Search results for: infrared imaging.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 570

Search results for: infrared imaging.

510 Assessing Overall Thermal Conductance Value of Low-Rise Residential Home Exterior Above-Grade Walls Using Infrared Thermography Methods

Authors: Matthew D. Baffa

Abstract:

Infrared thermography is a non-destructive test method used to estimate surface temperatures based on the amount of electromagnetic energy radiated by building envelope components. These surface temperatures are indicators of various qualitative building envelope deficiencies such as locations and extent of heat loss, thermal bridging, damaged or missing thermal insulation, air leakage, and moisture presence in roof, floor, and wall assemblies. Although infrared thermography is commonly used for qualitative deficiency detection in buildings, this study assesses its use as a quantitative method to estimate the overall thermal conductance value (U-value) of the exterior above-grade walls of a study home. The overall U-value of exterior above-grade walls in a home provides useful insight into the energy consumption and thermal comfort of a home. Three methodologies from the literature were employed to estimate the overall U-value by equating conductive heat loss through the exterior above-grade walls to the sum of convective and radiant heat losses of the walls. Outdoor infrared thermography field measurements of the exterior above-grade wall surface and reflective temperatures and emissivity values for various components of the exterior above-grade wall assemblies were carried out during winter months at the study home using a basic thermal imager device. The overall U-values estimated from each methodology from the literature using the recorded field measurements were compared to the nominal exterior above-grade wall overall U-value calculated from materials and dimensions detailed in architectural drawings of the study home. The nominal overall U-value was validated through calendarization and weather normalization of utility bills for the study home as well as various estimated heat loss quantities from a HOT2000 computer model of the study home and other methods. Under ideal environmental conditions, the estimated overall U-values deviated from the nominal overall U-value between ±2% to ±33%. This study suggests infrared thermography can estimate the overall U-value of exterior above-grade walls in low-rise residential homes with a fair amount of accuracy.

Keywords: Emissivity, heat loss, infrared thermography, thermal conductance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 773
509 Development of an Autonomous Greenhouse Gas Monitoring System

Authors: Breda M. Kiernan, Cormac Fay, Stephen Beirne, Dermot Diamond

Abstract:

This paper describes the designs of a first and second generation autonomous gas monitoring system and the successful field trial of the final system (2nd generation). Infrared sensing technology is used to detect and measure the greenhouse gases methane (CH4) and carbon dioxide (CO2) at point sources. The ability to monitor real-time events is further enhanced through the implementation of both GSM and Bluetooth technologies to communicate these data in real-time. These systems are robust, reliable and a necessary tool where the monitoring of gas events in real-time are needed.

Keywords: Environmental monitoring, infrared sensing, autonomous system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2206
508 Common Carotid Artery Intima Media Thickness Segmentation Survey

Authors: L. Ashok Kumar, C. Nagarajan

Abstract:

The ultrasound imaging is very popular to diagnosis the disease because of its non-invasive nature. The ultrasound imaging slowly produces low quality images due to the presence of spackle noise and wave interferences. There are several algorithms to be proposed for the segmentation of ultrasound carotid artery images but it requires a certain limit of user interaction. The pixel in an image is highly correlated so the spatial information of surrounding pixels may be considered in the process of image segmentation which improves the results further. When data is highly correlated, one pixel may belong to more than one cluster with different degree of membership. There is an important step to computerize the evaluation of arterial disease severity using segmentation of carotid artery lumen in 2D and 3D ultrasonography and in finding vulnerable atherosclerotic plaques susceptible to rupture which can cause stroke.

Keywords: IMT measurement, Image Segmentation, common carotid artery, internal and external carotid arteries, ultrasound imaging.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1963
507 Multi-Element Synthetic Transmit Aperture Method in Medical Ultrasound Imaging

Authors: Ihor Trots, Yuriy Tasinkevych, Andrzej Nowicki, Marcin Lewandowski

Abstract:

The paper presents the multi-element synthetic transmit aperture (MSTA) method with a small number of elements transmitting and all elements apertures in medical ultrasound imaging. As compared to the other methods MSTA allows to increase the system frame rate and provides the best compromise between penetration depth and lateral resolution. In the experiments a 128-element linear transducer array with 0.3 mm pitch excited by a burst pulse of 125 ns duration were used. The comparison of 2D ultrasound images of tissue mimicking phantom obtained using the STA and the MSTA methods is presented to demonstrate the benefits of the second approach. The results were obtained using SA algorithm with transmit and receive signals correction based on a single element directivity function.

