Search results for: longitudinal and shear ultrasonic waves
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1057

Search results for: longitudinal and shear ultrasonic waves

577 Harnessing Nigeria's Forestry Potential for Structural Applications: Structural Reliability of Nigerian Grown Opepe Timber

Authors: J. I. Aguwa, S. Sadiku, M. Abdullahi

Abstract:

This study examined the structural reliability of the Nigerian grown Opepe timber as bridge beam material. The strength of a particular specie of timber depends so much on some factors such as soil and environment in which it is grown. The steps involved are collection of the Opepe timber samples, seasoning/preparation of the test specimens, determination of the strength properties/statistical analysis, development of a computer programme in FORTRAN language and finally structural reliability analysis using FORM 5 software. The result revealed that the Nigerian grown Opepe is a reliable and durable structural bridge beam material for span of 5000mm, depth of 400mm, breadth of 250mm and end bearing length of 150mm. The probabilities of failure in bending parallel to the grain, compression perpendicular to the grain, shear parallel to the grain and deflection are 1.61 x 10-7, 1.43 x 10-8, 1.93 x 10-4 and 1.51 x 10-15 respectively. The paper recommends establishment of Opepe plantation in various Local Government Areas in Nigeria for structural applications such as in bridges, railway sleepers, generation of income to the nation as well as creating employment for the numerous unemployed youths.

Keywords: Bending and deflection, Bridge beam, Compression, Nigerian Opepe, Shear, Structural reliability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1213
576 Mixing Behaviors of Shear-Thinning Fluids in Serpentine-Channel Micromixers

Authors: Rei-Tang Tsai, Chih-Yang Wu, Chia-Yuan Chang, Ming-Ying Kuo

Abstract:

This study aims to investigate the mixing behaviors of deionized (DI) water and carboxymethyl cellulose (CMC) solutions in C-shaped serpentine micromixers over a wide range of flow conditions. The flow of CMC solutions exhibits shear-thinning behaviors. Numerical simulations are performed to investigate the effects of the mean flow speed, fluid properties and geometry parameters on flow and mixing in the micromixers with the serpentine channel of the same overall channel length. From the results, we can find the following trends. When convection dominates fluid mixing, the curvature-induced vortices enhance fluid mixing effectively. The mixing efficiency of a micromixer consisting of semicircular C-shaped repeating units with a smaller centerline radius is better than that of a micromixer consisting of major segment repeating units with a larger centerline radius. The viscosity of DI water is less than the overall average apparent viscosity of CMC solutions, and so the effect of curvature-induced vortices on fluid mixing in DI water is larger than that in CMC solutions for the cases with the same mean flow speed.

Keywords: Microfluidics, mixing, non-Newtonian fluids, curved channel, vortex.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1902
575 A Novel, Cost-effective Design to Harness Ocean Energy in the Developing Countries

Authors: S. Ayub, S.N. Danish, S.R. Qureshi

Abstract:

The world's population continues to grow at a quarter of a million people per day, increasing the consumption of energy. This has made the world to face the problem of energy crisis now days. In response to the energy crisis, the principles of renewable energy gained popularity. There are much advancement made in developing the wind and solar energy farms across the world. These energy farms are not enough to meet the energy requirement of world. This has attracted investors to procure new sources of energy to be substituted. Among these sources, extraction of energy from the waves is considered as best option. The world oceans contain enough energy to meet the requirement of world. Significant advancements in design and technology are being made to make waves as a continuous source of energy. One major hurdle in launching wave energy devices in a developing country like Pakistan is the initial cost. A simple, reliable and cost effective wave energy converter (WEC) is required to meet the nation-s energy need. This paper will present a novel design proposed by team SAS for harnessing wave energy. This paper has three major sections. The first section will give a brief and concise view of ocean wave creation, propagation and the energy carried by them. The second section will explain the designing of SAS-2. A gear chain mechanism is used for transferring the energy from the buoy to a rotary generator. The third section will explain the manufacturing of scaled down model for SAS-2 .Many modifications are made in the trouble shooting stage. The design of SAS-2 is simple and very less maintenance is required. SAS-2 is producing electricity at Clifton. The initial cost of SAS-2 is very low. This has proved SAS- 2 as one of the cost effective and reliable source of harnessing wave energy for developing countries.

Keywords: Clean Energy, Wave energy

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1805
574 Stability Analysis of a Tricore

Authors: C. M. De Marco Muscat-Fenech, A.M. Grech La Rosa

Abstract:

The application of stability theory has led to detailed studies of different types of vessels; however, the shortage of information relating to multihull vessels demanded further investigation. This study shows that the position of the hulls has a very influential effect on both the transverse and longitudinal stability of the tricore. HSC stability code is applied for the optimisation of the hull configurations. Such optimization criteria would undoubtedly aid the performance of the vessel for both commercial or leisure purposes

Keywords: Stability, Multihull, Tricore

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2862
573 Comparison of Rheological Properties for Polymer Modified Asphalt Produced in Riyadh

