Nanofluid-Based Emulsion Liquid Membrane for Selective Extraction and Separation of Dysprosium
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32769
Nanofluid-Based Emulsion Liquid Membrane for Selective Extraction and Separation of Dysprosium

Authors: Maliheh Raji, Hossein Abolghasemi, Jaber Safdari, Ali Kargari

Abstract:

Dysprosium is a rare earth element which is essential for many growing high-technology applications. Dysprosium along with neodymium plays a significant role in different applications such as metal halide lamps, permanent magnets, and nuclear reactor control rods preparation. The purification and separation of rare earth elements are challenging because of their similar chemical and physical properties. Among the various methods, membrane processes provide many advantages over the conventional separation processes such as ion exchange and solvent extraction. In this work, selective extraction and separation of dysprosium from aqueous solutions containing an equimolar mixture of dysprosium and neodymium by emulsion liquid membrane (ELM) was investigated. The organic membrane phase of the ELM was a nanofluid consisting of multiwalled carbon nanotubes (MWCNT), Span80 as surfactant, Cyanex 272 as carrier, kerosene as base fluid, and nitric acid solution as internal aqueous phase. Factors affecting separation of dysprosium such as carrier concentration, MWCNT concentration, feed phase pH and stripping phase concentration were analyzed using Taguchi method. Optimal experimental condition was obtained using analysis of variance (ANOVA) after 10 min extraction. Based on the results, using MWCNT nanofluid in ELM process leads to increase the extraction due to higher stability of membrane and mass transfer enhancement and separation factor of 6 for dysprosium over neodymium can be achieved under the optimum conditions. Additionally, demulsification process was successfully performed and the membrane phase reused effectively in the optimum condition.

Keywords: Emulsion liquid membrane, MWCNT nanofluid, separation, Taguchi Method.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1314461

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 923

References:


[1] F. Xie, T. A. Zhang, D. Dreisinger, F. Doyle, A critical review on solvent extraction of rare earths from aqueous solutions, Miner. Eng. 56 (2014) 10–28. doi:10.1016/j.mineng.2013.10.021.
[2] R. Torkaman, M. A. Moosavian, J. Safdari, M. Torab-Mostaedi, Synergistic extraction of gadolinium from nitrate media by mixtures of bis (2,4,4-trimethylpentyl) dithiophosphinic acid and di-(2-ethylhexyl) phosphoric acid, Ann. Nucl. Energy. 62 (2013) 284–290. doi:10.1016/j.anucene.2013.06.028.
[3] B. Swain, E. O. Otu, Competitive extraction of lanthanides by solvent extraction using Cyanex 272: Analysis, classification and mechanism, Sep. Purif. Technol. 83 (2011) 82–90. doi:10.1016/j.seppur.2011.09.015.
[4] H. Yoon, C. Kim, K. W. Chung, S. Kim, J. R. Kumar, Recovery Process Development for the Rare Earths from Permanent Magnet Scraps Leach Liquors, J. Braz. Chem. Soc. 26 (2015) 1143–1151.
[5] M. Raji, H. Abolghasemi, J. Safdari, A. Kargari, Pertraction of Dysprosium from Nitrate Medium by Emulsion Liquid Membrane Containing Mixed Surfactant System, Chem. Eng. Process. Process Intensif. (2017). doi:10.1016/j.cep.2017.06.010.
[6] P. Zaheri, H. Abolghasemi, T. Mohammadi, M.G. Maraghe, Dysprosium pertraction through facilitated supported liquid membrane using D2EHPA as carrier, Chem. Pap. 69 (2015) 279–290. doi:10.1515/chempap-2015-0007.
[7] M. Anitha, D. N. Ambare, D. K. Singh, H. Singh, P. K. Mohapatra, Extraction of neodymium from nitric acid feed solutions using an emulsion liquid membrane containing TOPO and DNPPA as the carrier extractants, Chem. Eng. Res. Des. 98 (2015) 89–95. doi:10.1016/j.cherd.2015.04.011.
[8] G. Kakoi, Takahiko, Nishiyori, Takayuki, Oshima, Tatsuya, Kubota, Fukiko, F. Masahiro, Shinkai, Seiji, Nakashio, Extraction of rare-earth metals by liquid surfactant membranes containing a novel cyclic carrier.php.pdf, J. Memb. Sci. 136 (1997) 261–271.
[9] P. Davoodi-Nasab, A. Rahbar-Kelishami, M. Raji-Asadabadi, Fast and efficient chromium(VI) pertraction with Aliquat 336 in emulsion liquid membrane using sunflower oil as a high potential solvent, Desalin. Water Treat. 80 (2017) 234–246. doi:10.5004/dwt.2017.20990.
[10] H. Jiao, W. Peng, J. Zhao, C. Xu, Extraction performance of bisphenol A from aqueous solutions by emulsion liquid membrane using response surface methodology, Desalination. 313 (2013) 36–43. doi:10.1016/j.desal.2012.12.002.
[11] I. Akartuna, A. R. Studart, E. Tervoort, U. T. Gonzenbach, L. J. Gauckler, Stabilization of oil-in-water emulsions by colloidal particles modified with short amphiphiles, Langmuir. 24 (2008) 7161–7168. doi:10.1021/la800478g.
[12] J. S. Basha, R. B. Anand, An experimental investigation in a diesel engine using carbon nanotubes blended water-diesel emulsion fuel, Proc. Inst. Mech. Eng. Part a-Journal Power Energy. 225 (2011) 279–288. doi:10.1177/2041296710394247.
[13] N. M. Briggs, J. S. Weston, B. Li, D. Venkataramani, C. P. Aichele, J. H. Harwell, S. P. Crossley, Multiwalled Carbon Nanotubes at the Interface of Pickering Emulsions, Langmuir. 31 (2015) 13077–13084. doi:10.1021/acs.langmuir.5b03189.
[14] M. Raji, H. Abolghasemi, J. Safdari, A. Kargari, Optimization of Samarium Extraction via Nanofluid- Based Emulsion Liquid Membrane Using Cyanex 272 as Mobile Carrier, Int. J. Chem. Mol. Nucl. Mater. Metall. Eng. 11 (2017) 145–149.
[15] A. Mirzazadeh Ghanadi, A. Heydari Nasab, D. Bastani, A.A. Seife Kordi, The Effect of Nanoparticles on the Mass Transfer in Liquid–Liquid Extraction, Chem. Eng. Commun. 202 (2014) 600–605. doi:10.1080/00986445.2013.858037.
[16] S. M. Mousavi, S. Kiani, M. R. Farmad, A. Hemati, B. Abbasi, Extraction of Arsenic(V) from Water Using Emulsion Liquid Membrane, J. Dispers. Sci. Technol. 33 (2012) 123–129. doi:10.1080/01932691.2010.548230.
[17] A. Elmenshawey, A. Abdelrazak1, A. M. Mowafey1, Yehia Osman, Optimization of Bioreactor Cultivation Parameters by Taguchi Orthogonal Array Design for Enhanced Prodigiosin Production, Preprints (2017) 2017010002 .doi:10.20944/preprints201707.0002.v1
[18] P. Kazemi, M. Peydayesh, A. Bandegi, T. Mohammadi, O. Bakhtiari, Stability and extraction study of phenolic wastewater treatment by supported liquid membrane using tributyl phosphate and sesame oil as liquid membrane, Chem. Eng. Res. Des. 92 (2014) 375–383. doi:10.1016/j.cherd.2013.07.023.