Keywords: Beamforming, frame rate, synthetic aperture, ultrasound imaging

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2418
506 Analytical Studies on Volume Determination of Leg Ulcer using Structured Light and Laser Triangulation Data Acquisition Techniques

Authors: M. Abdul-Rani, K. K. Chong, A. F. M. Hani, Y. B. Yap, A. Jamil

Abstract:

Imaging is defined as the process of obtaining geometric images either two dimensional or three dimensional by scanning or digitizing the existing objects or products. In this research, it applied to retrieve 3D information of the human skin surface in medical application. This research focuses on analyzing and determining volume of leg ulcers using imaging devices. Volume determination is one of the important criteria in clinical assessment of leg ulcer. The volume and size of the leg ulcer wound will give the indication on responding to treatment whether healing or worsening. Different imaging techniques are expected to give different result (and accuracies) in generating data and images. Midpoint projection algorithm was used to reconstruct the cavity to solid model and compute the volume. Misinterpretation of the results can affect the treatment efficacy. The objectives of this paper is to compare the accuracy between two 3D data acquisition method, which is laser triangulation and structured light methods, It was shown that using models with known volume, that structured-light-based 3D technique produces better accuracy compared with laser triangulation data acquisition method for leg ulcer volume determination.

Keywords: Imaging, Laser Triangulation, Structured Light, Volume Determination.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1467
505 Investigation of Physicochemical Properties of the Bacterial Cellulose Produced by Gluconacetobacter xylinus from Date Syrup

Authors: Marzieh Moosavi-Nasab, Ali R. Yousefi

Abstract:

Bacterial cellulose, a biopolysaccharide, is produced by the bacterium, Gluconacetobacter xylinus. Static batch fermentation for bacterial cellulose production was studied in sucrose and date syrup solutions (Bx. 10%) at 28 °C using G. xylinus (PTCC, 1734). Results showed that the maximum yields of bacterial cellulose (BC) were 4.35 and 1.69 g/l00 ml for date syrup and sucrose medium after 336 hours fermentation period, respectively. Comparison of FTIR spectrum of cellulose with BC indicated appropriate coincidence which proved that the component produced by G. xylinus was cellulose. Determination of the area under X-ray diffractometry patterns demonstrated that the crystallinity amount of cellulose (83.61%) was more than that for the BC (60.73%). The scanning electron microscopy imaging of BC and cellulose were carried out in two magnifications of 1 and 6K. Results showed that the diameter ratio of BC to cellulose was approximately 1/30 which indicated more delicacy of BC fibers relative to cellulose.

Keywords: Gluconacetobacter xylinus, Fourier Transform Infrared spectroscopy, Scanning Electron Microscopy, X-ray diffractometry

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3081
504 Effect of Changing Iron Content and Excitation Frequency on Magnetic Particle Imaging Signal: A Comparative Study of Synomag® Nanoparticles

Authors: Kalthoum Riahi, Max T. Rietberg, Javier Perez y Perez, Corné Dijkstra, Bennie ten Haken, Lejla Alic

Abstract:

Magnetic nanoparticles (MNPs) are widely used to facilitate magnetic particle imaging (MPI) which has the potential to become the leading diagnostic instrument for biomedical imaging. This comparative study assesses the effects of changing iron content and excitation frequency on point-spread function (PSF) representing the effect of magnetization reversal. PSF is quantified by features of interest for MPI: i.e., drive field amplitude and full-width-at-half-maximum (FWHM). A superparamagnetic quantifier (SPaQ) is used to assess differential magnetic susceptibility of two commercially available MNPs: Synomag®-D50 and Synomag®-D70. For both MNPs, the signal output depends on increase in drive field frequency and amount of iron-oxide, which might be hampering the sensitivity of MPI systems that perform on higher frequencies. Nevertheless, there is a clear potential of Synomag®-D for a stable MPI resolution, especially in case of 70 nm version, that is independent of either drive field frequency or amount of iron-oxide.

Keywords: Magnetic nanoparticles, MNPs, Differential magnetic susceptibility, DMS, Magnetic particle imaging, MPI, magnetic relaxation, Synomag®-D.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 624
503 Blood Glucose Measurement and Analysis: Methodology

Authors: I. M. Abd Rahim, H. Abdul Rahim, R. Ghazali

Abstract:

There is numerous non-invasive blood glucose measurement technique developed by researchers, and near infrared (NIR) is the potential technique nowadays. However, there are some disagreements on the optimal wavelength range that is suitable to be used as the reference of the glucose substance in the blood. This paper focuses on the experimental data collection technique and also the analysis method used to analyze the data gained from the experiment. The selection of suitable linear and non-linear model structure is essential in prediction system, as the system developed need to be conceivably accurate.