Authors: Ali M. Babalghaith, Hamad A. Alsoliman, Abdulrahman S. Al-Suhaibani

Abstract:

Flexible pavement made with neat asphalt binder is not enough to resist heavy traffic loads as well as harsh environmental condition found in Riyadh region. Therefore, there is a need to modify asphalt binder with polymers to satisfy such conditions. There are several types of polymers that are used to modify asphalt binder. The objective of this paper is to compare the rheological properties of six polymer modified asphalt binders (Lucolast7010, Anglomak2144, Paveflex140, SBS KTR401, EE-2 and Crumb rubber) obtained from asphalt manufacturer plants. The rheological properties of polymer modified asphalt binders were tested using conventional tests such as penetration, softening point and viscosity; and SHRP tests such as dynamic shear rheometer and bending beam rheometer. The results have indicated that the polymer modified asphalt binders have lower penetration and higher softening point than neat asphalt indicating an improvement in stiffness of asphalt binder, and as a result, more resistant to rutting. Moreover, the dynamic shear rheometer results have shown that all modifiers used in this study improved the binder properties and satisfied the Superpave specifications except SBS KTR401 which failed to satisfy the rutting parameter (G*/sinδ).

Keywords: Polymer modified asphalt, rheological properties, SBS, crumb rubber, EE-2.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2364
572 Groundwater Potential Zone Identification in Unconsolidated Aquifer Using Geophysical Techniques around Tarbela Ghazi, District Haripur, Pakistan

Authors: Syed Muzyan Shahzad, Liu Jianxin, Asim Shahzad, Muhammad Sharjeel Raza, Sun Ya, Fanidi Meryem

Abstract:

Electrical resistivity investigation was conducted in vicinity of Tarbela Ghazi, in order to study the subsurface layer with a view of determining the depth to the aquifer and thickness of groundwater potential zones. Vertical Electrical Sounding (VES) using Schlumberger array was carried out at 16 VES stations. Well logging data at four tube wells have been used to mark the super saturated zones with great discharge rate. The present paper shows a geoelectrical identification of the lithology and an estimate of the relationship between the resistivity and Dar Zarrouk parameters (transverse unit resistance and longitudinal unit conductance). The VES results revealed both homogeneous and heterogeneous nature of the subsurface strata. Aquifer is unconfined to confine in nature, and at few locations though perched aquifer has been identified, groundwater potential zones are developed in unconsolidated deposits layers and more than seven geo-electric layers are observed at some VES locations. Saturated zones thickness ranges from 5 m to 150 m, whereas at few area aquifer is beyond 150 m thick. The average anisotropy, transvers resistance and longitudinal conductance values are 0.86 %, 35750.9821 Ω.m2, 0.729 Siemens, respectively. The transverse unit resistance values fluctuate all over the aquifer system, whereas below at particular depth high values are observed, that significantly associated with the high transmissivity zones. The groundwater quality in all analyzed samples is below permissible limit according to World Health Standard (WHO).

Keywords: Geoelectric layers, Dar Zarrouk parameters, Aquifer, Electro-stratigraphic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 772
571 Repairing and Strengthening Earthquake Damaged RC Beams with Composites

Authors: H. Murat Tanarslan

Abstract:

The dominant judgment for earthquake damaged reinforced concrete (RC) structures is to rebuild them with the new ones. Consequently, this paper estimates if there is chance to repair earthquake RC beams and obtain economical contribution to modern day society. Therefore, the totally damaged (damaged in shear under cyclic load) reinforced concrete (RC) beams repaired and strengthened by externally bonded carbon fibre reinforced polymer (CFRP) strips in this study. Four specimens, apart from the reference beam, were separated into two distinct groups. Two experimental beams in the first group primarily tested up to failure then appropriately repaired and strengthened with CFRP strips. Two undamaged specimens from the second group were not repaired but strengthened by the identical strengthening scheme as the first group for comparison. This study studies whether earthquake damaged RC beams that have been repaired and strengthened will validate similar strength and behavior to equally strengthened, undamaged RC beams. Accordingly, a strength correspondence according to strengthened specimens was acquired for the repaired and strengthened specimens. Test results confirmed that repair and strengthening, which were estimated in the experimental program, were effective for the specimens with the cracking patterns considered in the experimental program. 

Keywords: Shear Strengthening, Repairing, CFRP Strips.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1954
570 Study on Buckling and Yielding Behaviors of Low Yield Point Steel Plates

Authors: David Boyajian, Tadeh Zirakian

Abstract:

Stability and performance of steel plates are characterized by geometrical buckling and material yielding. In this paper, the geometrical buckling and material yielding behaviors of low yield point (LYP) steel plates are studied from the point of view of their application in steel plate shear wall (SPSW) systems. Use of LYP steel facilitates the design and application of web plates with improved buckling and energy absorption capacities in SPSW systems. LYP steel infill plates may yield first and then undergo inelastic buckling. Hence, accurate determination of the limiting plate thickness corresponding to simultaneous buckling and yielding can be effective in seismic design of such lateral force-resisting and energy dissipating systems. The limiting thicknesses of plates with different loading and support conditions are determined theoretically and verified through detailed numerical simulations. Effects of use of LYP steel and plate aspect ratio parameter on the limiting plate thickness are investigated as well. In addition, detailed studies are performed on determination of the limiting web-plate thickness in code-designed SPSWs. Some practical recommendations are accordingly provided for efficient seismic design of SPSW systems with LYP steel infill plates.

