Search results for: model membrane
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7557

Search results for: model membrane

7497 Improving Gas Separation Performance of Poly(Vinylidene Fluoride) Based Membranes Containing Ionic Liquid

Authors: S. Al-Enezi, J. Samuel, A. Al-Banna

Abstract:

Polymer based membranes are one of the low-cost technologies available for the gas separation. Three major elements required for a commercial gas separating membrane are high permeability, high selectivity, and good mechanical strength. Poly(vinylidene fluoride) (PVDF) is a commercially available fluoropolymer and a widely used membrane material in gas separation devices since it possesses remarkable thermal, chemical stability, and excellent mechanical strength. The PVDF membrane was chemically modified by soaking in different ionic liquids and dried. The thermal behavior of modified membranes was investigated by differential scanning calorimetry (DSC), and thermogravimetry (TGA), and the results clearly show the best affinity between the ionic liquid and the polymer support. The porous structure of the PVDF membranes was clearly seen in the scanning electron microscopy (SEM) images. The CO₂ permeability of blended membranes was explored in comparison with the unmodified matrix. The ionic liquid immobilized in the hydrophobic PVDF support exhibited good performance for separations of CO₂/N₂. The improved permeability of modified membrane (PVDF-IL) is attributed to the high concentration of nitrogen rich imidazolium moieties.

Keywords: PVDF, gas permeability, polymer membrane, ionic liquid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 990
7496 Unconventional Composite Inorganic Membrane Fabrication for Carbon Emissions Mitigation

Authors: Ngozi Nwogu, Godson Osueke, Mamdud Hossain, Edward Gobina

Abstract:

An unconventional composite inorganic ceramic membrane capable of enhancing carbon dioxide emission decline was fabricated and tested at laboratory scale in conformism to various environmental guidelines and also to mitigate the effect of global warming. A review of the existing membrane technologies for carbon capture including the relevant gas transport mechanisms is presented. Single gas permeation experiments using silica modified ceramic membrane with internal diameter 20mm, outside diameter 25mm and length of 368mm deposited on a macro porous support was carried out to investigate individual gas permeation behaviours at different pressures at room temperature. Membrane fabrication was achieved using after a dip coating method. Nitrogen, Carbon dioxide, Argon, Oxygen and Methane pure gases were used to investigate their individual permeation rates at various pressures. Results show that the gas flow rate increases with pressure drop. However above a pressure of 3bar, CO2 permeability ratio to that of the other gases indicated control of a more selective surface adsorptive transport mechanism.

Keywords: Carbon dioxide composite inorganic membranes, permeability, transport mechanisms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2048
7495 Response Surface Modeling of Lactic Acid Extraction by Emulsion Liquid Membrane: Box-Behnken Experimental Design

Authors: A. Thakur, P. S. Panesar, M. S. Saini

Abstract:

Extraction of lactic acid by emulsion liquid membrane technology (ELM) using n-trioctyl amine (TOA) in n-heptane as carrier within the organic membrane along with sodium carbonate as acceptor phase was optimized by using response surface methodology (RSM). A three level Box-Behnken design was employed for experimental design, analysis of the results and to depict the combined effect of five independent variables, vizlactic acid concentration in aqueous phase (cl), sodium carbonate concentration in stripping phase (cs), carrier concentration in membrane phase (ψ), treat ratio, and batch extraction time (τ)  with equal volume of organic and external aqueous phase on lactic acid extraction efficiency. The maximum lactic acid extraction efficiency (ηext) of 98.21%from aqueous phase in a batch reactor using ELM was found at the optimized values for test variables, cl, cs, ψ, and τ as 0.06 [M], 0.18 [M], 4.72 (%,v/v), 1.98 (v/v) and 13.36 min respectively. 

Keywords: Emulsion liquid membrane, extraction, lactic acid, n-trioctylamine, response surface methodology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2286
7494 A Predictive control based on Neural Network for Proton Exchange Membrane Fuel Cell

Authors: M. Sedighizadeh, M. Rezaei, V. Najmi

Abstract:

The Proton Exchange Membrane Fuel Cell (PEMFC) control system has an important effect on operation of cell. Traditional controllers couldn-t lead to acceptable responses because of time- change, long- hysteresis, uncertainty, strong- coupling and nonlinear characteristics of PEMFCs, so an intelligent or adaptive controller is needed. In this paper a neural network predictive controller have been designed to control the voltage of at the presence of fluctuations of temperature. The results of implementation of this designed NN Predictive controller on a dynamic electrochemical model of a small size 5 KW, PEM fuel cell have been simulated by MATLAB/SIMULINK.

Keywords: PEMFC, Neural Network, Predictive Control..

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2568
7493 Harvesting of Kinetic Energy of the Raindrops

Authors: K. C. R. Perera, B. G. Sampath, V. P. C. Dassanayake, B. M. Hapuwatte.

