
Abstract—In this research study, an intelligent detection system 
to support medical diagnosis and detection of abnormal lesions by 
processing endoscopic images is presented. The images used in this 
study have been obtained using the M2A Swallowable Imaging 
Capsule - a patented, video color-imaging disposable capsule. 
Schemes have been developed to extract texture features from the 
fuzzy texture spectra in the chromatic and achromatic domains for a 
selected region of interest from each color component histogram of 
endoscopic images. The implementation of an advanced fuzzy 
inference neural network which combines fuzzy systems and 
artificial neural networks and the concept of fusion of multiple 
classifiers dedicated to specific feature parameters have been also 
adopted in this paper. The achieved high detection accuracy of the 
proposed system has provided thus an indication that such intelligent 
schemes could be used as a supplementary diagnostic tool in 
endoscopy. 

Keywords—Medical imaging, Computer aided diagnosis, 
Endoscopy, Neuro-fuzzy networks, Fuzzy integral. 

I. INTRODUCTION
N medical practice, endoscopic diagnosis and other 
minimally invasive imaging procedures, such as computed 

tomography, magnetic resonance imaging, are now permitting 
visualization of previously inaccessible regions of the body. 
Their objective is to increase the expert’s ability in identifying 
malignant regions and decrease the need for intervention 
while maintaining the ability for accurate diagnosis.  

Conventional diagnosis of endoscopic images employs 
visual interpretation of an expert physician. Since the 
beginning of computer technology, it becomes necessary for 
visual systems to “understand a scene”, that is making its own 
properties to be outstanding, by enclosing them in a general 
description of an analyzed environment. Computer-assisted 
image analysis can extract the representative features of the 
images together with quantitative measurements and thus can 
ease the task of objective interpretations by a physician expert 
in endoscopy. A system capable to classify image regions to 
normal or abnormal will act as a second - more detailed - 
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“eye” by processing the endoscopic video.  
Endoscopic images possess rich information [1], which 

facilitates the abnormality detection by multiple techniques. 
However, from the literature survey, it has been found that 
only a few techniques for endoscopic image analysis have 
been reported and they are still undergoing testing. In 
addition, most of the techniques were developed on the basis 
of features in a single domain: chromatic domain or spatial 
domain. Applying these techniques individually for detecting 
the disease patterns based on possible incomplete and partial 
information may lead to inaccurate diagnosis. For example, 
regions affected with bleeding and inflammation may have 
different color and texture characteristics. Parameters in the 
spatial domain related with lumen can be used to suggest the 
cues for abnormality. For instance, small area of lumen 
implies the narrowing of the lumen which is often one of the 
symptoms for lump formation and not the presence of possible 
bleeding. Therefore, maximizing the use of all available image 
analysis techniques for diagnosing from multiple feature 
domains is particularly important to improve the tasks of 
classification of endoscopic images. 

Krishnan, et al. [2] has been using endoscopic images to 
define features of the normal and the abnormal colon. New 
approaches for the characterization of colon based on a set of 
quantitative parameters, extracted by the fuzzy processing of 
colon images, have been used for assisting the colonoscopist 
in the assessment of the status of patients and were used as 
inputs to a rule-based decision strategy to find out whether the 
colon's lumen belongs to either an abnormal or normal 
category.

Endoscopic images contain rich information of texture. 
Therefore, the additional texture information can provide 
better results for the image analysis than approaches using 
merely intensity information. Such information has been used 
in CoLD (colorectal lesions detector) an innovative detection 
system to support colorectal cancer diagnosis and detection of 
pre-cancerous polyps, by processing endoscopy images or 
video frame sequences acquired during colonoscopy [3].  

