Search results for: poly (vinyl alcohol)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 235

Search results for: poly (vinyl alcohol)

85 Biodegradation of Polyhydroxybutyrate-Co- Hydroxyvalerate (PHBV) Blended with Natural Rubber in Soil Environment

Authors: K. Kuntanoo, S. Promkotra, P. Kaewkannetra

Abstract:

According to synthetic plastics obtained from petroleum cause some environmental problems. Therefore, degradable plastics become widely used and studied for replacing the synthetic plastic waste. A biopolymer of poly hydroxybutyrate-co-hydroxyvalerate (PHBV) is subgroups of a main kind of polyhydroxyalkanoates (PHAs). Naturally, PHBV is hard, brittle and low flexible while natural rubber (NR) is high elastic latex. Then, they are blended and the biodegradation of the blended PHBV and NR films were examined in soil environment. The results showed that the degradation occurs predominantly in the bulk of the samples. The order of biodegradability was shown as follows: PHBV> PHBV/NR> NR. After biodegradation, the blended films were characterized by appearance analysis such as Scanning Electron Microscope (SEM), Fourier transform infrared spectroscopy (FTIR) and Differential Scanning Calorimetry (DSC). It was found that the biodegradation mainly occurred at the polymer surface.

Keywords: Biodegradation, polyhydroxyalkanoates (PHAs), Polyhydroxybutyrate-co-hydroxyvalerate (PHBV), natural rubber (NR).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3550
84 A Novel 14 nm Extended Body FinFET for Reduced Corner Effect, Self-Heating Effect, and Increased Drain Current

Authors: Cheng-Hsien Chang, Jyi-Tsong Lin, Po-Hsieh Lin, Hung-Pei Hsu, Chan-Hsiang Chang, Ming-Tsung Shih, Shih-Chuan Tseng, Min-Yan Lin

Abstract:

In this paper, we have proposed a novel FinFET with extended body under the poly gate, which is called EB-FinFET, and its characteristic is demonstrated by using three-dimensional (3-D) numerical simulation. We have analyzed and compared it with conventional FinFET. The extended body height dependence on the drain induced barrier lowering (DIBL) and subthreshold swing (S.S) have been also investigated. According to the 3-D numerical simulation, the proposed structure has a firm structure, an acceptable short channel effect (SCE), a reduced series resistance, an increased on state drain current (I on) and a large normalized I DS. Furthermore, the structure can also improve corner effect and reduce self-heating effect due to the extended body. Our results show that the EBFinFET is excellent for nanoscale device.

Keywords: SOI, FinFET, tri-gate, self-heating effect.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2754
83 Reduction of MMP Using Oleophilic Chemicals

Authors: C. L. Voon, M. Awang

Abstract:

CO2 miscible displacement is not feasible in many oil fields due to high reservoir temperature as higher pressure is required to achieve miscibility. The miscibility pressure is far higher than the formation fracture pressure making it impossible to have CO2 miscible displacement. However, by using oleophilic chemicals, minimum miscibility pressure (MMP) could be lowered. The main objective of this research is to find the best oleophilic chemical in MMP reduction using slim-tube test and Vanishing Interfacial Tension (VIT) The chemicals are selected based on the characteristics that it must be oil soluble, low water solubility, have 4 – 8 carbons, semi polar, economical, and safe for human operation. The families of chemicals chosen are carboxylic acid, alcohol, and ketone. The whole experiment would be conducted at 100°C and the best chemical is said to be effective when it is able to lower CO2-crude oil MMP the most. Findings of this research would have great impact to the oil and gas industry in reduction of operation cost for CO2EOR which is applicable to both onshore and offshore operation.

Keywords: Enhanced Oil Recovery, Oleophilic Chemical, Minimum Miscibility Pressure, CO2 Miscible Displacement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2334
82 Production of Novel Bioactive Yogurt Enriched with Olive Fruit Polyphenols

Authors: Konstantinos B. Petrotos, Fani K. Karkanta, Paschalis E. Gkoutsidis, Ioannis Giavasis, Konstantinos N. Papatheodorou, Alexandros C. Ntontos

Abstract:

In the course of the present work, plain (nonencapsulated) and microencapsulated polyphenols were produced using olive mill wastewater (OMW) as raw material, in order to be used for enrichment of yogurt and dairy products. The OMW was first clarified by using membrane technology and subsequently the contained poly-phenols were isolated by adsorption-desorption technique using selective macro-porous resins and finally recovered in dry form after been processed by RO membrane technique followed by freeze drying. Moreover, the polyphenols were encapsulated in modified starch by freeze drying in order to mask the color and bitterness effect and improve their functionality. The two products were used successfully as additives in yogurt preparations and the produced products were acceptable by the consumers and presented with certain advantage to the plain yogurt. For the herein proposed production scheme a patent application was already submitted.