Abstract:

This paper presents a methodology to harvest the kinetic energy of the raindrops using piezoelectric devices. In the study 1m×1m PVDF (Polyvinylidene fluoride) piezoelectric membrane, which is fixed by the four edges, is considered for the numerical simulation on deformation of the membrane due to the impact of the raindrops. Then according to the drop size of the rain, the simulation is performed classifying the rainfall types into three categories as light stratiform rain, moderate stratiform rain and heavy thundershower. The impact force of the raindrop is dependent on the terminal velocity of the raindrop, which is a function of raindrop diameter. The results were then analyzed to calculate the harvestable energy from the deformation of the piezoelectric membrane.

Keywords: Raindrop, piezoelectricity, deformation, terminal velocity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6546
7492 The Heat and Mass Transfer Phenomena in Vacuum Membrane Distillation for Desalination

Authors: Bhausaheb L. Pangarkar, M. G. Sane, Saroj B. Parjane, Rajendra M. Abhang, Mahendra Guddad

Abstract:

Vacuum membrane distillation (VMD) process can be used for water purification or the desalination of salt water. The process simply consists of a flat sheet hydrophobic micro porous PTFE membrane and diaphragm vacuum pump without a condenser for the water recovery or trap. The feed was used aqueous NaCl solution. The VMD experiments were performed to evaluate the heat and mass transfer coefficient of the boundary layer in a membrane module. The only operating parameters are feed inlet temperature, and feed flow rate were investigated. The permeate flux was strongly affected by the feed inlet temperature, feed flow rate, and boundary layer heat transfer coefficient. Since lowering the temperature polarization coefficient is essential enhance the process performance considerable and maximizing the heat transfer coefficient for maximizes the mass flux of distillate water. In this paper, the results of VMD experiments are used to measure the boundary layer heat transfer coefficient, and the experimental results are used to reevaluate the empirical constants in the Dittus- Boelter equation.

Keywords: Desalination, heat and mass transfer coefficient, temperature polarization, membrane distillation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2522
7491 Nanofluid-Based Emulsion Liquid Membrane for Selective Extraction and Separation of Dysprosium

Authors: Maliheh Raji, Hossein Abolghasemi, Jaber Safdari, Ali Kargari

Abstract:

Dysprosium is a rare earth element which is essential for many growing high-technology applications. Dysprosium along with neodymium plays a significant role in different applications such as metal halide lamps, permanent magnets, and nuclear reactor control rods preparation. The purification and separation of rare earth elements are challenging because of their similar chemical and physical properties. Among the various methods, membrane processes provide many advantages over the conventional separation processes such as ion exchange and solvent extraction. In this work, selective extraction and separation of dysprosium from aqueous solutions containing an equimolar mixture of dysprosium and neodymium by emulsion liquid membrane (ELM) was investigated. The organic membrane phase of the ELM was a nanofluid consisting of multiwalled carbon nanotubes (MWCNT), Span80 as surfactant, Cyanex 272 as carrier, kerosene as base fluid, and nitric acid solution as internal aqueous phase. Factors affecting separation of dysprosium such as carrier concentration, MWCNT concentration, feed phase pH and stripping phase concentration were analyzed using Taguchi method. Optimal experimental condition was obtained using analysis of variance (ANOVA) after 10 min extraction. Based on the results, using MWCNT nanofluid in ELM process leads to increase the extraction due to higher stability of membrane and mass transfer enhancement and separation factor of 6 for dysprosium over neodymium can be achieved under the optimum conditions. Additionally, demulsification process was successfully performed and the membrane phase reused effectively in the optimum condition.

Keywords: Emulsion liquid membrane, MWCNT nanofluid, separation, Taguchi Method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 937
7490 Nutrients Removal Control via an Intermittently Aerated Membrane Bioreactor

Authors: Junior B. N. Adohinzin, Ling Xu

Abstract:

Nitrogen is among the main nutrients encouraging the growth of organic matter and algae which cause eutrophication in water bodies. Therefore, its removal from wastewater has become a worldwide emerging concern. In this research, an innovative Membrane Bioreactor (MBR) system named “moving bed membrane bioreactor (MBMBR)” was developed and investigated under intermittently-aerated mode for simultaneous removal of organic carbon and nitrogen.

Results indicated that the variation of the intermittently aerated duration did not have an apparent impact on COD and NH4+–N removal rate, yielding the effluent with average COD and NH4+–N removal efficiency of more than 92 and 91% respectively. However, in the intermittently aerated cycle of (continuously aeration/0s mix), (aeration 90s/mix 90s) and (aeration 90s/mix 180s); the average TN removal efficiency was 67.6%, 69.5% and 87.8% respectively. At the same time, their nitrite accumulation rate was 4.5%, 49.1% and 79.4% respectively. These results indicate that the intermittently aerated mode is an efficient way to controlling the nitrification to stop at nitrition; and also the length of anoxic duration is a key factor in improving TN removal.

