Wave-current interactions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2137
785 Bright–Dark Pulses in Nonlinear Polarisation Rotation Based Erbium-Doped Fiber Laser

Authors: R. Z. R. R. Rosdin, N. M. Ali, S. W. Harun, H. Arof

Abstract:

We have experimentally demonstrated bright-dark pulses in a nonlinear polarization rotation (NPR) based mode-locked Erbium-doped fiber laser (EDFL) with a long cavity configuration. Bright–dark pulses could be achieved when the laser works in the passively mode-locking regime and the net group velocity dispersion is quite anomalous. The EDFL starts to generate a bright pulse train with degenerated dark pulse at the mode-locking threshold pump power of 35.09 mW by manipulating the polarization states of the laser oscillation modes using a polarization controller (PC). A split bright–dark pulse is generated when further increasing the pump power up to 37.95 mW. Stable bright pulses with no obvious evidence of a dark pulse can also be generated when further adjusting PC and increasing the pump power up to 52.19 mW. At higher pump power of 54.96 mW, a new form of bright-dark pulse emission was successfully identified with the repetition rate of 29 kHz. The bright and dark pulses have a duration of 795.5 ns and 640 ns, respectively.

Keywords: Erbium-doped fiber laser, Nonlinear polarization rotation, bright-dark pulse.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2422
784 Experimental Characterization of a Thermoacoustic Travelling-Wave Refrigerator

Authors: M. Pierens, J.-P. Thermeau, T. Le Pollès, P. Duthil

Abstract:

The performances of a thermoacoustic travelling-wave refrigerator are presented. Developed in the frame of the European project called THATEA, it is designed for providing 600 W at a temperature of 233 K with an efficiency of 40 % relative to the Carnot efficiency. This paper presents the device and the results of the first measurements. For a cooling power of 210 W, a coefficient of performance relative to Carnot of 30 % is achieved when the refrigerator is coupled with an existing standing-wave engine.

Keywords: Refrigeration, sustainable energy, thermoacoustics, travelling-wave type heat pump

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1585
783 Determination of Seismic Wave of Consolidated Granite Rock in Penang Island: UltrasonicTesting Method Vs Seismic Refraction Method

Authors: Mohd Hafiz Musa, Zulfadhli Hasan Adli, M . N . Khairul Arifin

Abstract:

In seismic survey, the information regarding the velocity of compression wave (Vp) as well as shear wave (Vs) are very useful especially during the seismic interpretation. Previous studies showed that both Vp and Vs determined by above methods are totally different with respect to each other but offered good approximation. In this study, both Vp and Vs of consolidated granite rock were studied by using ultrasonic testing method and seismic refraction method. In ultrasonic testing, two different condition of rock are used which is dry and wet. The differences between Vp and Vs getting by using ultrasonic testing and seismic refraction were investigated and studied. The effect of water content in granite rock towards the value of Vp and Vs during ultrasonic testing are also measured. Within this work, the tolerance of the differences between the velocity of seismic wave getting from ultrasonic testing and the velocity of seismic wave getting from seismic refraction are also measured and investigated.

Keywords: Compressional wave, Granite, Shear Wave, Velocity

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1991
782 An Investigation on Ultrasonic Pulse Velocity of Hybrid Fiber Reinforced Concretes

Authors: Soner Guler, Demet Yavuz, Refik Burak Taymuş, Fuat Korkut

Abstract:

Because of the easy applying and not costing too much, ultrasonic pulse velocity (UPV) is one of the most used non-destructive techniques to determine concrete characteristics along with impact-echo, Schmidt rebound hammer (SRH) and pulse-echo. This article investigates the relationship between UPV and compressive strength of hybrid fiber reinforced concretes. Water/cement ratio (w/c) was kept at 0.4 for all concrete mixes. Compressive strength of concrete was targeted at 35 MPa. UPV testing and compressive strength tests were carried out at the curing age of 28 days. The UPV of concrete containing steel fibers has been found to be higher than plain concrete for all the testing groups. It is decided that there is not a certain relationship between fiber addition and strength.