Keywords: OMW, polyphenol-enriched yogurt, encapsulation, bio-active dairy products

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2580
81 Transesterification of Jojoba Oil-Wax Using Microwave Technique

Authors: Labiba I. Hussein, Maher Z. Elsabee, Eid A. Ismail, Hala F. Naguib, Hilda A. Aziz, Moataz A. Elsawy

Abstract:

Jojoba oil-wax is extracted from the seeds of the jojoba (Simmondsia chinensis Link Schneider), a perennial shrub that grows in semi desert areas in Egypt and in some parts of the world. The main uses of jojoba oil-wax are in the cosmetics and pharmaceutical industry, but new uses could arise related to the search of new energetic crops. This paper summarizes a process to convert the jojoba oil-wax to biodiesel by transesterification with ethanol and a series of aliphatic alcohols using a more economic and energy saving method in a domestic microwave. The effect of time and power of the microwave on the extent of the transesterification using ethanol and other aliphatic alcohols has been studied. The separation of the alkyl esters from the fatty alcohols rich fraction has been done in a single crystallization step at low temperature (−18°C) from low boiling point petroleum ether. Gas chromatography has been used to follow up the transesterification process. All products have been characterized by spectral analysis.

Keywords: Jojoba oil, transesterification, microwave, gas chromatography jojoba esters, Jojoba alcohol.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3665
80 Osteogenesis by Dextran Coating on and among Fibers of a Polyvinyl Formal Sponge

Authors: M. Yoshikawa, N. Tsuji, T. Yabuuchi, Y Shimomura, H. Kakigi, H. Hayashi, H. Ohgushi

Abstract:

A scaffold is necessary for tooth regeneration because of its three-dimensional geometry. For restoration of defect, it is necessary for the scaffold to be prepared in the shape of the defect. Sponges made from polyvinyl alcohol with formalin cross-linking (PVF sponge) have been used for scaffolds for bone formation in vivo. To induce osteogenesis within the sponge, methods of growing rat bone marrow cells (rBMCs) among the fiber structures in the sponge might be considered. Storage of rBMCs among the fibers in the sponge coated with dextran (10 kDa) was tried. After seeding of rBMCs to PVF sponge immersed in dextran solution at 2 g/dl concentration, osteogenesis was recognized in subcutaneously implanted PVF sponge as a scaffold in vivo. The level of osteocalcin was 25.28±5.71 ng/scaffold and that of Ca was 129.20±19.69 µg/scaffold. These values were significantly higher than those in sponges without dextran coating (p<0.01). Osteogenesis was induced in many spaces in the inner structure of the sponge with dextran coated fibers.

Keywords: Dextran, Polyvinyl formal sponge, Osteogenesis, Scaffold.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1499
79 Political Preconditions for National Values of the Kazakhstan Nation

Authors: Zhazira Kuanyshbayeva

Abstract:

Article is devoted to the problem of Kazakhstan people national values in the conditions of the Republic of Kazakhstan independence. Formation of ethnos national values is viewed as the mandatory constituent of this process in contemporary conditions. The article shows the dynamics of forming socialspiritual basis of Kazakhstan people-s national values. It depicts peculiarities of interethnic relations in poly-ethnic and multiconfessional Kazakhstan. The study reviews in every detail various directions of the state social policy development in the sphere of national values. It is aimed to consolidation of the society to achieve the shared objective, i.e. building democratic and civilized state. The author discloses peculiarities of ethnos national values development using specific sources. It is underlined that renewal and modernization of Kazakhstan society represents new stage in the national value development, and its typical feature is integration process based on peoples- friendship, cultural principles of interethnic communication.

Keywords: Interethnic relation, Kazakhstan people, national policy, national values.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1772
78 Dimensional Accuracy of CNTs/PMMA Parts and Holes Produced by Laser Cutting

Authors: A. Karimzad Ghavidel, M. Zadshakouyan

Abstract:

Laser cutting is a very common production method for cutting 2D polymeric parts. Developing of polymer composites with nano-fibers makes important their other properties like laser workability. The aim of this research is investigation of the influence different laser cutting conditions on the dimensional accuracy of parts and holes from poly methyl methacrylate (PMMA)/carbon nanotubes (CNTs) material. Experiments were carried out by considering of CNTs (in four level 0,0.5, 1 and 1.5% wt.%), laser power (60, 80, and 100 watt) and cutting speed 20, 30, and 40 mm/s as input variable factors. The results reveal that CNTs adding improves the laser workability of PMMA and the increasing of power has a significant effect on the part and hole size. The findings also show cutting speed is effective parameter on the size accuracy. Eventually, the statistical analysis of results was done, and calculated mathematical equations by the regression are presented for determining relation between input and output factor.