Keywords: Membrane bioreactor (MBR), Moving bed biofilm reactor (MBBR), Nutrients removal, Simultaneous nitrification and denitrification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2446
7489 Separation Characteristics of Dissolved Gases from Water Using a Polypropylene Hollow Fiber Membrane Module with High Surface Area

Authors: Pil Woo Heo, In Sub Park

Abstract:

A polypropylene hollow fiber membrane module is used for separating dissolved gases which contain dissolved oxygen from water. These dissolved gases can be used for underwater breathing. To be used for a human, the minimum amount of oxygen is essential. To increase separation of dissolved gases, much water and high surface area of hollow fibers are requested. For efficient separation system, performance of single membrane module with high surface area needs to be investigated.

In this study, we set up experimental devices for analyzing separation characteristics of dissolved gases including oxygen from water using a polypropylene hollow fiber membrane module. Separation of dissolved gases from water is investigated with variations of water flow rates. Composition of dissolved gases is also measured using GC. These results expect to be used in developing the portable separation system.

Keywords: High surface area, breathing, vacuum, composition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2712
7488 Separation of CO2 Using MFI-Alumina Nanocomposite Hollow Fiber Ion-Exchanged with Alkali Metal Cation

Authors: A. Alshebani, Y. Swesi, S. Mrayed, F. Altaher, I. Musbah

Abstract:

Cs-type nanocomposite zeolite membrane was successfully synthesized on an alumina ceramic hollow fibre with a mean outer diameter of 1.7 mm; cesium cationic exchange test was carried out inside test module with mean wall thickness of 230 μm and an average crossing pore size smaller than 0.2 μm. Separation factor of n-butane/H2 obtained indicate that a relatively high quality closed to 20. Maxwell-Stefan modeling provides an equivalent thickness lower than 1 µm. To compare the difference an application to CO2/N2 separation has been achieved, reaching separation factors close to (4,18) before and after cation exchange on H-zeolite membrane formed within the pores of a ceramic alumina substrate.

Keywords: MFI membrane, nanocomposite, Ceramic hollow fibre, CO2, Ion-exchange.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1971
7487 Intrinsic Electromagnetic Fields and Atom-Field Coupling in Living Cells

Authors: Masroor H. S. Bukhari, Z. H. Shah

Abstract:

The possibility of intrinsic electromagnetic fields within living cells and their resonant self-interaction and interaction with ambient electromagnetic fields is suggested on the basis of a theoretical and experimental study. It is reported that intrinsic electromagnetic fields are produced in the form of radio-frequency and infra-red photons within atoms (which may be coupled or uncoupled) in cellular structures, such as the cell cytoskeleton and plasma membrane. A model is presented for the interaction of these photons among themselves or with atoms under a dipole-dipole coupling, induced by single-photon or two-photon processes. This resonance is manifested by conspicuous field amplification and it is argued that it is possible for these resonant photons to undergo tunnelling in the form of evanescent waves to a short range (of a few nanometers to micrometres). This effect, suggested as a resonant photon tunnelling mechanism in this report, may enable these fields to act as intracellular signal communication devices and as bridges between macromolecules or cellular structures in the cell cytoskeleton, organelles or membrane. A brief overview of an experimental technique and a review of some preliminary results are presented, in the detection of these fields produced in living cell membranes under physiological conditions.

Keywords: bioelectromagnetism, cell membrane, evanescentwaves, photon tunnelling, resonance

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1841
7486 H2 Permeation Properties of a Catalytic Membrane Reactor in Methane Steam Reforming Reaction

Authors: M. Amanipour, J. Towfighi, E. Ganji Babakhani, M. Heidari

Abstract:

Cylindrical alumina microfiltration membrane (GMITM Corporation, inside diameter=9 mm, outside diameter=13 mm, length= 50 mm) with an average pore size of 0.5 micrometer and porosity of about 0.35 was used as the support for membrane reactor. This support was soaked in boehmite sols, and the mean particle size was adjusted in the range of 50 to 500 nm by carefully controlling hydrolysis time, and calcined at 650 °C for two hours. This process was repeated with different boehmite solutions in order to achieve an intermediate layer with an average pore size of about 50 nm. The resulting substrate was then coated with a thin and dense layer of silica by counter current chemical vapour deposition (CVD) method. A boehmite sol with 10 wt.% of nickel which was prepared by a standard procedure was used to make the catalytic layer. BET, SEM, and XRD analysis were used to characterize this layer. The catalytic membrane reactor was placed in an experimental setup to evaluate the permeation and hydrogen separation performance for a steam reforming reaction. The setup consisted of a tubular module in which the membrane was fixed, and the reforming reaction occurred at the inner side of the membrane. Methane stream, diluted with nitrogen, and deionized water with a steam to carbon (S/C) ratio of 3.0 entered the reactor after the reactor was heated up to 500 °C with a specified rate of 2 °C/ min and the catalytic layer was reduced at presence of hydrogen for 2.5 hours. Nitrogen flow was used as sweep gas through the outer side of the reactor. Any liquid produced was trapped and separated at reactor exit by a cold trap, and the produced gases were analyzed by an on-line gas chromatograph (Agilent 7890A) to measure total CH4 conversion and H2 permeation. BET analysis indicated uniform size distribution for catalyst with average pore size of 280 nm and average surface area of 275 m2.g-1. Single-component permeation tests were carried out for hydrogen, methane, and carbon dioxide at temperature range of 500-800 °C, and the results showed almost the same permeance and hydrogen selectivity values for hydrogen as the composite membrane without catalytic layer. Performance of the catalytic membrane was evaluated by applying membranes as a membrane reactor for methane steam reforming reaction at gas hourly space velocity (GHSV) of 10,000 h−1 and 2 bar. CH4 conversion increased from 50% to 85% with increasing reaction temperature from 600 °C to 750 °C, which is sufficiently above equilibrium curve at reaction conditions, but slightly lower than membrane reactor with packed nickel catalytic bed because of its higher surface area compared to the catalytic layer.