Keywords: Invasive, linear, near-infrared (Nir), non-invasive, non-linear, prediction system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 810
502 Bridging the Mental Gap between Convolution Approach and Compartmental Modeling in Functional Imaging: Typical Embedding of an Open Two-Compartment Model into the Systems Theory Approach of Indicator Dilution Theory

Authors: Gesine Hellwig

Abstract:

Functional imaging procedures for the non-invasive assessment of tissue microcirculation are highly requested, but require a mathematical approach describing the trans- and intercapillary passage of tracer particles. Up to now, two theoretical, for the moment different concepts have been established for tracer kinetic modeling of contrast agent transport in tissues: pharmacokinetic compartment models, which are usually written as coupled differential equations, and the indicator dilution theory, which can be generalized in accordance with the theory of lineartime- invariant (LTI) systems by using a convolution approach. Based on mathematical considerations, it can be shown that also in the case of an open two-compartment model well-known from functional imaging, the concentration-time course in tissue is given by a convolution, which allows a separation of the arterial input function from a system function being the impulse response function, summarizing the available information on tissue microcirculation. Due to this reason, it is possible to integrate the open two-compartment model into the system-theoretic concept of indicator dilution theory (IDT) and thus results known from IDT remain valid for the compartment approach. According to the long number of applications of compartmental analysis, even for a more general context similar solutions of the so-called forward problem can already be found in the extensively available appropriate literature of the seventies and early eighties. Nevertheless, to this day, within the field of biomedical imaging – not from the mathematical point of view – there seems to be a trench between both approaches, which the author would like to get over by exemplary analysis of the well-known model.

Keywords: Functional imaging, Tracer kinetic modeling, LTIsystem, Indicator dilution theory / convolution approach, Two-Compartment model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1373
501 Intraoperative ICG-NIR Fluorescence Angiography Visualization of Intestinal Perfusion in Primary Pull-Through for Hirschsprung Disease

Authors: Mohammad Emran, Colton Wayne, Shannon M Koehler, P. Stephen Almond, Haroon Patel

Abstract:

Purpose: Assessment of anastomotic perfusion in Hirschsprung disease using Indocyanine Green (ICG)-near-infrared (NIR) fluorescence angiography. Introduction: Anastomotic stricture and leak are well-known complications of Hirschsprung pull-through procedures. Complications are due to tension, infection, and/or poor perfusion. While a surgeon can visually determine and control the amount of tension and contamination, assessment of perfusion is subject to surgeon determination. Intraoperative use of ICG-NIR enhances this decision-making process by illustrating perfusion intensity and adequacy in the pulled-through bowel segment. This technique, proven to reduce anastomotic stricture and leak in adults, has not been studied in children to our knowledge. ICG, an FDA approved, nontoxic, non-immunogenic, intravascular (IV) dye, has been used in adults and children for over 60 years, with few side effects. ICG-NIR was used in this report to demonstrate the adequacy of perfusion during transanal pullthrough for Hirschsprung’s disease. Method: 8 patients with Hirschsprung disease were evaluated with ICG-NIR technology. Levels of affected area ranged from sigmoid to total colonic Hirschsprung disease. After leveling, but prior to anastomosis, ICG was administered at 1.25 mg (< 2 mg/kg) and perfusion visualized using an NIR camera, before and during anastomosis. Video and photo imaging was performed and perfusion of the bowel was compared to surrounding tissues. This showed the degree of perfusion and demarcation of perfused and non-perfused bowel. The anastomosis was completed uneventfully and the patients all did well. Results: There were no complications of stricture or leak. 5 of 8 patients (62.5%) had modification of the plan based on ICG-NIR imaging. Conclusion: Technologies that enhance surgeons’ ability to visualize bowel perfusion prior to anastomosis in Hirschsprung’s patients may help reduce post-operative complications. Further studies are needed to assess the potential benefits.