Keywords: Plates, buckling, yielding, low yield point steel, steel plate shear walls.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1162
569 Development of EN338 (2009) Strength Classes for Some Common Nigerian Timber Species Using Three Point Bending Test

Authors: Abubakar Idris, Nabade Abdullahi Muhammad

Abstract:

The work presents a development of EN338 strength classes for Strombosia pustulata, Pterygotama crocarpa, Nauclea diderrichii and Entandrophragma cyclindricum Nigerian timber species. The specimens for experimental measurements were obtained from the timber-shed at the famous Panteka market in Kaduna in the northern part of Nigeria. Laboratory experiments were conducted to determine the physical and mechanical properties of the selected timber species in accordance with EN 13183-1 and ASTM D193. The mechanical properties were determined using three point bending test. The generated properties were used to obtain the characteristic values of the material properties in accordance with EN384. The selected timber species were then classified according to EN 338. Strombosia pustulata, Pterygotama crocarpa, Nauclea diderrichii and Entandrophragma cyclindricum were assigned to strength classes D40, C14, D40 and D24 respectively. Other properties such as tensile and compressive strengths parallel and perpendicular to grains, shear strength as well as shear modulus were obtained in accordance with EN 338. 

Keywords: Mechanical properties, Nigerian timber, strength classes, three-point bending test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4034
568 A Numerical Study on the Seismic Performance of Built-Up Battened Columns

Authors: Sophia C. Alih, Mohammadreza Vafaei, Farnoud Rahimi Mansour, Nur Hajarul Falahi Abdul Halim

Abstract:

Built-up columns have been widely employed by practice engineers in the design and construction of buildings and bridges. However, failures have been observed in this type of columns in previous seismic events. This study analyses the performance of built-up columns with different configurations of battens when it is subjected to seismic loads. Four columns with different size of battens were simulated and subjected to three different intensities of axial load along with a lateral cyclic load. Results indicate that the size of battens influences significantly the seismic behavior of columns. Lower shear capacity of battens results in higher ultimate strength and ductility for built-up columns. It is observed that intensity of axial load has a significant effect on the ultimate strength of columns, but it is less influential on the yield strength. For a given drift value, the stress level in the centroid of smaller size battens is significantly more than that of larger size battens signifying damage concentration in battens rather than chords. It is concluded that design of battens for shear demand lower than code specified values only slightly reduces initial stiffness of columns; however, it improves seismic performance of battened columns.

Keywords: Battened column, built-up column, cyclic behavior, seismic design, steel column.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1254
567 Numerical Model of Low Cost Rubber Isolators for Masonry Housing in High Seismic Regions

Authors: Ahmad B. Habieb, Gabriele Milani, Tavio Tavio, Federico Milani

Abstract:

Housings in developing countries have often inadequate seismic protection, particularly for masonry. People choose this type of structure since the cost and application are relatively cheap. Seismic protection of masonry remains an interesting issue among researchers. In this study, we develop a low-cost seismic isolation system for masonry using fiber reinforced elastomeric isolators. The elastomer proposed consists of few layers of rubber pads and fiber lamina, making it lower in cost comparing to the conventional isolators. We present a finite element (FE) analysis to predict the behavior of the low cost rubber isolators undergoing moderate deformations. The FE model of the elastomer involves a hyperelastic material property for the rubber pad. We adopt a Yeoh hyperelasticity model and estimate its coefficients through the available experimental data. Having the shear behavior of the elastomers, we apply that isolation system onto small masonry housing. To attach the isolators on the building, we model the shear behavior of the isolation system by means of a damped nonlinear spring model. By this attempt, the FE analysis becomes computationally inexpensive. Several ground motion data are applied to observe its sensitivity. Roof acceleration and tensile damage of walls become the parameters to evaluate the performance of the isolators. In this study, a concrete damage plasticity model is used to model masonry in the nonlinear range. This tool is available in the standard package of Abaqus FE software. Finally, the results show that the low-cost isolators proposed are capable of reducing roof acceleration and damage level of masonry housing. Through this study, we are also capable of monitoring the shear deformation of isolators during seismic motion. It is useful to determine whether the isolator is applicable. According to the results, the deformations of isolators on the benchmark one story building are relatively small.