Keywords: Dimensional accuracy-PMMA-CNTs-laser cutting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1144
77 Investigation of Cascade Loop Heat Pipes

Authors: Nandy Putra, Atrialdipa Duanovsah, Kristofer Haliansyah

Abstract:

The aim of this research is to design a LHP with low thermal resistance and low condenser temperature. A Self-designed cascade LHP was tested by using biomaterial, sintered copper powder, and aluminum screen mesh as the wick. Using pure water as the working fluid for the first level of the LHP and 96% alcohol as the working fluid for the second level of LHP, the experiments were run with 10W, 20W, and 30W heat input. Experimental result shows that the usage of biomaterial as wick could reduce more temperature at evaporator than by using sintered copper powder and screen mesh up to 22.63% and 37.41% respectively. The lowest thermal resistance occurred during the usage of biomaterial as wick of heat pipe, which is 2.06 oC/W. The usage of cascade system could be applied to LHP to reduce the temperature at condenser and reduced thermal resistance up to 17.6%.

Keywords: Biomaterial, cascade loop heat pipe, screen mesh, sintered Cu.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 872
76 pH-Responsiveness Properties of a Biodigradable Hydrogels Based on Carrageenan-g-poly(NaAA-co-NIPAM)

Authors: Mohammad Sadeghi, Behrouz Heidari, Korush Montazeri

Abstract:

A novel thermo-sensitive superabsorbent hydrogel with salt- and pH-responsiveness properties was obtained by grafting of mixtures of acrylic acid (AA) and N-isopropylacrylamide (NIPAM) monomers onto kappa-carrageenan, kC, using ammonium persulfate (APS) as a free radical initiator in the presence of methylene bisacrylamide (MBA) as a crosslinker. Infrared spectroscopy was carried out to confirm the chemical structure of the hydrogel. Moreover, morphology of the samples was examined by scanning electron microscopy (SEM). The effect of MBA concentration and AA/NIPAM weight ratio on the water absorbency capacity has been investigated. The swelling variations of hydrogels were explained according to swelling theory based on the hydrogel chemical structure. The hydrogels exhibited salt-sensitivity and cation exchange properties. The temperature- and pH-reversibility properties of the hydrogels make the intelligent polymers as good candidates for considering as potential carriers for bioactive agents, e.g. drugs.

Keywords: superabsorbent, carrageenan, acrylic acid, Nisopropylacrylamide, hydrogel, swelling

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1631
75 Preparation and Physical Assessment of Portland Cement Base Composites Containing Nano Particles

Authors: Amir Mahmoudi

Abstract:

In this research the effects of adding silica and alumina nanoparticles on flow ability and compressive strength of cementitious composites based on Portland cement were investigated. In the first stage, the rheological behavior of different samples containing nanosilica, nanoalumina and polypropylene, polyvinyl alcohol and polyethylene fibers were evaluated. With increasing of nanoparticles in fresh samples, the slump flow diameter reduced. Fibers reduced the flow ability of the samples and viscosity increased. With increasing of the micro silica particles to cement ratio from 2/1 to 2/2, the slump flow diameter increased. By adding silica and alumina nanoparticles up to 3% and 2% respectively, the compressive strength increased and after decreased. Samples containing silica nanoparticles and fibers had the highest compressive strength.

Keywords: Portland cement, Composite, Nanoparticles, Compressive Strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1916
74 Biodiesel Production from Palm Oil Using an Oscillatory Baffled Reactor

Authors: Malee Santikunaporn, Tattep Techopittayakul, Channarong Asavatesanupap

Abstract:

Biofuel production especially that of biodiesel has gained tremendous attention during the last decade due to environmental concerns and shortage in petroleum oil reservoir. This research aims to investigate the influences of operating parameters, such as the alcohol-to-oil molar ratio (4:1, 6:1, and 9:1) and the amount of catalyst (1, 1.5, and 2 wt.%) on the trans esterification of refined palm oil (RPO) in a medium-scale oscillatory baffle reactor.  It has been shown that an increase in the methanol-to-oil ratio resulted in an increase in fatty acid methyl esters (FAMEs) content. The amount of catalyst has an insignificant effect on the FAMEs content. Engine testing was performed on B0 (100 v/v% diesel) and blended fuel or B50 (50 v/v% diesel). Combustion of B50 was found to give lower torque compared to pure diesel. Exhaust gas from B50 was found to contain lower concentration of CO and CO2.