Keywords: Catalytic membrane, hydrogen, methane steam reforming, permeance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 853
7485 A Saltwater Battery Inspired by the Membrane Potential Found in Biological Cells

Authors: Andrew Jester, Ross Lee, Pritpal Singh

Abstract:

As the world transitions to a more sustainable energy economy, the deployment of energy storage technologies is expected to increase to develop a more resilient grid system. However, current technologies are associated with various environmental and safety issues throughout their entire lifecycle; therefore, a new battery technology is desirable for grid applications to curtail these risks. Biological cells, such as human neurons and electrocytes in the electric eel, can serve as a more sustainable design template for a new bio-inspired (i.e., biomimetic) battery. Within biological cells, an electrochemical gradient across the cell membrane forms the membrane potential, which serves as the driving force for ion transport into/out of the cell akin to the charging/discharging of a battery cell. This work serves as the first step for developing such a biomimetic battery cell, starting with the fabrication and characterization of ion-selective membranes to facilitate ion transport through the cell. Performance characteristics (e.g., cell voltage, power density, specific energy, roundtrip efficiency) for the cell under investigation are compared to incumbent battery technologies and biological cells to assess the readiness level for this emerging technology. Using a Na+-Form Nafion-117 membrane, the cell in this work successfully demonstrated behavior like human neurons; these findings will inform how cell components can be re-engineered to enhance device performance.

Keywords: Battery, biomimetic, electrocytes, human neurons, ion-selective membranes, membrane potential.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 308
7484 Application of Liquid Emulsion Membrane Technique for the Removal of Cadmium(II) from Aqueous Solutions Using Aliquat 336 as a Carrier

Authors: B. Medjahed, M. A. Didi, B. Guezzen

Abstract:

In the present work, emulsion liquid membrane (ELM) technique was applied for the extraction of cadmium(II) present in aqueous samples. Aliquat 336 (Chloride tri-N-octylmethylammonium) was used as carrier to extract cadmium(II). The main objective of this work is to investigate the influence of various parameters affected the ELM formation and its stability and testing the performance of the prepared ELM on removal of cadmium by using synthetic solution with different concentrations. Experiments were conducted to optimize pH of the feed solution and it was found that cadmium(II) can be extracted at pH 6.5. The influence of the carrier concentration and treat ratio on the extraction process was investigated. The obtained results showed that the optimal values are respectively 3% (Aliquat 336) and a ratio (feed: emulsion) equal to 1:1.

Keywords: Cadmium, carrier, emulsion liquid membrane, surfactant.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1230
7483 A New Analytical Approach for Free Vibration of Membrane from Wave Standpoint

Authors: Mansour Nikkhah-Bahrami, Masih Loghmani, Mostafa Pooyanfar

Abstract:

In this paper, an analytical approach for free vibration analysis of rectangular and circular membranes is presented. The method is based on wave approach. From wave standpoint vibration propagate, reflect and transmit in a structure. Firstly, the propagation and reflection matrices for rectangular and circular membranes are derived. Then, these matrices are combined to provide a concise and systematic approach to free vibration analysis of membranes. Subsequently, the eigenvalue problem for free vibration of membrane is formulated and the equation of membrane natural frequencies is constructed. Finally, the effectiveness of the approach is shown by comparison of the results with existing classical solution.

Keywords: Rectangular and circular membranes, propagation matrix, reflection matrix, vibration analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2109
7482 Investigation of Water Transport Dynamics in Polymer Electrolyte Membrane Fuel Cells Based on a Gas Diffusion Media Layers

Authors: Saad S. Alrwashdeh, Henning Markötter, Handri Ammari, Jan Haußmann, Tobias Arlt, Joachim Scholta, Ingo Manke

Abstract:

In this investigation, synchrotron X-ray imaging is used to study water transport inside polymer electrolyte membrane fuel cells. Two measurement techniques are used, namely in-situ radiography and quasi-in-situ tomography combining together in order to reveal the relationship between the structures of the microporous layers (MPLs) and the gas diffusion layers (GDLs), the operation temperature and the water flow. The developed cell is equipped with a thick GDL and a high back pressure MPL. It is found that these modifications strongly influence the overall water transport in the whole adjacent GDM.