Keywords: Colonic anastomosis, fluorescence angiography, Hirschsprung disease, pediatric surgery, SPY, ICG, NIR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 593
500 Active Surface Tracking Algorithm for All-Fiber Common-Path Fourier-Domain Optical Coherence Tomography

Authors: Bang Young Kim, Sang Hoon Park, Chul Gyu Song

Abstract:

A conventional optical coherence tomography (OCT) system has limited imaging depth, which is 1-2 mm, and suffers unwanted noise such as speckle noise. The motorized-stage-based OCT system, using a common-path Fourier-domain optical coherence tomography (CP-FD-OCT) configuration, provides enhanced imaging depth and less noise so that we can overcome these limitations. Using this OCT systems, OCT images were obtained from an onion, and their subsurface structure was observed. As a result, the images obtained using the developed motorized-stage-based system showed enhanced imaging depth than the conventional system, since it is real-time accurate depth tracking. Consequently, the developed CP-FD-OCT systems and algorithms have good potential for the further development of endoscopic OCT for microsurgery.

Keywords: Common-path OCT, FD-OCT, OCT, Tracking algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1625
499 Visual Search Based Indoor Localization in Low Light via RGB-D Camera

Authors: Yali Zheng, Peipei Luo, Shinan Chen, Jiasheng Hao, Hong Cheng

Abstract:

Most of traditional visual indoor navigation algorithms and methods only consider the localization in ordinary daytime, while we focus on the indoor re-localization in low light in the paper. As RGB images are degraded in low light, less discriminative infrared and depth image pairs are taken, as the input, by RGB-D cameras, the most similar candidates, as the output, are searched from databases which is built in the bag-of-word framework. Epipolar constraints can be used to relocalize the query infrared and depth image sequence. We evaluate our method in two datasets captured by Kinect2. The results demonstrate very promising re-localization results for indoor navigation system in low light environments.

Keywords: Indoor navigation, low light, RGB-D camera, vision based.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1610
498 Advanced Stochastic Models for Partially Developed Speckle

Authors: Jihad S. Daba (Jean-Pierre Dubois), Philip Jreije

Abstract:

Speckled images arise when coherent microwave, optical, and acoustic imaging techniques are used to image an object, surface or scene. Examples of coherent imaging systems include synthetic aperture radar, laser imaging systems, imaging sonar systems, and medical ultrasound systems. Speckle noise is a form of object or target induced noise that results when the surface of the object is Rayleigh rough compared to the wavelength of the illuminating radiation. Detection and estimation in images corrupted by speckle noise is complicated by the nature of the noise and is not as straightforward as detection and estimation in additive noise. In this work, we derive stochastic models for speckle noise, with an emphasis on speckle as it arises in medical ultrasound images. The motivation for this work is the problem of segmentation and tissue classification using ultrasound imaging. Modeling of speckle in this context involves partially developed speckle model where an underlying Poisson point process modulates a Gram-Charlier series of Laguerre weighted exponential functions, resulting in a doubly stochastic filtered Poisson point process. The statistical distribution of partially developed speckle is derived in a closed canonical form. It is observed that as the mean number of scatterers in a resolution cell is increased, the probability density function approaches an exponential distribution. This is consistent with fully developed speckle noise as demonstrated by the Central Limit theorem.

Keywords: Doubly stochastic filtered process, Poisson point process, segmentation, speckle, ultrasound

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1703
497 A Study on the Comparison of Mechanical and Thermal Properties According to Laminated Orientation of CFRP through Bending Test

Authors: Hee Jae Shin, Lee Ku Kwac, In Pyo Cha, Min Sang Lee, Hyun Kyung Yoon, Hong Gun Kim

Abstract:

In rapid industrial development, the demand for high-strength and lightweight materials have been increased. Thus, various CFRP (Carbon Fiber Reinforced Plastics) with composite materials are being used. The design variables of CFRP are its lamination direction, order and thickness. Thus, the hardness and strength of CFRP depends much on their design variables. In this paper, the lamination direction of CFRP was used to produce a symmetrical ply [0°/0°, -15°/+15°, -30°/+30°, -45°/+45°, -60°/+60°, -75°/+75° and 90°/90°] and an asymmetrical ply [0°/15°, 0°/30°, 0°/45°, 0°/60° 0°/75° and 0°/90°]. The bending flexure stress of the CFRP specimen was evaluated through a bending test. Its thermal property was measured using an infrared camera. The symmetrical specimen and the asymmetrical specimen were analyzed. The results showed that the asymmetrical specimen increased the bending loads according to the increase in the orientation angle; and from 0°, the symmetrical specimen showed a tendency opposite the asymmetrical tendency because the tensile force of fiber differs at the vertical direction of its load. Also, the infrared camera showed that the thermal property had a trend similar to that of the mechanical properties.