Keywords: Biodiesel, oscillatory baffled reactor, palm oil, transesterification, fatty acid methyl esters.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 805
73 Synthesis and Analysis of Swelling and Controlled Release Behaviour of Anionic sIPN Acrylamide based Hydrogels

Authors: Atefeh Hekmat, Abolfazl Barati, Ebrahim Vasheghani Frahani, Ali Afraz

Abstract:

In modern agriculture, polymeric hydrogels are known as a component able to hold an amount of water due to their 3-dimensional network structure and their tendency to absorb water in humid environments. In addition, these hydrogels are able to controllably release the fertilisers and pesticides loaded in them. Therefore, they deliver these materials to the plants' roots and help them with growing. These hydrogels also reduce the pollution of underground water sources by preventing the active components from leaching. In this study, sIPN acrylamide based hydrogels are synthesised by using acrylamide free radical, potassium acrylate, and linear polyvinyl alcohol. Ammonium nitrate is loaded in the hydrogel as the fertiliser. The effect of various amounts of monomers and linear polymer, measured in molar ratio, on the swelling rate, equilibrium swelling, and release of ammonium nitrate is studied.

Keywords: Hydrogel, controlled release, ammonium nitrate fertiliser, sIPN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2108
72 QCM-D Study on Relationship of PEG Coated Stainless Steel Surfaces to Protein Resistance

Authors: Norzita Ngadi, John Abrahamson, Conan Fee, Ken Morison

Abstract:

Nonspecific protein adsorption generally occurs on any solid surfaces and usually has adverse consequences. Adsorption of proteins onto a solid surface is believed to be the initial and controlling step in biofouling. Surfaces modified with end-tethered poly(ethylene glycol) (PEG) have been shown to be protein-resistant to some degree. In this study, the adsorption of β-casein and lysozyme was performed on 6 different types of surfaces where PEG was tethered onto stainless steel by polyethylene imine (PEI) through either OH or NHS end groups. Protein adsorption was also performed on the bare stainless steel surface as a control. The adsorption was conducted at 23 °C and pH 7.2. In situ QCM-D was used to determine PEG adsorption kinetics, plateau PEG chain densities, protein adsorption kinetics and plateau protein adsorbed quantities. PEG grafting density was the highest for a NHS coupled chain, around 0.5 chains / nm2. Interestingly, lysozyme which has smaller size than β-casein, appeared to adsorb much less mass than that of β- casein. Overall, the surface with high PEG grafting density exhibited a good protein rejection.

Keywords: QCM-D, PEG, stainless steel, β-casein, lysozyme.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1952
71 Development of a Brain Glutamate Microbiosensor

Authors: Kartika S. Hamdan, Zainiharyati M. Zain, Mohamed I. A. Halim, Jafri M. Abdullah, Robert D. O'Neill

Abstract:

This work attempts to improve the permselectivity of poly-ortho-phenylenediamine (PPD) coating for glutamate biosensor applications on Pt microelectrode, using constant potential amperometry and cyclic voltammetry. Percentage permeability of the modified PPD microelectrode was carried out towards hydrogen peroxide (H2O2) and ascorbic acid (AA) whereas permselectivity represents the percentage interference by AA in H2O2 detection. The 50-μm diameter Pt disk microelectrode showed a good permeability value toward H2O2 (95%) and selectivity against AA (0.01%) compared to other sizes of electrode studied here. The electrode was further modified with glutamate oxidase (GluOx) that was immobilized and cross linked with glutaraldehyde (GA, 0.125%), resulting in Pt/PPD/GluOx-GA electrode design. The maximum current density Jmax and apparent Michaelis constant, KM, obtained on Pt/PPD/GluOx-GA electrodes were 48 μA cm-2 and 50 μM, respectively. The linear region slope (LRS) was 0.96 μA cm-2 mM-1. The detection limit (LOD) for glutamate was 3.0 ± 0.6 μM. This study shows a promising glutamate microbiosensor for brain glutamate detection. 