Keywords: Polymer electrolyte membrane fuel cell, microporous layer, water transport, radiography, tomography.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 694
7481 Study of Equilibrium and Mass Transfer of Co- Extraction of Different Mineral Acids with Iron(III) from Aqueous Solution by Tri-n-Butyl Phosphate Using Liquid Membrane

Authors: Diptendu Das, Vikas Kumar Rahi, V. A. Juvekar, R. Bhattacharya

Abstract:

Extraction of Fe(III) from aqueous solution using Trin- butyl Phosphate (TBP) as carrier needs a highly acidic medium (>6N) as it favours formation of chelating complex FeCl3.TBP. Similarly, stripping of Iron(III) from loaded organic solvents requires neutral pH or alkaline medium to dissociate the same complex. It is observed that TBP co-extracts acids along with metal, which causes reversal of driving force of extraction and iron(III) is re-extracted back from the strip phase into the feed phase during Liquid Emulsion Membrane (LEM) pertraction. Therefore, rate of extraction of different mineral acids (HCl, HNO3, H2SO4) using TBP with and without presence of metal Fe(III) was examined. It is revealed that in presence of metal acid extraction is enhanced. Determination of mass transfer coefficient of both acid and metal extraction was performed by using Bulk Liquid Membrane (BLM). The average mass transfer coefficient was obtained by fitting the derived model equation with experimentally obtained data. The mass transfer coefficient of the mineral acid extraction is in the order of kHNO3 = 3.3x10-6m/s > kHCl = 6.05x10-7m/s > kH2SO4 = 1.85x10-7m/s. The distribution equilibria of the above mentioned acids between aqueous feed solution and a solution of tri-n-butyl-phosphate (TBP) in organic solvents have been investigated. The stoichiometry of acid extraction reveals the formation of TBP.2HCl, HNO3.2TBP, and TBP.H2SO4 complexes. Moreover, extraction of Iron(III) by TBP in HCl aqueous solution forms complex FeCl3.TBP.2HCl while in HNO3 medium forms complex 3FeCl3.TBP.2HNO3

Keywords: Bulk Liquid Membrane (BLM) Transport, Iron(III) extraction, Tri-n-butyl Phosphate, Mass Transfer coefficient.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2532
7480 Nonlinear Modeling of the PEMFC Based On NNARX Approach

Authors: Shan-Jen Cheng, Te-Jen Chang, Kuang-Hsiung Tan, Shou-Ling Kuo

Abstract:

Polymer Electrolyte Membrane Fuel Cell (PEMFC) is such a time-vary nonlinear dynamic system. The traditional linear modeling approach is hard to estimate structure correctly of PEMFC system. From this reason, this paper presents a nonlinear modeling of the PEMFC using Neural Network Auto-regressive model with eXogenous inputs (NNARX) approach. The multilayer perception (MLP) network is applied to evaluate the structure of the NNARX model of PEMFC. The validity and accuracy of NNARX model are tested by one step ahead relating output voltage to input current from measured experimental of PEMFC. The results show that the obtained nonlinear NNARX model can efficiently approximate the dynamic mode of the PEMFC and model output and system measured output consistently.

Keywords: PEMFC, neural network, nonlinear identification, NNARX.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2151
7479 Optimal Feedback Linearization Control of PEM Fuel Cell

Authors: E. Shahsavari, R. Ghasemi, A. Akramizadeh

Abstract:

This paper presents a new method to design nonlinear feedback linearization controller for PEMFCs (Polymer Electrolyte Membrane Fuel Cells). A nonlinear controller is designed based on nonlinear model to prolong the stack life of PEMFCs. Since it is known that large deviations between hydrogen and oxygen partial pressures can cause severe membrane damage in the fuel cell, feedback linearization is applied to the PEMFC system so that the deviation can be kept as small as possible during disturbances or load variations. To obtain an accurate feedback linearization controller, tuning the linear parameters are always important. So in proposed study NSGA (Non-Dominated Sorting Genetic Algorithm)-II method was used to tune the designed controller in aim to decrease the controller tracking error. The simulation result showed that the proposed method tuned the controller efficiently.

Keywords: Feedback Linearization controller, NSGA, Optimal Control, PEMFC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2204
7478 Modification and Characterization of Bacterial Cellulose Biopolymer as Proton Conducting Membrane

Authors: C. W. Lin, S.W. Chen

Abstract:

This study describes the preparation of a novel proton conducting membranes based on bacterial cellulose (BC) modified by grafting of 2-acrylamido-2-methyl-1 -propanesulfonic acid (AMPS) through UV-induced graft polymerization. These AMPS-g-BC membranes have been characterized by various techniques including FTIR, SEM and TGA, to find their successful grafting of AMPS on BC, surface morphology and thermal stability, respectively. Physical properties of AMPS-g-BC membranes have been assessed in terms of Lamda value( λ ), ion exchange capacity(IEC) and proton conductivity. The relationship between degree of grafting and AMPS concentration used for grafting has been determined by weight gain method. An optimum proton conductivity equal to 2.89x10-2 S cm-1 and IEC value equal to 1.79 mmol g-1 have been obtained when 20 wt% AMPS concentration is used for grafting (i.e. the corresponding membrane is notated as AMPS20-g-BC).