Keywords: Ultrasonic pulse velocity, hybrid fiber, compressive strength, fiber.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1009
781 Photoplethysmography-Based Device Designing for Cardiovascular System Diagnostics

Authors: S. Botman, D. Borchevkin, V. Petrov, E. Bogdanov, M. Patrushev, N. Shusharina

Abstract:

In this paper, we report the development of the device for diagnostics of cardiovascular system state and associated automated workstation for large-scale medical measurement data collection and analysis. It was shown that optimal design for the monitoring device is wristband as it represents engineering trade-off between accuracy and usability. Monitoring device is based on the infrared reflective photoplethysmographic sensor, which allows collecting multiple physiological parameters, such as heart rate and pulsing wave characteristics. Developed device uses BLE interface for medical and supplementary data transmission to the coupled mobile phone, which processes it and send it to the doctor's automated workstation. Results of this experimental model approbation confirmed the applicability of the proposed approach.

Keywords: Cardiovascular diseases, health monitoring systems, photoplethysmography, pulse wave, remote diagnostics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3108
780 Surface and Guided Waves in Composites with Nematic Coatings

Authors: Dmitry D. Zakharov

Abstract:

The theoretical prediction of the acoustical polarization effects in the heterogeneous composites, made of thick elastic solids with thin nematic films, is presented. The numericalanalytical solution to the problem of the different wave propagation exhibits some new physical effects in the low frequency domain: the appearance of the critical frequency and the existence of the narrow transition zone where the wave rapidly changes its speed. The associated wave attenuation is highly perturbed in this zone. We also show the possible appearance of the critical frequencies where the attenuation changes the sign. The numerical results of parametrical analysis are presented and discussed.

Keywords: Surface wave, guided wave, heterogeneous composite, nematic coating.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1318
779 Calculation of Wave Function at the Origin (WFO) for the Ground State of Doubly Heavy Mesons Based On the Variational Method

Authors: Maryam Momeni Feili, Mahvash Zandy Navgaran

Abstract:

The wave function at the origin is an important quantity in studying many physical problems concerning heavy quarkonia. This is because that it is using for calculating spin state hyperfine splitting and also crucial to evaluating the production and decay amplitude of the heavy quarkonium. In this paper, we present the variational method by using the single-parameter wave function to estimate the WFO for the ground state of heavy mesons.

Keywords: Wave function at the origin, heavy mesons, bound states, variational method, non-relativistic quark model, potential model, trial wave function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1437
778 Wave Interaction with Defects in Pressurized Composite Structures

Authors: R. K. Apalowo, D. Chronopoulos, V. Thierry

Abstract:

A wave finite element (WFE) and finite element (FE) based computational method is presented by which the dispersion properties as well as the wave interaction coefficients for one-dimensional structural system can be predicted. The structural system is discretized as a system comprising a number of waveguides connected by a coupling joint. Uniform nodes are ensured at the interfaces of the coupling element with each waveguide. Then, equilibrium and continuity conditions are enforced at the interfaces. Wave propagation properties of each waveguide are calculated using the WFE method and the coupling element is modelled using the FE method. The scattering of waves through the coupling element, on which damage is modelled, is determined by coupling the FE and WFE models. Furthermore, the central aim is to evaluate the effect of pressurization on the wave dispersion and scattering characteristics of the prestressed structural system compared to that which is not prestressed. Numerical case studies are exhibited for two waveguides coupled through a coupling joint.