Keywords: Carbon Fiber Reinforced Plastic (CFRP), Bending Test, Infrared Camera, Composite.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1982
496 Vegetation Index-Deduced Crop Coefficient of Wheat (Triticum aestivum) Using Remote Sensing: Case Study on Four Basins of Golestan Province, Iran

Authors: Hoda Zolfagharnejad, Behnam Kamkar, Omid Abdi

Abstract:

Crop coefficient (Kc) is an important factor contributing to estimation of evapotranspiration, and is also used to determine the irrigation schedule. This study investigated and determined the monthly Kc of winter wheat (Triticum aestivum L.) using five vegetation indices (VIs): Normalized Difference Vegetation Index (NDVI), Difference Vegetation Index (DVI), Soil Adjusted Vegetation Index (SAVI), Infrared Percentage Vegetation Index (IPVI), and Ratio Vegetation Index (RVI) of four basins in Golestan province, Iran. 14 Landsat-8 images according to crop growth stage were used to estimate monthly Kc of wheat. VIs were calculated based on infrared and near infrared bands of Landsat 8 images using Geographical Information System (GIS) software. The best VIs were chosen after establishing a regression relationship among these VIs with FAO Kc and Kc that was modified for the study area by the previous research based on R² and Root Mean Square Error (RMSE). The result showed that local modified SAVI with R²= 0.767 and RMSE= 0.174 was the best index to produce monthly wheat Kc maps.

Keywords: Crop coefficient, remote sensing, vegetation indices, wheat.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 905
495 Application of UAS in Forest Firefighting for Detecting Ignitions and 3D Fuel Volume Estimation

Authors: Artur Krukowski, Emmanouela Vogiatzaki

Abstract:

The article presents results from the AF3 project “Advanced Forest Fire Fighting” focused on Unmanned Aircraft Systems (UAS)-based 3D surveillance and 3D area mapping using high-resolution photogrammetric methods from multispectral imaging, also taking advantage of the 3D scanning techniques from the SCAN4RECO project. We also present a proprietary embedded sensor system used for the detection of fire ignitions in the forest using near-infrared based scanner with weight and form factors allowing it to be easily deployed on standard commercial micro-UAVs, such as DJI Inspire or Mavic. Results from real-life pilot trials in Greece, Spain, and Israel demonstrated added-value in the use of UAS for precise and reliable detection of forest fires, as well as high-resolution 3D aerial modeling for accurate quantification of human resources and equipment required for firefighting.

Keywords: Forest wildfires, fuel volume estimation, 3D modeling, UAV, surveillance, firefighting, ignition detectors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 501
494 Thermomechanical Studies in Glass/Epoxy Composite Specimen during Tensile Loading

Authors: K. M. Mohamed Muneer, Raghu V. Prakash, Krishnan Balasubramaniam

Abstract:

This paper presents the results of thermo-mechanical characterization of Glass/Epoxy composite specimens using Infrared Thermography technique. The specimens used for the study were fabricated in-house with three different lay-up sequences and tested on a servo hydraulic machine under uni-axial loading. Infrared Camera was used for on-line monitoring surface temperature changes of composite specimens during tensile deformation. Experimental results showed that thermomechanical characteristics of each type of specimens were distinct. Temperature was found to be decreasing linearly with increasing tensile stress in the elastic region due to thermo-elastic effect. Yield point could be observed by monitoring the change in temperature profile during tensile testing and this value could be correlated with the results obtained from stress-strain response. The extent of prior plastic deformation in the post-yield region influenced the slopes of temperature response during tensile loading. Partial unloading and reloading of specimens post-yield results in change in slope in elastic and plastic regions of composite specimens.

Keywords: Glass/Epoxy composites, Thermomechanical behavior, Infrared Thermography, Thermoelastic slope, Thermoplastic slope.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2022
493 Detection of Temporal Change of Fishery and Island Activities by DNB and SAR on the South China Sea

Authors: I. Asanuma, T. Yamaguchi, J. Park, K. J. Mackin

Abstract:

Fishery lights on the surface could be detected by the Day and Night Band (DNB) of the Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi National Polar-orbiting Partnership (Suomi-NPP). The DNB covers the spectral range of 500 to 900 nm and realized a higher sensitivity. The DNB has a difficulty of identification of fishing lights from lunar lights reflected by clouds, which affects observations for the half of the month. Fishery lights and lights of the surface are identified from lunar lights reflected by clouds by a method using the DNB and the infrared band, where the detection limits are defined as a function of the brightness temperature with a difference from the maximum temperature for each level of DNB radiance and with the contrast of DNB radiance against the background radiance. Fishery boats or structures on islands could be detected by the Synthetic Aperture Radar (SAR) on the polar orbit satellites using the reflected microwave by the surface reflecting targets. The SAR has a difficulty of tradeoff between spatial resolution and coverage while detecting the small targets like fishery boats. A distribution of fishery boats and island activities were detected by the scan-SAR narrow mode of Radarsat-2, which covers 300 km by 300 km with various combinations of polarizations. The fishing boats were detected as a single pixel of highly scattering targets with the scan-SAR narrow mode of which spatial resolution is 30 m. As the look angle dependent scattering signals exhibits the significant differences, the standard deviations of scattered signals for each look angles were taken into account as a threshold to identify the signal from fishing boats and structures on the island from background noise. It was difficult to validate the detected targets by DNB with SAR data because of time lag of observations for 6 hours between midnight by DNB and morning or evening by SAR. The temporal changes of island activities were detected as a change of mean intensity of DNB for circular area for a certain scale of activities. The increase of DNB mean intensity was corresponding to the beginning of dredging and the change of intensity indicated the ending of reclamation and following constructions of facilities.

Keywords: Day night band, fishery, SAR, South China Sea.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1050
492 Determination of Neighbor Node in Consideration of the Imaging Range of Cameras in Automatic Human Tracking System

Authors: Kozo Tanigawa, Tappei Yotsumoto, Kenichi Takahashi, Takao Kawamura, Kazunori Sugahara

Abstract:

A automatic human tracking system using mobile agent technology is realized because a mobile agent moves in accordance with a migration of a target person. In this paper, we propose a method for determining the neighbor node in consideration of the imaging range of cameras.

Keywords: Human tracking, Mobile agent, Pan/Tilt/Zoom, Neighbor relation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1638
491 High Energy Dual-Wavelength Mid-Infrared Extracavity KTA Optical Parametric Oscillator

Authors: Hongjun Liu, Qibing Sun, Nan Huang, Shaolan Zhu, Wei Zhao

Abstract:

A high energy dual-wavelength extracavity KTA optical parametric oscillator (OPO) with excellent stability and beam quality, which is pumped by a Q-switched single-longitudinal-mode Nd:YAG laser, has been demonstrated based on a type II noncritical phase matching (NCPM) KTA crystal. The maximum pulse energy of 10.2 mJ with the output stability of better than 4.1% rms at 3.467 μm is obtained at the repetition rate of 10 Hz and pulse width of 2 ns, and the 11.9 mJ of 1.535 μm radiation is obtained simultaneously. This extracavity NCPM KTA OPO is very useful when high energy, high beam quality and smooth time domain are needed.

Keywords: mid-infrared laser, OPO, dual-wavelength laser

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2027
490 A Low-Cost Vision-Based Unmanned Aerial System for Extremely Low-Light GPS-Denied Navigation and Thermal Imaging

Authors: Chang Liu, John Nash, Stephen D. Prior

Abstract:

This paper presents the design and implementation details of a complete unmanned aerial system (UAS) based on commercial-off-the-shelf (COTS) components, focusing on safety, security, search and rescue scenarios in GPS-denied environments. In particular, The aerial platform is capable of semi-autonomously navigating through extremely low-light, GPS-denied indoor environments based on onboard sensors only, including a downward-facing optical flow camera. Besides, an additional low-cost payload camera system is developed to stream both infra-red video and visible light video to a ground station in real-time, for the purpose of detecting sign of life and hidden humans. The total cost of the complete system is estimated to be $1150, and the effectiveness of the system has been tested and validated in practical scenarios.

Keywords: Unmanned aerial system, commercial-off-the-shelf, extremely low-light, GPS-denied, optical flow, infrared video.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1902
489 Neuro-fuzzy Classification System for Wireless-Capsule Endoscopic Images

Authors: Vassilis S. Kodogiannis, John N. Lygouras

Abstract:

In this research study, an intelligent detection system to support medical diagnosis and detection of abnormal lesions by processing endoscopic images is presented. The images used in this study have been obtained using the M2A Swallowable Imaging Capsule - a patented, video color-imaging disposable capsule. Schemes have been developed to extract texture features from the fuzzy texture spectra in the chromatic and achromatic domains for a selected region of interest from each color component histogram of endoscopic images. The implementation of an advanced fuzzy inference neural network which combines fuzzy systems and artificial neural networks and the concept of fusion of multiple classifiers dedicated to specific feature parameters have been also adopted in this paper. The achieved high detection accuracy of the proposed system has provided thus an indication that such intelligent schemes could be used as a supplementary diagnostic tool in endoscopy.