Keywords: Bacterial cellulose, 2-acrylamido-2-methyl-1-propanesulfonic acid, Proton conducting membrane, Self diffusioncoefficient, Fuel cell

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2222
7477 Efficiency of Modified Granular Activated Carbon Coupled with Membrane Bioreactor for Trace Organic Contaminants Removal

Authors: Mousaab Alrhmoun, Magali Casellas, Michel Baudu, Christophe Dagot

Abstract:

The aim of the study is to improve removal of trace organic contaminants dissolved in activated sludge by the process of filtration with membrane bioreactor combined with modified activated carbon, for a maximum removal of organic compounds characterized by low molecular weight. Special treatment was conducted in laboratory on activated carbon. Tow reaction parameters: the pH of aqueous middle and the type of granular activated carbon were very important to improve the removal and to motivate the electrostatic Interactions of organic compounds with modified activated carbon in addition to physical adsorption, ligand exchange or complexation on the surface activated carbon. The results indicate that modified activated carbon has a strong impact in removal 21 of organic contaminants and in percentage of 100% of the process.

Keywords: Activated carbon, organic contaminants, Membrane bioreactor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3007
7476 Design of a Hybrid Fuel Cell with Battery Energy Storage for Stand-Alone Distributed Generation Applications

Authors: N. A. Zambri, A. Mohamed, H. Shareef, M. Z. C. Wanik

Abstract:

This paper presents the modeling and simulation of a hybrid proton exchange membrane fuel cell (PEMFC) with an energy storage system for use in a stand-alone distributed generation (DG) system. The simulation model consists of fuel cell DG, lead-acid battery, maximum power point tracking and power conditioning unit which is modeled in the MATLAB/Simulink platform. Poor loadfollowing characteristics and slow response to rapid load changes are some of the weaknesses of PEMFC because of the gas processing reaction and the fuel cell dynamics. To address the load-tracking issues in PEMFC, a hybrid PEMFC and battery storage system is considered and modelled. The model utilizes PEMFC as the main energy source whereas the battery functions as energy storage to compensate for the limitations of PEMFC.Simulation results are given to show the overall system performance under light and heavyloading conditions.

Keywords: Hybrid, Lead–Acid Battery, Maximum Power Point Tracking, Proton Exchange Membrane Fuel Cell.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3067
7475 Effect of Nutrient Induced Salinity on Growth, Membrane Permeability, Nitrate Reductase Activity, Proline Content and Macronutrient Concentrations of Tomato Grown in Greenhouse

Authors: Figen Eraslan, Abdel Karim Hassan Awad Elkarim, Aydın Gunes, Ali Inal

Abstract:

A greenhouse experiment was conducted to investigate the effects of different types of nutrients induced salinity on the growth, membrane permeability, nitrate reductase activity, proline content and macronutrient concentrations of tomato plants. The plants were subjected to six different treatments: 1 (control) containing basic solution, 2 basic solution+40mM of NaCl, 3 basic solution+40 mM of KNO3, 4 basic solution+20 mM of Ca(NO3)2.4H2O, 5 basic solution+20 mM of Mg(NO3)2.6H2O and 6 basic solution+20 mM of KNO3+5 mM of Ca(NO3)2.4H2O+5 mM of Mg(NO3)2.6H2O. Membrane permeability was increased significantly only with addition of NaCl, and then decreased to its lower level with addition of Ca(NO3)2.4H2O and Mg(NO3)2.6H2O. Proline accumulation were followed the same trend of results when they had been exposed to NaCl salinity. Nitrate reductase activity (NRA) was significantly affected by addition of different types of nutrient induced salinity.

Keywords: Membrane Permeability, Nitrate Reductase Activity, Nutrient induced salinity, Proline.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2595
7474 Separation of Polyphenolics and Sugar by Ultrafiltration: Effects of Operating Conditions on Fouling and Diafiltration

Authors: Diqiao S. Wei, M. Hossain, Zaid S. Saleh

Abstract:

Polyphenolics and sugar are the components of many fruit juices. In this work, the performance of ultra-filtration (UF) for separating phenolic compounds from apple juice was studied by performing batch experiments in a membrane module with an area of 0.1 m2 and fitted with a regenerated cellulose membrane of 1 kDa MWCO. The effects of various operating conditions: transmembrane pressure (3, 4, 5 bar), temperature (30, 35, 40 ºC), pH (2, 3, 4, 5), feed concentration (3, 5, 7, 10, 15 ºBrix for apple juice) and feed flow rate (1, 1.5, 1.8 L/min) on the performance were determined. The optimum operating conditions were: transmembrane pressure 4 bar, temperature 30 ºC, feed flow rate 1 – 1.8 L/min, pH 3 and 10 Brix (apple juice). After performing ultrafiltration under these conditions, the concentration of polyphenolics in retentate was increased by a factor of up to 2.7 with up to 70% recovered in the permeate and with approx. 20% of the sugar in that stream.. Application of diafiltration (addition of water to the concentrate) can regain the flux by a factor of 1.5, which has been decreased due to fouling. The material balance performed on the process has shown the amount of deposits on the membrane and the extent of fouling in the system. In conclusion, ultrafiltration has been demonstrated as a potential technology to separate the polyphenolics and sugars from their mixtures and can be applied to remove sugars from fruit juice.