Keywords: Finite element, prestressed structures, wave finite element, wave propagation properties, wave scattering coefficients.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 900
777 Power Production Performance of Different Wave Energy Converters in the Southwestern Black Sea

Authors: Ajab G. Majidi, Bilal Bingölbali, Adem Akpınar

Abstract:

This study aims to investigate the amount of energy (economic wave energy potential) that can be obtained from the existing wave energy converters in the high wave energy potential region of the Black Sea in terms of wave energy potential and their performance at different depths in the region. The data needed for this purpose were obtained using the calibrated nested layered SWAN wave modeling program version 41.01AB, which was forced with Climate Forecast System Reanalysis (CFSR) winds from 1979 to 2009. The wave dataset at a time interval of 2 hours was accumulated for a sub-grid domain for around Karaburun beach in Arnavutkoy, a district of Istanbul city. The annual sea state characteristic matrices for the five different depths along with a vertical line to the coastline were calculated for 31 years. According to the power matrices of different wave energy converter systems and characteristic matrices for each possible installation depth, the probability distribution tables of the specified mean wave period or wave energy period and significant wave height were calculated. Then, by using the relationship between these distribution tables, according to the present wave climate, the energy that the wave energy converter systems at each depth can produce was determined. Thus, the economically feasible potential of the relevant coastal zone was revealed, and the effect of different depths on energy converter systems is presented. The Oceantic at 50, 75 and 100 m depths and Oyster at 5 and 25 m depths presents the best performance. In the 31-year long period 1998 the most and 1989 is the least dynamic year.

Keywords: Annual power production, Black Sea, efficiency, power production performance, wave energy converter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 587
776 Development of a Mathematical Theoretical Model and Simulation of the Electromechanical System for Wave Energy Harvesting

Authors: P. Valdez, M. Pelissero, A. Haim, F. Muiño, F. Galia, R. Tula

Abstract:

As a result of the studies performed on the wave energy resource worldwide, a research project was set up to harvest wave energy for its conversion into electrical energy. Within this framework, a theoretical model of the electromechanical energy harvesting system, developed with MATLAB’s Simulink software, will be provided. This tool recreates the site conditions where the device will be installed and offers valuable information about the amount of energy that can be harnessed. This research provides a deeper understanding of the utilization of wave energy in order to improve the efficiency of a 1:1 scale prototype of the device.

Keywords: Electromechanical device, modeling, renewable energy, sea wave energy, simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1123
775 Study of Stress Wave Propagation with NHDMOC

Authors: G.Y. Zhang , M.L. Xu, R.Q. Zhang, W.H. Tang

Abstract:

MOC (method of cell) is a new method of investigating wave propagating in material with periodic microstructure, and can reflect the effect of microstructure. Wave propagation in periodically laminated medium consisting of linearly elastic layers can be treated as a special application of this method. In this paper, it was used to simulate the dynamic response of carbon-phenolic to impulsive loading under certain boundary conditions. From the comparison between the results obtained from this method and the exact results based on propagator matrix theory, excellent agreement is achieved. Conclusion can be made that the oscillation periodicity is decided by the thickness of sub-cells. In the end, the NHDMOC method, which permits studying stress wave propagation with one dimensional strain, was applied to study the one-dimensional stress wave propagation. In this paper, the ZWT nonlinear visco-elastic constitutive relationship with 7 parameters, NHDMOC, and corresponding equations were deduced. The equations were verified, comparing the elastic stress wave propagation in SHPB with, respectively, the elastic and the visco-elastic bar. Finally the dispersion and attenuation of stress wave in SHPB with visco-elastic bar was studied.

Keywords: MOC, NHDMOC, visco-elastic, wave propagation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1872
774 Space Vector Pulse Width Modulation Technique Based Design and Simulation of a Three-Phase Voltage Source Converter Systems

Authors: Farhan Beg

Abstract:

A Space Vector based Pulse Width Modulation control technique for the three-phase PWM converter is proposed in this paper. The proposed control scheme is based on a synchronous reference frame model. High performance and efficiency is obtained with regards to the DC bus voltage and the power factor considerations of the PWM rectifier thus leading to low losses. MATLAB/SIMULINK are used as a platform for the simulations and a SIMULINK model is presented in the paper. The results show that the proposed model demonstrates better performance and properties compared to the traditional SPWM method and the method improves the dynamic performance of the closed loop drastically. For the Space Vector based Pulse Width Modulation, Sine signal is the reference waveform and triangle waveform is the carrier waveform. When the value sine signal is large than triangle signal, the pulse will start produce to high. And then when the triangular signals higher than sine signal, the pulse will come to low. SPWM output will changed by changing the value of the modulation index and frequency used in this system to produce more pulse width. The more pulse width produced, the output voltage will have lower harmonics contents and the resolution increase.