Keywords: Masonry, low cost elastomeric isolator, finite element analysis, hyperelasticity, damped non-linear spring, concrete damage plasticity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1143
566 A Comparison of Tsunami Impact to Sydney Harbour, Australia at Different Tidal Stages

Authors: Olivia A. Wilson, Hannah E. Power, Murray Kendall

Abstract:

Sydney Harbour is an iconic location with a dense population and low-lying development. On the east coast of Australia, facing the Pacific Ocean, it is exposed to several tsunamigenic trenches. This paper presents a component of the most detailed assessment of the potential for earthquake-generated tsunami impact on Sydney Harbour to date. Models in this study use dynamic tides to account for tide-tsunami interaction. Sydney Harbour’s tidal range is 1.5 m, and the spring tides from January 2015 that are used in the modelling for this study are close to the full tidal range. The tsunami wave trains modelled include hypothetical tsunami generated from earthquakes of magnitude 7.5, 8.0, 8.5, and 9.0 MW from the Puysegur and New Hebrides trenches as well as representations of the historical 1960 Chilean and 2011 Tohoku events. All wave trains are modelled for the peak wave to coincide with both a low tide and a high tide. A single wave train, representing a 9.0 MW earthquake at the Puysegur trench, is modelled for peak waves to coincide with every hour across a 12-hour tidal phase. Using the hydrodynamic model ANUGA, results are compared according to the impact parameters of inundation area, depth variation and current speeds. Results show that both maximum inundation area and depth variation are tide dependent. Maximum inundation area increases when coincident with a higher tide, however, hazardous inundation is only observed for the larger waves modelled: NH90high and P90high. The maximum and minimum depths are deeper on higher tides and shallower on lower tides. The difference between maximum and minimum depths varies across different tidal phases although the differences are slight. Maximum current speeds are shown to be a significant hazard for Sydney Harbour; however, they do not show consistent patterns according to tide-tsunami phasing. The maximum current speed hazard is shown to be greater in specific locations such as Spit Bridge, a narrow channel with extensive marine infrastructure. The results presented for Sydney Harbour are novel, and the conclusions are consistent with previous modelling efforts in the greater area. It is shown that tide must be a consideration for both tsunami modelling and emergency management planning. Modelling with peak tsunami waves coinciding with a high tide would be a conservative approach; however, it must be considered that maximum current speeds may be higher on other tides.

Keywords: Emergency management, Sydney, tide-tsunami interaction, tsunami impact.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1167
565 Variation of Streamwise and Vertical Turbulence Intensity in a Smooth and Rough Bed Open Channel Flow

Authors: Md Abdullah Al Faruque, Ram Balachandar

Abstract:

An experimental study with four different types of bed conditions was carried out to understand the effect of roughness in open channel flow at two different Reynolds numbers. The bed conditions include a smooth surface and three different roughness conditions, which were generated using sand grains with a median diameter of 2.46 mm. The three rough conditions include a surface with distributed roughness, a surface with continuously distributed roughness and a sand bed with a permeable interface. A commercial two-component fibre-optic LDA system was used to conduct the velocity measurements. The variables of interest include the mean velocity, turbulence intensity, correlation between the streamwise and the wall normal turbulence, Reynolds shear stress and velocity triple products. Quadrant decomposition was used to extract the magnitude of the Reynolds shear stress of the turbulent bursting events. The effect of roughness was evident throughout the flow depth. The results show that distributed roughness has the greatest roughness effect followed by the sand bed and the continuous roughness. Compared to the smooth bed, the streamwise turbulence intensity reduces but the vertical turbulence intensity increases at a location very close to the bed due to the introduction of roughness. Although the same sand grain is used to create the three different rough bed conditions, the difference in the turbulence intensity is an indication that the specific geometry of the roughness has an influence on turbulence structure.

Keywords: Open channel flow, smooth bed, rough bed, Reynolds number, turbulence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2200
564 Numerical Study of Flapping-Wing Flight of Hummingbird Hawkmoth during Hovering: Longitudinal Dynamics

Authors: Yao Jie, Yeo Khoon Seng

Abstract:

In recent decades, flapping wing aerodynamics has attracted great interest. Understanding the physics of biological flyers such as birds and insects can help improve the performance of micro air vehicles. The present research focuses on the aerodynamics of insect-like flapping wing flight with the approach of numerical computation. Insect model of hawkmoth is adopted in the numerical study with rigid wing assumption currently. The numerical model integrates the computational fluid dynamics of the flow and active control of wing kinematics to achieve stable flight. The computation grid is a hybrid consisting of background Cartesian nodes and clouds of mesh-free grids around immersed boundaries. The generalized finite difference method is used in conjunction with single value decomposition (SVD-GFD) in computational fluid dynamics solver to study the dynamics of a free hovering hummingbird hawkmoth. The longitudinal dynamics of the hovering flight is governed by three control parameters, i.e., wing plane angle, mean positional angle and wing beating frequency. In present work, a PID controller works out the appropriate control parameters with the insect motion as input. The controller is adjusted to acquire desired maneuvering of the insect flight. The numerical scheme in present study is proven to be accurate and stable to simulate the flight of the hummingbird hawkmoth, which has relatively high Reynolds number. The PID controller is responsive to provide feedback to the wing kinematics during the hovering flight. The simulated hovering flight agrees well with the real insect flight. The present numerical study offers a promising route to investigate the free flight aerodynamics of insects, which could overcome some of the limitations of experiments.