Keywords: Brain, Glutamate, Microbiosensor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1810
70 Effect of Curing Temperature on Mechanical Properties of Jute Fiber Reinforced Polylactic Acid Based Green Composite

Authors: Sehijpal Singh Khangura, Jai Inder Preet Singh, Vikas Dhawan

Abstract:

Global warming, growing awareness of the environment, waste management issues, dwindling fossil resources, and rising oil prices resulted to increase the research in the materials that are friendly to our health and environment. Due to these reasons, green products are increasingly being promoted for sustainable development. In this work, fully biodegradable green composites have been developed using jute fibers as reinforcement and poly lactic acid as matrix material by film stacking technique. The effect of curing temperature during development of composites ranging from 160 °C, 170 °C, 180 °C and 190 °C was investigated for various mechanical properties. Results obtained from various tests indicate that impact strength decreases with an increase in curing temperature, but tensile and flexural strength increases till 180 °C, thereafter both the properties decrease. This study gives an optimum curing temperature for the development of jute/PLA composites.

Keywords: Natural fibers, polymer matrix composites, jute, compression molding, biodegradation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1003
69 Cold Plasma Surface Modified Electrospun Microtube Array Membrane for Chitosan Immobilization and Their Properties

Authors: Ko-Shao Chen, Yun Tsao, Chia-Hsuan Tsen, Chien-Chung Chen, Shu-Chuan Liao

Abstract:

Electrospun microtube array membranes (MTAMs) made of PLLA (poly-L-lactic acid) have wide potential applications in tissue engineering. However, their surface hydrophobicity and poor biocompatability have limited their further usage. In this study, the surface of PLLA MTAMs were made hydrophilic by introducing extra functional groups, such as peroxide, via an acetic acid plasma (AAP). UV-graft polymerization of acrylic acid (G-AAc) was then used to produce carboxyl group on MTAMs surface, which bonded covalently with chitosan through EDC / NHS crosslinking agents. To evaluate the effects of the surface modification on PLLA MTAMs, water contact angle (WCA) measurement and cell compatibility tests were carried out. We found that AAP treated electrospun PLLA MTAMs grafted with AAc and, finally, with chitosan immobilized via crosslinking agent, exhibited improved hydrophilic and cell compatibility.

Keywords: Plasma, EDC/NHS, UV grafting, chitosan, microtube array membrane.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1045
68 Fabrication of Poly(Ethylene Oxide)/Chitosan/Indocyanine Green Nanoprobe by Co-Axial Electrospinning Method for Early Detection

Authors: Zeynep R. Ege, Aydin Akan, Faik N. Oktar, Betul Karademir, Oguzhan Gunduz

Abstract:

Early detection of cancer could save human life and quality in insidious cases by advanced biomedical imaging techniques. Designing targeted detection system is necessary in order to protect of healthy cells. Electrospun nanofibers are efficient and targetable nanocarriers which have important properties such as nanometric diameter, mechanical properties, elasticity, porosity and surface area to volume ratio. In the present study, indocyanine green (ICG) organic dye was stabilized and encapsulated in polymer matrix which polyethylene oxide (PEO) and chitosan (CHI) multilayer nanofibers via co-axial electrospinning method at one step. The co-axial electrospun nanofibers were characterized as morphological (SEM), molecular (FT-IR), and entrapment efficiency of Indocyanine Green (ICG) (confocal imaging). Controlled release profile of PEO/CHI/ICG nanofiber was also evaluated up to 40 hours.

Keywords: Chitosan, coaxial electrospinning, controlled releasing, indocyanine green, nanoprobe, polyethylene oxide.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 709
67 Experimental Comparison of Combustion Characteristic and Pollutant Emission of Gas Oil and Biodiesel

Authors: S. Baghdar Hosseini, K. Bashirnezhad, A. R. Moghiman, Y. Khazraii, N. Nikoofal

Abstract:

The increasing industrialization and motorization of the world has led to a steep rise for the demand of petroleum-based fuels. Petroleum-based fuels are obtained from limited reserves. These finite reserves are highly concentrated in certain regions of the world. Therefore, those countries not having these resources are facing energy/foreign exchange crisis, mainly due to the import of crude petroleum. Hence, it is necessary to look for alternative fuels which can be produced from resources available locally within the country such as alcohol, biodiesel, vegetable oils etc. Biodiesel is a renewable, domestically produced fuel that has been shown to reduce particulate, hydrocarbon, and carbon monoxide emissions from combustion. In the present study an experimental investigation on emission characteristic of a liquid burner system operating on several percentage of biodiesel and gas oil is carried out. Samples of exhaust gas are analysed with Testo 350 Xl. The results show that biodiesel can lower some pollutant such as CO, CO2 and particulate matter emissions while NOx emission would increase in comparison with gas oil. The results indicate there may be benefits to using biodiesel in industrial processes.