Keywords: Fouling, membrane, polyphenols, ultrafiltration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3336
7473 Paper-Based Colorimetric Sensor Utilizing Peroxidase-Mimicking Magnetic Nanoparticles Conjugated with Aptamers

Authors: Min-Ah Woo, Min-Cheol Lim, Hyun-Joo Chang, Sung-Wook Choi

Abstract:

We developed a paper-based colorimetric sensor utilizing magnetic nanoparticles conjugated with aptamers (MNP-Apts) against E. coli O157:H7. The MNP-Apts were applied to a test sample solution containing the target cells, and the solution was simply dropped onto PVDF (polyvinylidene difluoride) membrane. The membrane moves the sample radially to form the sample spots of different compounds as concentric rings, thus the MNP-Apts on the membrane enabled specific recognition of the target cells through a color ring generation by MNP-promoted colorimetric reaction of TMB (3,3',5,5'-tetramethylbenzidine) and H2O2. This method could be applied to rapidly and visually detect various bacterial pathogens in less than 1 h without cell culturing.

Keywords: Aptamer, colorimetric sensor, E. coli O157:H7, magnetic nanoparticle, polyvinylidene difluoride.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1309
7472 Performance Study of Neodymium Extraction by Carbon Nanotubes Assisted Emulsion Liquid Membrane Using Response Surface Methodology

Authors: Payman Davoodi-Nasab, Ahmad Rahbar-Kelishami, Jaber Safdari, Hossein Abolghasemi

Abstract:

The high purity rare earth elements (REEs) have been vastly used in the field of chemical engineering, metallurgy, nuclear energy, optical, magnetic, luminescence and laser materials, superconductors, ceramics, alloys, catalysts, and etc. Neodymium is one of the most abundant rare earths. By development of a neodymium–iron–boron (Nd–Fe–B) permanent magnet, the importance of neodymium has dramatically increased. Solvent extraction processes have many operational limitations such as large inventory of extractants, loss of solvent due to the organic solubility in aqueous solutions, volatilization of diluents, etc. One of the promising methods of liquid membrane processes is emulsion liquid membrane (ELM) which offers an alternative method to the solvent extraction processes. In this work, a study on Nd extraction through multi-walled carbon nanotubes (MWCNTs) assisted ELM using response surface methodology (RSM) has been performed. The ELM composed of diisooctylphosphinic acid (CYANEX 272) as carrier, MWCNTs as nanoparticles, Span-85 (sorbitan triooleate) as surfactant, kerosene as organic diluent and nitric acid as internal phase. The effects of important operating variables namely, surfactant concentration, MWCNTs concentration, and treatment ratio were investigated. Results were optimized using a central composite design (CCD) and a regression model for extraction percentage was developed. The 3D response surfaces of Nd(III) extraction efficiency were achieved and significance of three important variables and their interactions on the Nd extraction efficiency were found out. Results indicated that introducing the MWCNTs to the ELM process led to increasing the Nd extraction due to higher stability of membrane and mass transfer enhancement. MWCNTs concentration of 407 ppm, Span-85 concentration of 2.1 (%v/v) and treatment ratio of 10 were achieved as the optimum conditions. At the optimum condition, the extraction of Nd(III) reached the maximum of 99.03%.

Keywords: Emulsion liquid membrane, extraction of neodymium, multi-walled carbon nanotubes, response surface method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1177
7471 Seawater Desalination for Production of Highly Pure Water Using a Hydrophobic PTFE Membrane and Direct Contact Membrane Distillation (DCMD)

Authors: Ahmad Kayvani Fard, Yehia Manawi

Abstract:

