Separation of CO2 Using MFI-Alumina Nanocomposite Hollow Fiber Ion-Exchanged with Alkali Metal Cation
Authors: A. Alshebani, Y. Swesi, S. Mrayed, F. Altaher, I. Musbah
Abstract:
Cs-type nanocomposite zeolite membrane was successfully synthesized on an alumina ceramic hollow fibre with a mean outer diameter of 1.7 mm; cesium cationic exchange test was carried out inside test module with mean wall thickness of 230 μm and an average crossing pore size smaller than 0.2 μm. Separation factor of n-butane/H2 obtained indicate that a relatively high quality closed to 20. Maxwell-Stefan modeling provides an equivalent thickness lower than 1 µm. To compare the difference an application to CO2/N2 separation has been achieved, reaching separation factors close to (4,18) before and after cation exchange on H-zeolite membrane formed within the pores of a ceramic alumina substrate.
Keywords: MFI membrane, nanocomposite, Ceramic hollow fibre, CO2, Ion-exchange.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1094767
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2015References:
[1] Hsieh HP: General characteristics of inorganic membranes. In Book of Inorganic Membranes Synthesis, Characteristics and Applications. Edited by R R, Bhave; 1991: 65–93.
[2] Hammel JJ: Porous Inorganic Siliceous-containing Gas Enriching Material and Process of Manufacture and Use. US patent 4,853,001; 1989.
[3] Smid J, Avci CG, Gunay V, Terpstra RA: Preparation and characterization of microporous ceramic hollow fiber membranes. J Membr Sci 1996, 112:85-90.
[4] Xiaoyao T, L. Shaomin KL: Preparation and characterization of inorganic hollow fiber membranes. J Membr Sci 2001, 188:87-95.
[5] Liu S, Tan X, Li K, Hughes R: Preparation and characterisation of SrCe0.95 Yb0.05 O2.975 hollow fiber membranes. JMembr Sci 2001, 193:249-260.
[6] www.okaz.com.sa/24x7/articles/article5522.html.
[7] www.arabstoday.net/jcgqkq/2014-03-26-13-50-21.html.
[8] Kusakabe K, Yamamoto M, Morooka S: Gas permeation and micropore structure of carbon molecular sieving membranes modified by oxidation. J Membr Sci 1998, 149:59-67.
[9] Kusakabe K, kuroda T, Uchino K, Hasegawaand Y, Morooka S: Gas permeation properties of ion-exchanged Faujasite-type zeolite membranes. AIChE Journal 1999, 45:1220-1226.
[10] Kusakabe K, Kuroda T, Murata A, Morooka S: Formation of a Y-Type Zeolite Membrane on a Porous r-Alumina Tube for Gas Separation. Ind Eng Chem Res 1997, 36:649-655.
[11] Douglas A, Costas T: Separation of CO2 from flue gas : a review. Separ Sci Technol 2005, 40:321-348.
[12] Rao AB, Rubin ES: A technical, economic and environmental assessment of amine-based CO2 capture technology for power plant greenhouse gas control. Envir Sci Technol 2002, 36:4467-4475.
[13] Scholes CA, Kentish SE, Stevens GW: Carbon Dioxide Separation through Polymeric Membrane Systems for Flue Gas Applications In In Bentham Science Publishers Ltd; 2008, 52-66.
[14] Aresta M, Dibenedetto A: Chapter 9 - Carbon dioxide fixation into organic compounds. In Carbon dioxide recovery and utilization. The Netherlands: Kluwer Academic Publishers; 2003.
[15] Bernal MP, Coronas J, Menéndez M, Santamaría J: Separation of CO2/N2 mixtures using MFI-Type zeolite membranes. AlChE J 2004, 50 127-135.
[16] Sebastián V, Kumakiri I, Bredesen R, Menéndez M: Zeolite membrane for CO2 removel: Operating at high pressure. J Mater Sci 2007, 292:92-97.
[17] Hasegawa Y, Tanaka T, Watanabe K, Jeong BH, Kusakabe K, Morooka S: Separation of CO2–CH4 and CO2–N2 systems using ion - exchanged FAU-type zeolite membranes with different Si/Al ratios. Korean J Chem Eng 2002:309-313.
[18] S.P.J. Smith, V.M. Linkov, R.D. Sanderson, L.F. Petrik, C.T. O’Connor, K. Keiser, Preparation of hollow-fibre composite carbon-zeolite membranes, Micropor. Mater. 4 (1995) 385.
[19] H. Richter, I. Voigt, G. Fischer, P. Puhlfürβ, Preparation of zeolite membranes on the inner surface of ceramic tubes and capillaries, Sep. Purif. Technol. 32 (2003) 133.
[20] X. Xu, W. Yang, J. Liu, L. Lin, N. Stroh, H. Brunner, Synthesis of NaA zeolite membrane on a ceramic hollow fiber, J. Membr. Sci. 229 (2004) 81.
[21] S. Miachon, I. Kumakiri, P. Ciavarella, L. van Dyk, K. Fiaty, Y. Schuurman, J.-A. Dalmon, Nanocomposite MFI-alumina membranes via pore-plugging synthesis: Specific transport and separation properties, J. Membr. Sci. 298 (2007) 71.
[22] Nagy JB, Bodart P, Collette H, Hage JEl, Asswad Al, Gabelica Z, Aiello R: Aluminium distribution and cation location in various M-ZSM-5 type zeolite (M = Li, Na, K, Rb, Cs, NH). Zeolites 1988, 8:209-220.
[23] J.J. Jafer, P.M. Budd, Separation of alcohol/water mixtures by pervaporation through zeolite A membranes, Micropor. Mater. 12 (1997) 305.
[24] K. Kusakabe, T. Kuroda, S. Morooka, Separation of carbon dioxide from nitrogen using ion-exchanged faujasite- type zeolite membranes formed on porous support tubes, J. Memb. Sci. 148 (1998) 13.
[25] S. Miachon, E. Landrivon, M. Aouine, Y. Sun, I. Kumakiri, Y. Li, O. Pachtová Prokopová, N. Guilhaume, A. Giroir-Fendler, H. Mozzanega, J.-A. Dalmon, Nanocomposite MFI-alumina membranes via pore-plugging synthesis. Preparation and morphological characterisation, J. Membr. Sci. 281 (2006) 228.
[26] L. van Dyk, L. Lorenzen, S. Miachon, J.-A. Dalmon, Xylene isomerization in an extractor type Catalytic Membrane Reactor, Catal. Today 104 (2005) 274.
[27] P. Ciavarella, H. Moueddeb, S. Miachon, K. Fiaty, J.-A. Dalmon, Experimental study and numerical simulation of hydrogen/isobutane permeation and separation using MFI-zeolite membrane reactor, Catal. Today 56 (2000) 253.
[28] A. Goldbach, T. Mauer, N. Stroh, Keramische Hohlfaser- und Kapillamembranen, Keram. Z. 53 (2001) 1012.
[29] A. Alshebani, M. Pera-Titus, E. Landrivon, K.L. Yeung, S. Miachon, J.-A. Dalmon, Influence of desorption conditions before gas separation studies in nanocomposite MFI-alumina membranes, Membrane Science Volume. 314 (2008) 143-151.
[30] A. Alshebani, M. Pera-Titus, E. Landrivon, Th. Schiestel, S. Miachon, J.-A. Dalmon, Nanocomposite MFI - ceramic hollow fibres: prospects for CO2 separation, Micropor. Mesopor. Mater. 115 (2008) 197-205.