Keywords: Biodiesel, combustion, gas oil, pollutant.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2309
66 Mechanical and Thermal Properties of Hybrid Blends of LLDPE/Starch/PVA

Authors: Rahmah, M., Farhan, M., Akidah, N.M.Y

Abstract:

Polybag and mulch film in agricultural field are used plastics which caused environmental problems after transplantation and planting processes due to the discarded wastes. Thus a degradable polybag was designed in this study to replace non degradable polybag with natural biodegradable resin that is widely available, namely sago starch (SS) and polyvinyl alcohol (PVA). Hybrid blend consists of SS, PVA and linear low density polyethylene (LLDPE) was compounded at different ratios. The thermal and mechanical properties of the blends were investigated. Hybrid films underwent landfill degradation tests for up to 2 months. The films showed gelation and melting transition existed for all three systems with significant melting peaks by LLDPE and PVA. All hybrid blends loses its LLDPE semi crystalline characteristics as PVA and SS systems had disrupted crystallinity and enhanced the amorphosity of the hybrid system. Generally, blending SS with PVA improves the mechanical properties of the SS based materials. Tensile strength of each film was also decreased with the increase of SS contents while its modulus had increased with SS content.

Keywords: Appearance peak, LLDPE, PVA, sago starch.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2985
65 Experimental Investigation of Proton Exchange Membrane Fuel Cells Operated with Nanofiber and Nanofiber/Nanoparticle

Authors: Kevser Dincer, Basma Waisi, M. Ozan Ozdemir, Ugur Pasaogullari, Jeffrey McCutcheon

Abstract:

Nanofibers are defined as fibers with diameters less than 100 nanometers. In this study, behaviours of activated carbon nanofiber (ACNF), carbon nanofiber (CNF), polyacrylonitrile/ carbon nanotube (PAN/CNT), polyvinyl alcohol/nanosilver (PVA/Ag) in proton exchange membrane (PEM) fuel cells are investigated experimentally. This material was used as gas diffusion layer (GDL) in PEM fuel cells. In this study, the electrical conductivities of nanofiber and nanofiber/nanoparticles have been studied to understand their effects on PEM fuel cell performance. According to the experimental results, the maximum electrical conductivity performance of the fuel cell with nanofiber was found to be at PVA/Ag (at UConn condition). The electrical conductivities of CNF, ACNF, PAN/CNT are lower for PEM. The resistance of cell with PVA/Ag is lower than the resistance of cell with PAN/CNT, ACNF, CNF.

Keywords: Proton exchange membrane fuel cells, electrospinning, carbon nanofiber, activate carbon nanofiber, PVA fiber, pan fiber, carbon nanotube, nanoparticle, nanocomposites.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2448
64 Effect of Chemical Additive on Fixed Abrasive Polishing of LBO Crystal with Non-water Based Slurry

Authors: Jun Li, Wenze Wang, Zhanggui Hu, Yongwei Zhu, Dunwen Zuo

Abstract:

Non-water based fixed abrasive polishing was adopted to manufacture LBO crystal for nano precision surface quality because of its deliquescent. Ethyl alcohol was selected as the non-water based slurry solvent and ethanediamine, lactic acid, hydrogen peroxide was added in the slurry as a chemical additive, respectively. Effect of different additives with non-water based slurry on material removal rate, surface topography, microscopic appearances, and surface roughness were investigated in fixed abrasive polishing of LBO crystal. The results show the best surface quality of LBO crystal with surface roughness Sa 8.2 nm and small damages was obtained by non-water based slurry with lactic acid. Non-water based fixed abrasive polishing can achieve nano precision surface quality of LBO crystal with high material removal.

Keywords: Non-water based slurry, LBO crystal, Fixed abrasive polishing, Surface roughness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2540
63 Pore Model Prediction of CH4 Separation from HS Using PTMSP and γ -Alumina Membranes

Authors: H. Mukhtar, N. M. Noor, R. Nasir, D. F. Mohshim

Abstract:

The main aim of this work is to develop a model of hydrogen sulfide (H2S) separation from natural gas by using membrane separation technology. The model is developed by incorporating three diffusion mechanisms which are Knudsen, viscous and surface diffusion towards membrane selectivity and permeability. The findings from the simulation result shows that the permeability of the gas is dependent toward the pore size of the membrane, operating pressure, operating temperature as well as feed composition. The permeability of methane has the highest value for Poly (1-trimethylsilyl-1-propyne ) PTMSP membrane at pore size of 0.1nm and decreasing toward a minimum peak at pore range 1 to 1.5 nm as pore size increased before it increase again for pore size is greater than 1.5 nm. On the other hand, the permeability of hydrogen sulfide is found to increase almost proportionally with the increase of membrane pore size. Generally, the increase of pressure will increase the permeability of gas since more driving force is provided to the system while increasing of temperature would decrease the permeability due to the surface diffusion drop off effect. A corroboration of the simulation result also showed a good agreement with the experimental data.