Qatar’s primary source of fresh water is through seawater desalination. Amongst the major processes that are commercially available on the market, the most common large scale techniques are Multi-Stage Flash distillation (MSF), Multi Effect distillation (MED), and Reverse Osmosis (RO). Although commonly used, these three processes are highly expensive down to high energy input requirements and high operating costs allied with maintenance and stress induced on the systems in harsh alkaline media. Beside that cost, environmental footprint of these desalination techniques are significant; from damaging marine eco-system, to huge land use, to discharge of tons of GHG and huge carbon footprint. Other less energy consuming techniques based on membrane separation are being sought to reduce both the carbon footprint and operating costs is membrane distillation (MD). Emerged in 1960s, MD is an alternative technology for water desalination attracting more attention since 1980s. MD process involves the evaporation of a hot feed, typically below boiling point of brine at standard conditions, by creating a water vapor pressure difference across the porous, hydrophobic membrane. Main advantages of MD compared to other commercially available technologies (MSF and MED) and specially RO are reduction of membrane and module stress due to absence of trans-membrane pressure, less impact of contaminant fouling on distillate due to transfer of only water vapor, utilization of low grade or waste heat from oil and gas industries to heat up the feed up to required temperature difference across the membrane, superior water quality, and relatively lower capital and operating cost. To achieve the objective of this study, state of the art flat-sheet cross-flow DCMD bench scale unit was designed, commissioned, and tested. The objective of this study is to analyze the characteristics and morphology of the membrane suitable for DCMD through SEM imaging and contact angle measurement and to study the water quality of distillate produced by DCMD bench scale unit. Comparison with available literature data is undertaken where appropriate and laboratory data is used to compare a DCMD distillate quality with that of other desalination techniques and standards. Membrane SEM analysis showed that the PTFE membrane used for the study has contact angle of 127º with highly porous surface supported with less porous and bigger pore size PP membrane. Study on the effect of feed solution (salinity) and temperature on water quality of distillate produced from ICP and IC analysis showed that with any salinity and different feed temperature (up to 70ºC) the electric conductivity of distillate is less than 5 μS/cm with 99.99% salt rejection and proved to be feasible and effective process capable of consistently producing high quality distillate from very high feed salinity solution (i.e. 100000 mg/L TDS) even with substantial quality difference compared to other desalination methods such as RO and MSF.

Keywords: Membrane Distillation, Waste Heat, Seawater Desalination, Membrane, Freshwater, Direct Contact Membrane Distillation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4106
7470 Efficiency of Geocell Reinforcement for Using in Expanded Polystyrene Embankments via Numerical Analysis

Authors: S. N. Moghaddas Tafreshi, S. M. Amin Ghotbi

Abstract:

This paper presents a numerical study for investigating the effectiveness of geocell reinforcement in reducing pressure and settlement over EPS geofoam blocks in road embankments. A 3-D FEM model of soil and geofoam was created in ABAQUS, and geocell was also modeled realistically using membrane elements. The accuracy of the model was tested by comparing its results with previous works. Sensitivity analyses showed that reinforcing the soil cover with geocell has a significant influence on the reduction of imposed stresses over geofoam and consequently decreasing its deformation.

Keywords: EPS geofoam, road embankments, geocell, reinforcement, lightweight fill.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1266
7469 Selective Separation of Lead and Mercury Ions from Synthetic Produced Water via a Hollow Fiber Supported Liquid Membrane

Authors: S. Suren, U. Pancharoen

Abstract:

A double module hollow fiber supported liquid membrane (HFSLM) was applied to selectively separate lead and mercury ions from dilute synthetic produced water. The experiments were investigated on several variables: types of extractants (D2EHPA, Cyanex 471, Aliquat 336, and TOA), concentration of the selected extractant and operating time. The results clearly showed that the double module HFSLM could selectively separate Pb(II) and Hg(II) in feed solution at a very low concentration to less than the regulatory discharge limit of 0.2 and 0.005 mg/L issued by the Ministry of Industry and the Ministry of Natural Resource Environment, Thailand. The highest extractions of lead and mercury ions from synthetic produced water were 96% and 100% using 0.03 M D2EHPA and 0.06 M Aliquat 336 as the extractant for the first and second modules.

Keywords: Hollow fiber, Lead ions, Liquid membrane, Mercury ions, Selective separation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2291
7468 Experimental Investigation of Proton Exchange Membrane Fuel Cells Operated with Nanofiber and Nanofiber/Nanoparticle

Authors: Kevser Dincer, Basma Waisi, M. Ozan Ozdemir, Ugur Pasaogullari, Jeffrey McCutcheon

Abstract:

Nanofibers are defined as fibers with diameters less than 100 nanometers. In this study, behaviours of activated carbon nanofiber (ACNF), carbon nanofiber (CNF), polyacrylonitrile/ carbon nanotube (PAN/CNT), polyvinyl alcohol/nanosilver (PVA/Ag) in proton exchange membrane (PEM) fuel cells are investigated experimentally. This material was used as gas diffusion layer (GDL) in PEM fuel cells. In this study, the electrical conductivities of nanofiber and nanofiber/nanoparticles have been studied to understand their effects on PEM fuel cell performance. According to the experimental results, the maximum electrical conductivity performance of the fuel cell with nanofiber was found to be at PVA/Ag (at UConn condition). The electrical conductivities of CNF, ACNF, PAN/CNT are lower for PEM. The resistance of cell with PVA/Ag is lower than the resistance of cell with PAN/CNT, ACNF, CNF.

Keywords: Proton exchange membrane fuel cells, electrospinning, carbon nanofiber, activate carbon nanofiber, PVA fiber, pan fiber, carbon nanotube, nanoparticle, nanocomposites.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2449