Keywords: Power Factor, SVPWM, PWM rectifier, SPWM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3982
773 Nonlinear Power Measurement Algorithm of the Input Mix Components of the Noise Signal and Pulse Interference

Authors: Alexey V. Klyuev, Valery P. Samarin, Viktor F. Klyuev, Andrey V. Klyuev

Abstract:

A power measurement algorithm of the input mix components of the noise signal and pulse interference is considered. The algorithm efficiency analysis has been carried out for different interference-to-signal ratio. Algorithm performance features have been explored by numerical experiment results.

Keywords: Noise signal, pulse interference, signal power, spectrum width, detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1429
772 Application of Seismic Wave Method in Early Estimation of Wencheng Earthquake

Authors: Wenlong Liu, Yucheng Liu

Abstract:

This paper introduces the application of seismic wave method in earthquake prediction and early estimation. The advantages of the seismic wave method over the traditional earthquake prediction method are demonstrated. An example is presented in this study to show the accuracy and efficiency of using the seismic wave method in predicting a medium-sized earthquake swarm occurred in Wencheng, Zhejiang, China. By applying this method, correct predictions were made on the day after this earthquake swarm started and the day the maximum earthquake occurred, which provided scientific bases for governmental decision-making.

Keywords: earthquake prediction, earthquake swarm, seismicactivity method, seismic wave method, Wencheng earthquake

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1605
771 Investigating the Invalidity of the Law of Energy Conservation Based on Waves Interference Phenomenon Inside a Ringed Waveguide

Authors: M. Yusefzad

Abstract:

Law of energy conservation is one of the fundamental laws of physics. Energy is conserved, and the total amount of energy is constant. It can be transferred from one object to another and changed from one state to another. However, in the case of wave interference, this law faces important contradictions. Based on the presented mathematical relationship in this paper, it seems that validity of this law depends on the path of energy wave, like light, in which it is located. In this paper, by using some fundamental concepts in physics like the constancy of the electromagnetic wave speed in a specific media and wave theory of light, it will be shown that law of energy conservation is not valid in every condition and in some circumstances, it is possible to increase energy of a system with a determined amount of energy without any input.

Keywords: Power, law of energy conservation, electromagnetic wave, interference, Maxwell’s equations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 988
770 T-Wave Detection Based on an Adjusted Wavelet Transform Modulus Maxima

Authors: Samar Krimi, Kaïs Ouni, Noureddine Ellouze

Abstract:

The method described in this paper deals with the problems of T-wave detection in an ECG. Determining the position of a T-wave is complicated due to the low amplitude, the ambiguous and changing form of the complex. A wavelet transform approach handles these complications therefore a method based on this concept was developed. In this way we developed a detection method that is able to detect T-waves with a sensitivity of 93% and a correct-detection ratio of 93% even with a serious amount of baseline drift and noise.

Keywords: ECG, Modulus Maxima Wavelet Transform, Performance, T-wave detection

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1805
769 Investigation of Wave Atom Sub-Bands via Breast Cancer Classification

Authors: Nebi Gedik, Ayten Atasoy

Abstract:

This paper investigates successful sub-bands of wave atom transform via classification of mammograms, when the coefficients of sub-bands are used as features. A computer-aided diagnosis system is constructed by using wave atom transform, support vector machine and k-nearest neighbor classifiers. Two-class classification is studied in detail using two data sets, separately. The successful sub-bands are determined according to the accuracy rates, coefficient numbers, and sensitivity rates.