Keywords: Medical imaging, Computer aided diagnosis, Endoscopy, Neuro-fuzzy networks, Fuzzy integral.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1708
488 Prediction of the Rear Fuselage Temperature with Radiation Shield

Authors: Kyung Joo Yi, Seung Wook Baek, Sung Nam Lee, Man Young Kim, Won Cheol Kim, Gun Yung Go

Abstract:

In order to enhance the aircraft survivability, the infrared signatures emitted by hot engine parts should be determined exactly. For its reduction it is necessary for the rear fuselage temperature to be decreased. In this study, numerical modeling of flow fields and heat transfer characteristics of an aircraft nozzle is performed and its temperature distribution along each component wall is predicted. The radiation shield is expected to reduce the skin temperature of rear fuselage. The effect of material characteristic of radiation shield on the heat transfer is also investigated. Through this numerical analysis, design parameters related to the susceptibility of aircraft are examined.

Keywords: Infrared signature, Nozzle flow, Radiation shield, Rear fuselage temperature, Susceptibility

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2081
487 Sparsity-Based Unsupervised Unmixing of Hyperspectral Imaging Data Using Basis Pursuit

Authors: Ahmed Elrewainy

Abstract:

Mixing in the hyperspectral imaging occurs due to the low spatial resolutions of the used cameras. The existing pure materials “endmembers” in the scene share the spectra pixels with different amounts called “abundances”. Unmixing of the data cube is an important task to know the present endmembers in the cube for the analysis of these images. Unsupervised unmixing is done with no information about the given data cube. Sparsity is one of the recent approaches used in the source recovery or unmixing techniques. The l1-norm optimization problem “basis pursuit” could be used as a sparsity-based approach to solve this unmixing problem where the endmembers is assumed to be sparse in an appropriate domain known as dictionary. This optimization problem is solved using proximal method “iterative thresholding”. The l1-norm basis pursuit optimization problem as a sparsity-based unmixing technique was used to unmix real and synthetic hyperspectral data cubes.

Keywords: Basis pursuit, blind source separation, hyperspectral imaging, spectral unmixing, wavelets.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 798
486 Scatterer Density in Nonlinear Diffusion for Speckle Reduction in Ultrasound Imaging: The Isotropic Case

Authors: Ahmed Badawi

Abstract:

This paper proposes a method for speckle reduction in medical ultrasound imaging while preserving the edges with the added advantages of adaptive noise filtering and speed. A nonlinear image diffusion method that incorporates local image parameter, namely, scatterer density in addition to gradient, to weight the nonlinear diffusion process, is proposed. The method was tested for the isotropic case with a contrast detail phantom and varieties of clinical ultrasound images, and then compared to linear and some other diffusion enhancement methods. Different diffusion parameters were tested and tuned to best reduce speckle noise and preserve edges. The method showed superior performance measured both quantitatively and qualitatively when incorporating scatterer density into the diffusivity function. The proposed filter can be used as a preprocessing step for ultrasound image enhancement before applying automatic segmentation, automatic volumetric calculations, or 3D ultrasound volume rendering.

Keywords: Ultrasound imaging, Nonlinear isotropic diffusion, Speckle noise, Scattering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1907
485 Iterative Image Reconstruction for Sparse-View Computed Tomography via Total Variation Regularization and Dictionary Learning

Authors: XianYu Zhao, JinXu Guo

Abstract:

Recently, low-dose computed tomography (CT) has become highly desirable due to increasing attention to the potential risks of excessive radiation. For low-dose CT imaging, ensuring image quality while reducing radiation dose is a major challenge. To facilitate low-dose CT imaging, we propose an improved statistical iterative reconstruction scheme based on the Penalized Weighted Least Squares (PWLS) standard combined with total variation (TV) minimization and sparse dictionary learning (DL) to improve reconstruction performance. We call this method "PWLS-TV-DL". In order to evaluate the PWLS-TV-DL method, we performed experiments on digital phantoms and physical phantoms, respectively. The experimental results show that our method is in image quality and calculation. The efficiency is superior to other methods, which confirms the potential of its low-dose CT imaging.