Keywords: Hydrogen Sulfide, Methane, Inorganic Membrane, Organic Membrane, Pore Model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3660
62 A Novel Four-Transistor SRAM Cell with Low Dynamic Power Consumption

Authors: Arash Azizi Mazreah, Mohammad T. Manzuri Shalmani, Hamid Barati, Ali Barati

Abstract:

This paper presents a novel CMOS four-transistor SRAM cell for very high density and low power embedded SRAM applications as well as for stand-alone SRAM applications. This cell retains its data with leakage current and positive feedback without refresh cycle. The new cell size is 20% smaller than a conventional six-transistor cell using same design rules. Also proposed cell uses two word-lines and one pair bit-line. Read operation perform from one side of cell, and write operation perform from another side of cell, and swing voltage reduced on word-lines thus dynamic power during read/write operation reduced. The fabrication process is fully compatible with high-performance CMOS logic technologies, because there is no need to integrate a poly-Si resistor or a TFT load. HSPICE simulation in standard 0.25μm CMOS technology confirms all results obtained from this paper.

Keywords: Positive feedback, leakage current, read operation, write operation, dynamic energy consumption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2821
61 Bone Proteome Study in Ovariectomised Rats Supplemented with Palm Vitamin E

Authors: Patrick Nwabueze Okechukwu, Ima Nirwana Soelaiman, Gabriele Anisah Ruth Froemming, Mohd Yusri Idorus, Norazlina Mohamed

Abstract:

Supplementation of palm vitamin E has been reported to prevent loss of bone density in ovariectomised female rats. The mechanism by which palm vitamin E exerts these effects is still unknown. We hypothesized that palm vitamin E may act by preventing the protein expression changes. Two dimensional poly acyrilamide gel electrophoresis (2-D PAGE) and PD Quest software genomic solutions Investigator (proteomics) was used to analyze the differential protein expression profile in femoral and humeri bones harvested from three groups of rats; sham-operated rats (SO), ovariectomised rats (Ovx) and ovariectomised rats supplemented for 2 months with palm vitamin E. The results showed that there were over 300 valued spot on each of the groups PVE and OVX as compared to about 200 in SO. Comparison between the differential protein expression between OVX and PVE groups showed that ten spots were down –regulated in OVX but up-regulated in PVE. The ten differential spots were separately named P1-P10. The identification and understanding of the pathway of the differential protein expression among the groups is ongoing and may account for the molecular mechanism through which palm vitamin E exert its anti-osteoporotic effect.

Keywords: Palm vitamin E, ovariectomised, osteoporosis protein expression, 2-d-page.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1831
60 An Approach for Coagulant Dosage Optimization Using Soft Jar Test: A Case Study of Bangkhen Water Treatment Plant

Authors: Ninlawat Phuangchoke, Waraporn Viyanon, Setta Sasananan

Abstract:

The most important process of the water treatment plant process is coagulation, which uses alum and poly aluminum chloride (PACL). Therefore, determining the dosage of alum and PACL is the most important factor to be prescribed. This research applies an artificial neural network (ANN), which uses the Levenberg–Marquardt algorithm to create a mathematical model (Soft Jar Test) for chemical dose prediction, as used for coagulation, such as alum and PACL, with input data consisting of turbidity, pH, alkalinity, conductivity, and, oxygen consumption (OC) of the Bangkhen Water Treatment Plant (BKWTP), under the authority of the Metropolitan Waterworks Authority of Thailand. The data were collected from 1 January 2019 to 31 December 2019 in order to cover the changing seasons of Thailand. The input data of ANN are divided into three groups: training set, test set, and validation set. The coefficient of determination and the mean absolute errors of the alum model are 0.73, 3.18 and the PACL model are 0.59, 3.21, respectively.