Keywords: Aerodynamics, flight control, computational fluid dynamics, flapping-wing flight.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1405
563 Effects of Duct Geometry, Thickness and Types of Liners on Transmission Loss for Absorptive Silencers

Authors: M. Kashfi, K. Jahani

Abstract:

Sound attenuation in absorptive silencers has been analyzed in this paper. The structure of such devices is as follows. When the rigid duct of an expansion chamber has been lined by a packed absorptive material under a perforated membrane, incident sound waves will be dissipated by the absorptive liners. This kind of silencer, usually are applicable for medium to high frequency ranges. Several conditions for different absorptive materials, variety in their thicknesses, and different shapes of the expansion chambers have been studied in this paper. Also, graphs of sound attenuation have been compared between empty expansion chamber and duct of silencer with applying liner. Plane waves have been assumed in inlet and outlet regions of the silencer. Presented results that have been achieved by applying finite element method (FEM), have shown the dependence of the sound attenuation spectrum to flow resistivity and the thicknesses of the absorptive materials, and geometries of the cross section (configuration of the silencer). As flow resistivity and thickness of absorptive materials increase, sound attenuation improves. In this paper, diagrams of the transmission loss (TL) for absorptive silencers in five different cross sections (rectangle, circle, ellipse, square, and rounded rectangle as the main geometry) have been presented. Also, TL graphs for silencers using different absorptive material (glass wool, wood fiber, and kind of spongy materials) as liner with three different thicknesses of 5 mm, 15 mm, and 30 mm for glass wool liner have been exhibited. At first, the effect of substances of the absorptive materials with the specific flow resistivity and densities on the TL spectrum, then the effect of the thicknesses of the glass wool, and at last the efficacy of the shape of the cross section of the silencer have been investigated.

Keywords: Transmission loss, absorptive material, flow resistivity, thickness, frequency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1089
562 Ultrasound-Assisted Pd Activation Process for Electroless Silver Plating

Authors: Chang-Myeon Lee, Min-Hyung Lee, Jin-Young Hur, Ho-Nyun Lee, Hong-Kee Lee

Abstract:

An ultrasound-assisted activation method for electroless silver plating is presented in this study. When the ultrasound was applied during the activation step, the amount of the Pd species adsorbed on substrate surfaces was higher than that of sample pretreated with a conventional activation process without ultrasound irradiation. With this activation method, it was also shown that the adsorbed Pd species with a size of about 5 nm were uniformly distributed on the surfaces, thus a smooth and uniform coating on the surfaces was obtained by subsequent electroless silver plating. The samples after each step were characterized by AFM, XPS, FIB, and SEM.

Keywords: Cavitation, Electroless silver, Pd activation, Ultrasonic

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2350
561 Predictive Model of Sensor Readings for a Mobile Robot

Authors: Krzysztof Fujarewicz

Abstract:

This paper presents a predictive model of sensor readings for mobile robot. The model predicts sensor readings for given time horizon based on current sensor readings and velocities of wheels assumed for this horizon. Similar models for such anticipation have been proposed in the literature. The novelty of the model presented in the paper comes from the fact that its structure takes into account physical phenomena and is not just a black box, for example a neural network. From this point of view it may be regarded as a semi-phenomenological model. The model is developed for the Khepera robot, but after certain modifications, it may be applied for any robot with distance sensors such as infrared or ultrasonic sensors.

Keywords: Mobile robot, sensors, prediction, anticipation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1405
560 Shear Layer Investigation through a High-Load Cascade in Low-Pressure Gas Turbine Conditions

Authors: Mehdi Habibnia Rami, Shidvash Vakilipour, Mohammad H. Sabour, Rouzbeh Riazi, Hossein Hassannia

Abstract:

This paper deals with the steady and unsteady flow behavior on the separation bubble occurring on the rear portion of the suction side of T106A blade. The first phase was to implement the steady condition capturing the separation bubble. To accurately predict the separated region, the effects of three different turbulence models and computational grids were separately investigated. The results of Large Eddy Simulation (LES) model on the finest grid structure are acceptably in a good agreement with its relevant experimental results. The second phase is mainly to address the effects of wake entrance on bubble disappearance in unsteady situation. In the current simulations, from what was suggested in an experiment, simulating the flow unsteadiness, with concentrations on small scale disturbances instead of simulating a complete oncoming wake, is the key issue. Subsequently, the results from the current strategy to apply the effects of the wake and two other experimental work were compared to be in a good agreement. Between the two experiments, one of them deals with wake passing unsteady flow, and the other one implements experimentally the same approach as the current Computational Fluid Dynamics (CFD) simulation.