Traditional techniques of endoscopic exploration of the 
esophagus, stomach, and bowel adopt probes which are 
introduced into the oral or rectal cavities by means of insertion 
tubes. Such techniques permit detailed and reliable analyses 
and represent the best nonsurgical tool available today to 
manage some diseases of the digestive tube. Nevertheless, 
both gastroscopy and colonoscopy are considerably invasive 
and frequently ill tolerated by patients. Moreover, they have to 
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be performed by skilled personnel. As a different technology, 
the use of the so-called endoscopic capsules for investigations 
of the digestive apparatus is progressively increasing today 
[4]. These systems consist of small capsules, which are 
swollen. They embed several functions, such as illumination 
of the tract under exploration, image capture, and wireless 
data transmission towards the exterior of the body [5]. Fig. 1 
shows a picture of the most diffused commercial device 
(M2A/Pillcam, by Given Imaging). Following its swallowing, 
an endoscopic capsule moves along the digestive tube and a 
micro-camera mounted onboard takes pictures automatically 
for several hours. The device is then naturally expelled out of 
the body. During navigation, pictures are transmitted and 
recorded into an external unit, so that to be viewed as a video–
frame sequence afterwards. Studies have revealed the capsule 
usefulness for the exploration of the small bowel, which 
cannot be examined with traditional endoscopic means [6].  

Fig. 1 Given Imaging Capsule- (1) Optical dome, (2) Lens holder, (3) 
Lens, (4) Illuminating LEDS, (5) CMOS imager, (6) Battery, (7) 
ASIC transmitter, (8) Antenna. 

A computerized system for assisting the analysis of wireless 
capsule endoscopic (WCE) data using the M2A capsule, and 
identifying sequences of frames related to small intestine 
motility has been implemented recently [7]. To encode 
patterns of intestinal motility, a panel of textural and 
morphological features of the intestine lumen was extracted. 
The recognition of contractions was carried out by means of a 
Support Vector Machines classifier. In order to automatically 
cluster the different types of intestinal contractions in WCE, a 
computer vision system which describes video sequences in 
terms of classical image descriptors has been developed [8].  
In an alternative approach, a methodology for detecting 
bleeding in WCE images has been investigated [9]. The 
presented methodology used color adaptation using a 
reference color value of the image. The adaptation was carried 
out by means of the cone response transform and the reference 
color was detected using Neural Networks. This method was 
applied to gastroenterological images in order to detect the 
presence of blood in a specific frame sequence. In a parallel 
study, a framework for multiple features analysis of WCE 
images has been proposed [10]. Several non-color analysis 
tools are proposed, notably: contrast enhancement, chamfer 
matching, thresholding, and image similarity. Experimental 
results suggest that the proposed multiple features analysis can 
guide the specialist to areas with abnormal patterns and 
classify the gastrointestinal tract accurately. Further research 
from statistical analysis of the relevance of various MPEG-7 
visual descriptors and subsequent classification results showed 

that the Scalable Color and Homogenous Texture descriptors 
are the most adequate for the task of event detection in WCE 
videos [11]. 

For the purpose of this research work, which was supported 
by the “IVP” European research project, endoscopic images 
have been obtained initially from the M2A microcapsule. Fig. 
2 shows a sample of the acquired images. They have spatial 
resolution of 171x151 pixels, a brightness resolution of 256 
levels per color plane (8bits), and consisted of three color 
planes (red, green and blue) for a total of 24 bits per pixel.  

Fig. 2 Selected endoscopic images of normal and abnormal cases 

The proposed methodology in this paper is considered in two 
phases. The first implements the extraction of image features 
while in the second phase a neuro-fuzzy network is 
implemented / employed to perform the diagnostic task. 
Texture analysis is one of the most important features used in 
image processing and pattern recognition. It can give 
information about the arrangement and spatial properties of 
fundamental image elements. Many methods have been 
proposed to extract texture features, e.g. the co-occurrence 
matrix [12], and the texture spectrum in the achromatic 
component of the image [13]. The definition and extraction of 
quantitative parameters from endoscopic images based on 
texture information has been proposed. This information was 
initially represented by a set of descriptive statistical features 
calculated on the histogram of the original image. Recently, a 
methodology for extraction texture features from the texture 
spectra in the chromatic and achromatic domains for a 
selected region of interest from each color component 
histogram of wireless-capsule endoscopic images has been 
presented. The implementation of the diagnostic system was 
based schemes such as Extended Normalized Radial Basis 
Function (ENRBF) neural networks [14] and Adaptive Fuzzy 
Logic Systems [15].   