Keywords: Breast cancer, wave atom transform, SVM, k-NN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1018
768 Thermal Effect on Wave Interaction in Composite Structures

Authors: R. K. Apalowo, D. Chronopoulos, V. Thierry

Abstract:

There exist a wide range of failure modes in composite structures due to the increased usage of the structures especially in aerospace industry. Moreover, temperature dependent wave response of composite and layered structures have been continuously studied, though still limited, in the last decade mainly due to the broad operating temperature range of aerospace structures. A wave finite element (WFE) and finite element (FE) based computational method is presented by which the temperature dependent wave dispersion characteristics and interaction phenomenon in composite structures can be predicted. Initially, the temperature dependent mechanical properties of the panel in the range of -100 ◦C to 150 ◦C are measured experimentally using the Thermal Mechanical Analysis (TMA). Temperature dependent wave dispersion characteristics of each waveguide of the structural system, which is discretized as a system of a number of waveguides coupled by a coupling element, is calculated using the WFE approach. The wave scattering properties, as a function of temperature, is determined by coupling the WFE wave characteristics models of the waveguides with the full FE modelling of the coupling element on which defect is included. Numerical case studies are exhibited for two waveguides coupled through a coupling element.

Keywords: Temperature dependent mechanical characteristics, wave propagation properties, damage detection, wave finite element, composite structure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1176
767 Corrosion Evaluation of Zinc Coating Prepared by Two Types of Electric Currents

Authors: M. Sajjadnejad, H. Karimi Abadeh

Abstract:

In this research, zinc coatings were fabricated by electroplating process in a sulfate solution under direct and pulse current conditions. In direct and pulse current conditions, effect of maximum current was investigated on the coating properties. Also a comparison was made between the obtained coatings under direct and pulse current. Morphology of the coatings was investigated by scanning electron microscopy (SEM). Corrosion behavior of the coatings was investigated by potentiodynamic polarization test. In pulse current conditions, the effect of pulse frequency and duty cycle was also studied. The effect of these conditions and parameters were also investigated on morphology and corrosion behavior. All of DC plated coatings are showing a distinct passivation area in -1 to -0.4 V range. Pulsed current coatings possessed a higher corrosion resistance. The results showed that current density is the most important factor regarding the fabrication process. Furthermore, a rise in duty cycle deteriorated corrosion resistance of coatings. Pulsed plated coatings performed almost 10 times better than DC plated coatings.

Keywords: Corrosion, duty cycle, pulsed current, zinc.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 773
766 Characterization of Pure Nickel Coatings Fabricated under Pulse Current Conditions

Authors: M. Sajjadnejad, H. Omidvar, M. Javanbakht, A. Mozafari

Abstract:

Pure nickel coatings have been successfully electrodeposited on copper substrates by the pulse plating technique. The influence of current density, duty cycle and pulse frequency on the surface morphology, crystal orientation, and microhardness was determined. It was found that the crystallite size of the deposit increases with increasing current density and duty cycle. The crystal orientation progressively changed from a random texture at 1 A/dm2 to (200) texture at 10 A/dm2. Increasing pulse frequency resulted in increased texture coefficient and peak intensity of (111) reflection. An increase in duty cycle resulted in considerable increase in texture coefficient and peak intensity of (311) reflection. Coatings obtained at high current densities and duty cycle present a mixed morphology of small and large grains. Maximum microhardness of 193 Hv was achieved at 4 A/dm2, 10 Hz and duty cycle of 50%. Nickel coatings with (200) texture are ductile while (111) texture improves the microhardness of the coatings.

Keywords: Current density, Duty cycle, Microstructure, Nickel, Pulse frequency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2199
765 Techno-Economic Analysis Framework for Wave Energy Conversion Schemes under South African Conditions: Modeling and Simulations

Authors: Siyanda S. Biyela, Willie A. Cronje

Abstract:

This paper presents a desktop study of comparing two different wave energy to electricity technologies (WECs) using a techno-economic approach. This techno-economic approach forms basis of a framework for rapid comparison of current and future technologies. The approach also seeks to assist in investment and strategic decision making expediting future deployment of wave energy harvesting in South Africa.

Keywords: Cost of energy, tool, wave energy converter, WEC-Sim.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1156