Keywords: T106A turbine cascade, shear-layer separation, steady and unsteady conditions, turbulence models, OpenFOAM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 692
559 Effects of Different Fiber Orientations on the Shear Strength Performance of Composite Adhesive Joints

Authors: Ferhat Kadioglu, Hasan Puskul

Abstract:

A composite material with carbon fiber and polymer matrix has been used as adherent for manufacturing adhesive joints. In order to evaluate different fiber orientations on joint performance, the adherents with the 0°, ±15°, ±30°, ±45° fiber orientations were used in the single lap joint configuration. The joints with an overlap length of 25 mm were prepared according to the ASTM 1002 specifications and subjected to tensile loadings. The structural adhesive used was a two-part epoxy to be cured at 70°C for an hour. First, mechanical behaviors of the adherents were measured using three point bending test. In the test, considerations were given to stress to failure and elastic modulus. The results were compared with theoretical ones using rule of mixture. Then, the joints were manufactured in a specially prepared jig, after a proper surface preparation. Experimental results showed that the fiber orientations of the adherents affected the joint performance considerably; the joints with ±45° adherents experienced the worst shear strength, half of those with 0° adherents, and in general, there was a great relationship between the fiber orientations and failure mechanisms. Delamination problems were observed for many joints, which were thought to be due to peel effects at the ends of the overlap. It was proved that the surface preparation applied to the adherent surface was adequate. For further explanation of the results, a numerical work should be carried out using a possible non-linear analysis.

Keywords: Composite materials, adhesive bonding, bonding strength, lap joint, tensile strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2384
558 Design of Seismically Resistant Tree-Branching Steel Frames Using Theory and Design Guides for Eccentrically Braced Frames

Authors: R. Gary Black, Abolhassan Astaneh-Asl

Abstract:

The International Building Code (IBC) and the  California Building Code (CBC) both recognize four basic types of  steel seismic resistant frames; moment frames, concentrically braced  frames, shear walls and eccentrically braced frames. Based on  specified geometries and detailing, the seismic performance of these  steel frames is well understood. In 2011, the authors designed an  innovative steel braced frame system with tapering members in the  general shape of a branching tree as a seismic retrofit solution to an  existing four story “lift-slab” building. Located in the seismically  active San Francisco Bay Area of California, a frame of this  configuration, not covered by the governing codes, would typically  require model or full scale testing to obtain jurisdiction approval.  This paper describes how the theories, protocols, and code  requirements of eccentrically braced frames (EBFs) were employed  to satisfy the 2009 International Building Code (IBC) and the 2010  California Building Code (CBC) for seismically resistant steel frames  and permit construction of these nonconforming geometries.

 

Keywords: Eccentrically Braced Frame, Lift Slab Construction, Seismic Retrofit, Shear Link, Steel Design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2553
557 The Effects of Various Boundary Conditions on Thermal Buckling of Functionally Graded Beamwith Piezoelectric Layers Based on Third order Shear Deformation Theory

Authors: O. Miraliyari

Abstract:

This article attempts to analyze functionally graded beam thermal buckling along with piezoelectric layers applying based on the third order shearing deformation theory considering various boundary conditions. The beam properties are assumed to vary continuously from the lower surface to the upper surface of the beam. The equilibrium equations are derived using the total potential energy equations, Euler equations, piezoelectric material constitutive equations and third order shear deformation theory assumptions. In order to fulfill such an aim, at first functionally graded beam with piezoelectric layers applying the third order shearing deformation theory along with clamped -clamped boundary conditions are thoroughly analyzed, and then following making sure of the correctness of all the equations, the very same beam is analyzed with piezoelectric layers through simply-simply and simply-clamped boundary conditions. In this article buckling critical temperature for functionally graded beam is derived in two different ways, without piezoelectric layer and with piezoelectric layer and the results are compared together. Finally, all the conclusions obtained will be compared and contrasted with the same samples in the same and distinguished conditions through tables and charts. It would be noteworthy that in this article, the software MAPLE has been applied in order to do the numeral calculations.

Keywords: Thermal buckling, functionally graded beam, piezoelectric layer, various boundary conditions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1557
556 Statistical Analysis of Parameters Effects on Maximum Strain and Torsion Angle of FRP Honeycomb Sandwich Panels Subjected to Torsion

Authors: Mehdi Modabberifar, Milad Roodi, Ehsan Souri

Abstract:

In recent years, honeycomb fiber reinforced plastic (FRP) sandwich panels have been increasingly used in various industries. Low weight, low price and high mechanical strength are the benefits of these structures. However, their mechanical properties and behavior have not been fully explored. The objective of this study is to conduct a combined numerical-statistical investigation of honeycomb FRP sandwich beams subject to torsion load. In this paper, the effect of geometric parameters of sandwich panel on maximum shear strain in both face and core and angle of torsion in a honeycomb FRP sandwich structures in torsion is investigated. The effect of Parameters including core thickness, face skin thickness, cell shape, cell size, and cell thickness on mechanical behavior of the structure were numerically investigated. Main effects of factors were considered in this paper and regression equations were derived. Taguchi method was employed as experimental design and an optimum parameter combination for the maximum structure stiffness has been obtained. The results showed that cell size and face skin thickness have the most significant impacts on torsion angle, maximum shear strain in face and core.