In this research study, an alternative approach of obtaining 
statistical features/parameters from the texture spectra is 
proposed both in the chromatic and achromatic domains of the 
image. The definition of texture spectrum employs the 
determination of the texture unit (TU) and texture unit number 
(NTU) values. Texture units characterize the local texture 
information for a given pixel and its neighborhood, and the 
statistics of the entire texture unit over the whole image reveal 
the global texture aspects. However, the crisp definition of TU 
in many cases is not accurate, hence we propose a Fuzzy TU 
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which captures the concept of similar enough within all its 
unit boxes. To provide a more flexible way of assigning 
values to the Texture Unit Boxes of the TU, the boxes will 
have three associated membership values, each showing the 
degree to which the gray level of the corresponding pixel is 
smaller (0), equal (1) or greater (2) than that of the central 
pixel. 

A clustering algorithm has been applied for the sample data 
in order to organize feature vectors into clusters such that 
points within a cluster are closer to each other than vectors 
belonging to different clusters. The fuzzy rule base then is 
created, using results obtained from this algorithm. For the 
diagnostic part, the concept of multiple-classifier scheme has 
been adopted, where the fusion of the individual outputs was 
realized using fuzzy integral. 

II. IMAGE FEATURES EXTRACTION

A major component in analyzing images involves data 
reduction which is accomplished by intelligently modifying 
the image from the lowest level of pixel data into higher level 
representations. Texture is broadly defined as the rate and 
direction of change of the chromatic properties of the image, 
and could be subjectively described as fine, coarse, smooth, 
random, rippled, and irregular, etc. For this reason, we 
focused our attention on nine statistical measures (standard 
deviation, variance, skew, kurtosis, entropy, energy, inverse 
difference moment, contrast, and covariance) [14]. All texture 
descriptors are estimated for all planes in both RGB {R (Red), 
G (Green), B (Blue)} and HSV {H (Hue), S (Saturation), V 
(Value of Intensity)} spaces, creating a feature vector for each 
descriptor Di=(Ri,Gi,Bi,Hi,Si,Vi). Thus, a total of 54 features (9 
statistical measures x 6 image planes) are then estimated. For 
our experiments, we have used 70 endoscopic images related 
to abnormal cases and 70 images related to normal ones. 
Generally, the statistical measures are estimated on histograms 
of the original image (1st order statistics) [16]. However, the 
histogram of the original image carries no information 
regarding relative position of the pixels in the texture. 
Obviously this can fail to distinguish between textures with 
similar distributions of grey levels. We therefore have to 
implement methods which recognize characteristic relative 
positions of pixels of given intensity levels. An additional 
scheme is proposed in this study to extract new texture 
features from the texture spectra in the chromatic and 
achromatic domains, for a selected region of interest from 
each color component histogram of the endoscopic images. 

A. NTU Fuzzy Transformation 
The definition of texture spectrum employs the 

determination of the texture unit (TU) and texture unit number 
(NTU) values.  Texture unit is may be considered as the 
smallest complete unit which best characterizes the local 
texture aspect of a given pixel and its neighborhood in all 
eight directions of a square raster. In a square raster digital 
image, each pixel is surrounded by eight neighboring pixels. 

The local texture information for a pixel can be extracted from 
a neighborhood of 3x3 pixels, which represents the smallest 
complete unit (in the sense of having eight directions 
surrounding the pixel). Texture units thus characterize the 
local texture information for a given pixel and its 
neighborhood, and the statistics of all the texture units over 
the whole image reveal the global texture aspects [13].  