Keywords: Soft jar test, jar test, water treatment plant process, artificial neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 583
59 Mathematical Simulation of Bubble Column Slurry Reactor for Direct Dimethyl Ether Synthesis Process from Syngas

Authors: Zhen Chen, Haitao Zhang, Weiyong Ying, Dingye Fang

Abstract:

Based on a global kinetics of direct dimethyl ether (DME) synthesis process from syngas, a steady-state one-dimensional mathematical model for the bubble column slurry reactor (BCSR) has been established. It was built on the assumption of plug flow of gas phase, sedimentation-dispersion model of catalyst grains and isothermal chamber regardless of reaction heats and rates for the design of an industrial scale bubble column slurry reactor. The simulation results indicate that higher pressure and lower temperature were favorable to the increase of CO conversion, DME selectivity, products yield and the height of slurry bed, which has a coincidence with the characteristic of DME synthesis reaction system, and that the height of slurry bed is lessen with the increasing of operation temperature in the range of 220-260℃. CO conversion, the optimal operation conditions in BCSR were proposed. 

Keywords: Alcohol/ether fuel, bubble column slurry reactor, global kinetics, mathematical model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2579
58 Fracture Toughness Properties and FTIR Analysis of Corn Fiber Green Composites

Authors: Ahmed Mudhafar Hashim, Aseel Mahmood Abdullah

Abstract:

The present work introduced a green composite consisting of corn natural fiber of constant concentration of 10% by weight incorporation with poly methyl methacrylate matrix biomaterial prepared by hand lay-up technique. Corn natural fibers were treated with two concentrations of sodium hydroxide solution (3% and 5%) with different immersed time (1.5 and 3 hours) at room temperature. The fracture toughness test of untreated and alkali treated corn fiber composites were performed. The effect of chemically treated on fracture properties of composites has been analyzed using Fourier transform infrared (FTIR) spectroscopy. The experimental results showed that the alkali treatment improved the fracture properties in terms of plane strain fracture toughness KIC. It was found that the plane strain fracture toughness KIC increased by up to 62% compared to untreated fiber composites. On the other hand, increases in both concentrations of alkali solution and time of soaking to 5% NaOH and 3 hours, respectively reduced the values of KIC lower than the value of the unfilled material.

Keywords: green composites, fracture toughness, corn natural fiber, Bio-PMMA

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 457
57 Effect of Fiber Types and Elevated Temperatures on the Bond Characteristic of Fiber Reinforced Concretes

Authors: Erdoğan Özbay, Hakan T. Türker, Müzeyyen Balçıkanlı, Mohamed Lachemi

Abstract:

In this paper, the effects of fiber types and elevated temperatures on compressive strength, modulus of rapture and the bond characteristics of fiber reinforced concretes (FRC) are presented. By using the three different types of fibers (steel fiber-SF, polypropylene-PPF and polyvinyl alcohol-PVA), FRC specimens were produced and exposed to elevated temperatures up to 800 ºC for 1.5 hours. In addition, a plain concrete (without fiber) was produced and used as a control. Test results obtained showed that the steel fiber reinforced concrete (SFRC) had the highest compressive strength, modulus of rapture and bond stress values at room temperatures, the residual bond, flexural and compressive strengths of both FRC and plain concrete dropped sharply after exposure to high temperatures. The results also indicated that the reduction of bond, flexural and compressive strengths with increasing the exposed temperature was relatively less for SFRC than for plain, and FRC with PPF and PVA.

Keywords: Bond stress, Compressive strength, Elevated temperatures, Fiber reinforced concrete, Modulus of rapture.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2304
56 Multi-Wavelength Q-Switched Erbium-Doped Fiber Laser with Photonic Crystal Fiber and Multi-Walled Carbon Nanotubes

Authors: Zian Cheak Tiu, Harith Ahmad, Sulaiman Wadi Harun

Abstract:

A simple multi-wavelength passively Q-switched Erbium-doped fiber laser (EDFL) is demonstrated using low cost multi-walled carbon nanotubes (MWCNTs) based saturable absorber (SA), which is prepared using polyvinyl alcohol (PVA) as a host polymer. The multi-wavelength operation is achieved based on nonlinear polarization rotation (NPR) effect by incorporating 50 m long photonic crystal fiber (PCF) in the ring cavity. The EDFL produces a stable multi-wavelength comb spectrum for more than 14 lines with a fixed spacing of 0.48 nm. The laser also demonstrates a stable pulse train with the repetition rate increases from 14.9 kHz to 25.4 kHz as the pump power increases from the threshold power of 69.0 mW to the maximum pump power of 133.8 mW. The minimum pulse width of 4.4 μs was obtained at the maximum pump power of 133.8 mW while the highest energy of 0.74 nJ was obtained at pump power of 69.0 mW.

Keywords: Multi-wavelength, Q-switched, multi-wall carbon nanotube, photonic crystal fiber.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2455