Keywords: Finite element, honeycomb FRP sandwich panel, torsion, civil engineering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2576
555 Resistance Analysis for a Trimaran

Authors: C. M. De Marco Muscat-Fenech, A. M. Grech La Rosa

Abstract:

Although a lot of importance has been given to resistance analysis for various vessel types, explicit guidelines applied to multihull vessels have not been clearly defined.  The purpose of this investigation is to highlight the importance of the vessel’s layout in terms of three axes, the transverse (separation), the longitudinal (stagger) and the vertical (draught) with respect to resistance analysis. When a vessel has the potential to experience less resistance at a particular range of speeds a vast selection of opportunities are made available for both the commercial and leisure market.

Keywords: Multihull, Reistance, Trimaran.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3939
554 Influence of Dynamic Loads in the Structural Integrity of Underground Rooms

Authors: M. Inmaculada Alvarez-Fernández, Celestino González-Nicieza, M. Belén Prendes-Gero, Fernando López-Gayarre

Abstract:

Among many factors affecting the stability of mining excavations, rock-bursts and tremors play a special role. These dynamic loads occur practically always and have different sources of generation. The most important of them is the commonly used mining technique, which disintegrates a certain area of the rock mass not only in the area of the planned mining, but also creates waves that significantly exceed this area affecting the structural elements. In this work it is analysed the consequences of dynamic loads over the structural elements in an underground room and pillar mine to avoid roof instabilities. With this end, dynamic loads were evaluated through in situ and laboratory tests and simulated with numerical modelling. Initially, the geotechnical characterization of all materials was carried out by mean of large-scale tests. Then, drill holes were done on the roof of the mine and were monitored to determine possible discontinuities in it. Three seismic stations and a triaxial accelerometer were employed to measure the vibrations from blasting tests, establish the dynamic behaviour of roof and pillars and develop the transmission laws. At last, computer simulations by FLAC3D software were done to check the effect of vibrations on the stability of the roofs. The study shows that in-situ tests have a greater reliability than laboratory samples because of eliminating the effect of heterogeneities, that the pillars work decreasing the amplitude of the vibration around them, and that the tensile strength of a beam and depending on its span is overcome with waves in phase and delayed. The obtained transmission law allows designing a blasting which guarantees safety and prevents the risk of future failures.

Keywords: Dynamic modelling, long term instability risks, room and pillar, seismic collapse.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 442
553 Effect of Infill Walls on Response of Multi Storey Reinforced Concrete Structure

Authors: Ayman Abd-Elhamed, Sayed Mahmoud

Abstract:

The present research work investigates the seismic response of reinforced concrete (RC) frame building considering the effect of modeling masonry infill (MI) walls. The seismic behavior of a residential 6-storey RC frame building, considering and ignoring the effect of masonry, is numerically investigated using response spectrum (RS) analysis. The considered herein building is designed as a moment resisting frame (MRF) system following the Egyptian code (EC) requirements. Two developed models in terms of bare frame and infill walls frame are used in the study. Equivalent diagonal strut methodology is used to represent the behavior of infill walls, whilst the well-known software package ETABS is used for implementing all frame models and performing the analysis. The results of the numerical simulations such as base shear, displacements, and internal forces for the bare frame as well as the infill wall frame are presented in a comparative way. The results of the study indicate that the interaction between infill walls and frames significantly change the responses of buildings during earthquakes compared to the results of bare frame building model. Specifically, the seismic analysis of RC bare frame structure leads to underestimation of base shear and consequently damage or even collapse of buildings may occur under strong shakings. On the other hand, considering infill walls significantly decrease the peak floor displacements and drifts in both X and Y-directions.

Keywords: Masonry infill, bare frame, response spectrum, seismic response.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3479
552 Surface Modification of Titanium Alloy with Laser Treatment

Authors: Nassier A. Nassir, Robert Birch, D. Rico Sierra, S. P. Edwardson, G. Dearden, Zhongwei Guan

Abstract:

The effect of laser surface treatment parameters on the residual strength of titanium alloy has been investigated. The influence of the laser surface treatment on the bonding strength between the titanium and poly-ether-ketone-ketone (PEKK) surfaces was also evaluated and compared to those offered by titanium foils without surface treatment to optimize the laser parameters. Material characterization using an optical microscope was carried out to study the microstructure and to measure the mean roughness value of the titanium surface. The results showed that the surface roughness shows a significant dependency on the laser power parameters in which surface roughness increases with the laser power increment. Moreover, the results of the tensile tests have shown that there is no significant dropping in tensile strength for the treated samples comparing to the virgin ones. In order to optimize the laser parameter as well as the corresponding surface roughness, single-lap shear tests were conducted on pairs of the laser treated titanium stripes. The results showed that the bonding shear strength between titanium alloy and PEKK film increased with the surface roughness increment to a specific limit. After this point, it is interesting to note that there was no significant effect for the laser parameter on the bonding strength. This evidence suggests that it is not necessary to use very high power of laser to treat titanium surface to achieve a good bonding strength between titanium alloy and the PEKK film.