Keywords: Low dose computed tomography, penalized weighted least squares, total variation, dictionary learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 782
484 Double Aperture Camera for High Resolution Measurement

Authors: Venkatesh Bagaria, Nagesh AS, Varun AV

Abstract:

In the domain of machine vision, the measurement of length is done using cameras where the accuracy is directly proportional to the resolution of the camera and inversely to the size of the object. Since most of the pixels are wasted imaging the entire body as opposed to just imaging the edges in a conventional system, a double aperture system is constructed to focus on the edges to measure at higher resolution. The paper discusses the complexities and how they are mitigated to realize a practical machine vision system.

Keywords: Machine Vision, double aperture camera, accurate length measurement

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1525
483 Comparison between Solar Simulation and Infrared Technique for Thermal Balance Test

Authors: Tao Tao, Wang Jing, Cao Zhisong, Liu Yi, Qie Dianfu

Abstract:

The precision of heat flux simulation influences the temperature field and test aberration for TB test and also reflects the test level for spacecraft development. This paper describes TB tests for a small satellite using solar simulator, electric heaters, calrod heaters to evaluate the difference of the three methods. Under the same boundary condition, calrod heaters cases were about 6oC higher than solar simulator cases and electric heaters cases for non-external-heat-flux cases (extreme low temperature cases). While calrod heaters cases and electric heaters cases were 5~7oC and 2~3oC lower than solar simulator cases respectively for high temperature cases. The results show that the solar simulator is better than calrod heaters for its better collimation, non-homogeneity and stability.

Keywords: solar simulation, infrared simulation, TB test, TMM

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2707
482 Chaotic Properties of Hemodynamic Responsein Functional Near Infrared Spectroscopic Measurement of Brain Activity

Authors: Ni Ni Soe , Masahiro Nakagawa

Abstract:

Functional near infrared spectroscopy (fNIRS) is a practical non-invasive optical technique to detect characteristic of hemoglobin density dynamics response during functional activation of the cerebral cortex. In this paper, fNIRS measurements were made in the area of motor cortex from C4 position according to international 10-20 system. Three subjects, aged 23 - 30 years, were participated in the experiment. The aim of this paper was to evaluate the effects of different motor activation tasks of the hemoglobin density dynamics of fNIRS signal. The chaotic concept based on deterministic dynamics is an important feature in biological signal analysis. This paper employs the chaotic properties which is a novel method of nonlinear analysis, to analyze and to quantify the chaotic property in the time series of the hemoglobin dynamics of the various motor imagery tasks of fNIRS signal. Usually, hemoglobin density in the human brain cortex is found to change slowly in time. An inevitable noise caused by various factors is to be included in a signal. So, principle component analysis method (PCA) is utilized to remove high frequency component. The phase pace is reconstructed and evaluated the Lyapunov spectrum, and Lyapunov dimensions. From the experimental results, it can be conclude that the signals measured by fNIRS are chaotic.

Keywords: Chaos, hemoglobin, Lyapunov spectrum, motorimagery, near infrared spectroscopy (NIRS), principal componentanalysis (PCA).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1682
481 Retrieving Extended High Dynamic Range from Digital Negative Image - An Experiment on Architectural Photo Imaging

Authors: See Zi Siang, Khairul Hazrin Hashim, Harold Thwaites, Lee Xia Sheng, Ooi Wooi Har

Abstract:

The paper explores the development of an optimization of method and apparatus for retrieving extended high dynamic range from digital negative image. Architectural photo imaging can benefit from high dynamic range imaging (HDRI) technique for preserving and presenting sufficient luminance in the shadow and highlight clipping image areas. The HDRI technique that requires multiple exposure images as the source of HDRI rendering may not be effective in terms of time efficiency during the acquisition process and post-processing stage, considering it has numerous potential imaging variables and technical limitations during the multiple exposure process. This paper explores an experimental method and apparatus that aims to expand the dynamic range from digital negative image in HDRI environment. The method and apparatus explored is based on a single source of RAW image acquisition for the use of HDRI post-processing. It will cater the optimization in order to avoid and minimize the conventional HDRI photographic errors caused by different physical conditions during the photographing process and the misalignment of multiple exposed image sequences. The study observes the characteristics and capabilities of RAW image format as digital negative used for the retrieval of extended high dynamic range process in HDRI environment.

Keywords: High Dynamic Range Image, Photography Workflow Optimization, Digital Negative Image, Architectural Image

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1579