Keywords: Bonding strength, laser surface treatment, PEKK, titanium alloy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 816
551 Numerical Evaluation of Lateral Bearing Capacity of Piles in Cement-Treated Soils

Authors: Reza Ziaie Moayed, Saeideh Mohammadi

Abstract:

Soft soil is used in many of civil engineering projects like coastal, marine and road projects. Because of low shear strength and stiffness of soft soils, large settlement and low bearing capacity will occur under superstructure loads. This will make the civil engineering activities more difficult and costlier. In the case of soft soils, improvement is a suitable method to increase the shear strength and stiffness for engineering purposes. In recent years, the artificial cementation of soil by cement and lime has been extensively used for soft soil improvement. Cement stabilization is a well-established technique for improving soft soils. Artificial cementation increases the shear strength and hardness of the natural soils. On the other hand, in soft soils, the use of piles to transfer loads to the depths of ground is usual. By using cement treated soil around the piles, high bearing capacity and low settlement in piles can be achieved. In the present study, lateral bearing capacity of short piles in cemented soils is investigated by numerical approach. For this purpose, three dimensional (3D) finite difference software, FLAC 3D is used. Cement treated soil has a strain hardening-softening behavior, because of breaking of bonds between cement agent and soil particle. To simulate such behavior, strain hardening-softening soil constitutive model is used for cement treated soft soil. Additionally, conventional elastic-plastic Mohr Coulomb constitutive model and linear elastic model are used for stress-strain behavior of natural soils and pile. To determine the parameters of constitutive models and also for verification of numerical model, the results of available triaxial laboratory tests on and insitu loading of piles in cement treated soft soil are used. Different parameters are considered in parametric study to determine the effective parameters on the bearing of the piles on cemented treated soils. In the present paper, the effect of various length and height of the artificial cemented area, different diameter and length of the pile and the properties of the materials are studied. Also, the effect of choosing a constitutive model for cemented treated soils in the bearing capacity of the pile is investigated.

Keywords: Cement-treated soils, pile, lateral capacity, FLAC 3D.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 744
550 Frequency Modulation in Vibro-Acoustic Modulation Method

Authors: D. Liu, D. M. Donskoy

Abstract:

The vibroacoustic modulation method is based on the modulation effect of high-frequency ultrasonic wave (carrier) by low-frequency vibration in the presence of various defects, primarily contact-type such as cracks, delamination, etc. The presence and severity of the defect are measured by the ratio of the spectral sidebands and the carrier in the spectrum of the modulated signal. This approach, however, does not differentiate between amplitude and frequency modulations, AM and FM, respectfully. This paper is an attempt to explain the generation mechanisms of FM and its correlation with the flaw properties. Here we proposed two possible mechanisms leading to FM modulation based on nonlinear local defect resonance and dynamic acoustoelastic models.

Keywords: Non-destructive testing, nonlinear acoustics, structural health monitoring, acoustoelasticity, local defect resonance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 421
549 Hydrodynamic Performance of a Moored Barge in Irregular Wave

Authors: Srinivasan Chandrasekaran, Shihas A. Khader

Abstract:

Motion response of floating structures is of great concern in marine engineering. Nonlinearity is an inherent property of any floating bodies subjected to irregular waves. These floating structures are continuously subjected to environmental loadings from wave, current, wind etc. This can result in undesirable motions of the vessel which may challenge the operability. For a floating body to remain in its position, it should be able to induce a restoring force when displaced. Mooring is provided to enable this restoring force. This paper discusses the hydrodynamic performance and motion characteristics of an 8 point spread mooring system applied to a pipe laying barge operating in the West African sea. The modelling of the barge is done using a computer aided-design (CAD) software RHINOCEROS. Irregular waves are generated using a suitable wave spectrum. Both frequency domain and time domain analysis is done. Numerical simulations based on potential theory are carried out to find the responses and hydrodynamic performance of the barge in both free floating as well as moored conditions. Initially, potential flow frequency domain analysis is done to obtain the Response Amplitude Operator (RAO) which gives an idea about the structural motion in free floating state. RAOs for different wave headings are analyzed. In the following step, a time domain analysis is carried out to obtain the responses of the structure in the moored condition. In this study, wave induced motions are only taken into consideration. Wind and current loads are ruled out and shall be included in further studies. For the current study, 2000 seconds simulation is taken. The results represent wave induced motion responses, mooring line tensions and identify critical mooring lines.

Keywords: Irregular wave, moored barge, time domain analysis, numerical simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2714
548 Effective Sonar Target Classification via Parallel Structure of Minimal Resource Allocation Network

Authors: W.S. Lim, M.V.C. Rao

Abstract:

In this paper, the processing of sonar signals has been carried out using Minimal Resource Allocation Network (MRAN) and a Probabilistic Neural Network (PNN) in differentiation of commonly encountered features in indoor environments. The stability-plasticity behaviors of both networks have been investigated. The experimental result shows that MRAN possesses lower network complexity but experiences higher plasticity than PNN. An enhanced version called parallel MRAN (pMRAN) is proposed to solve this problem and is proven to be stable in prediction and also outperformed the original MRAN.

Keywords: Ultrasonic sensing, target classification, minimalresource allocation network (MRAN), probabilistic neural network(PNN), stability-plasticity dilemma.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1561