Given a neighborhood of pixels, which are denoted 
by a set containing   elements 0 1 ( ) 1{ , ,...., }P P P P ,

where 0P  represents the chromatic or achromatic (i.e. 
intensity) value of the central pixel and 

{ 1,2,..., ( ) 1}iP i  is the chromatic or achromatic value 

of the neighboring pixel i , the 0 1 ( ) 1{ , ,...., }TU E E E ,where

{ 1,2,...,( ) 1}iE i is determined as follows: 

0

0

0

0,         
1,            
2,        

i

i i

i

if P P
E if P P

if P P
       (1) 

The element iE occupies the same position as the thi pixel.  

Fig. 3 Eight clockwise, successive ordering ways of the eight 
elements of the texture unit. The first element iE may take eight 
possible positions from a to h 

Each element of the TU has one of three possible values; 
therefore the combination of all the eight elements results in 
6561 possible TU's in total. The texture unit number (NTU) is 
the label of the texture unit and is defined using the following 
equation: 

( ) 1
1

1
T U i

i
N E         (2) 

Where, in our case, 3 . In addition, the eight elements 
may be ordered differently. If the eight elements are ordered 
clockwise as shown in Fig. 3, the first element may take eight 
possible positions from the top left (a)  to the middle left (h), 
and then the 6561 texture units can be labeled by the Eq. 1, 
under eight different ordering ways (from a to h). Fig. 4 
provides an example of transforming a neighborhood to a 
texture unit with the texture unit number under the ordering 
way a. 

The previously defined set of 6561 texture units describes 
the local-texture aspect of a given pixel; that is, the relative 
grey-level relationships between the central pixel and its 
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neighbor. However, one of the major inconvenient of this 
descriptor is the large range of its possible values. In natural 
images, due to the presence of noise and the different 
processes of caption and digitation, even if the human eye 
perceives two neighboring pixels as equal, they rarely have 
exactly the same intensity value [17].  

Fig. 4 Transformation of a neighborhood to a Texture Unit and its 
Texture Unit Number 

Thus, when using the Texture spectrum (TS) coding in this 
type of images, will almost never appear ones as Texture 
Feature Vectors (TFV)  components, but mainly values of 0 
and 2; hence the Spectrum obtained will not reflect the human 
perception of homogeneity. 

In texture analysis, we define uniform surface uncertainty, 
which ranges from 0 to 1, for a point p in the texture as the 
degree of p belong to uniform physical surface (as defined by 
the neighborhood average intensity). Therefore, we can 
transform a grey-scale image into a fuzzy image by suing the 
uncertainty definition. For a more rough texture, the intensity 
of pixels in its corresponding fuzzy image will cause a smaller 
value. The membership distribution of the fuzzy image which 
transformed from a texture, denoted as Fuzzy Uncertainty 
Texture Spectrum (FUTS) or fuzzy “NTU” is then used as a 
distinguishing feature for texture classification.  

A grey-scale image f can be transformed into a fuzzy 
image by a fuzzification function . A variety of fuzzification 
functions can be used to reflect the degree to which pixel 
intensity represents a uniform physical surface. However, 
textural properties need neighborhood information about the 
pixel in order to define adequately membership functions. 
Here, a simplified triangular membership function used to 
describe a uniform surface illustrated in Fig. 5 and the uniform 
surface uncertainty is defined as 

( , ) ( , )
1

m a x ( , )ij
R

f i j f i j
f i j

     (3) 

where max ( , )R f i j is the maximum intensity within the 
( ) surface region R centered at point ( , )i j and the 
average intensity is given by 

, ,

1( , ) ( , )
1

R

m n i j
f i j f m n    (4) 

Note that if ( , )f i j is equal to the average neighborhood 

intensity ( , )f i j then ( , )f i j possesses “full membership” to 
the surface region R ; meaning of the pixel lies on uniform 

surface, Alternatively, if ( , )f i j is significantly different than 

the average neighborhood intensity ( , )f i j , j), then 
0ij .That means the pixel ( , )f i j not lies on uniform 

surface.

Fig. 5 Fuzzy membership function for a uniform surface 

To analyze a texture image, we can transform it into its 
corresponding fuzzy image by using Eq. 3. As the value in 
fuzzy image represents the local aspect, the statistics of these 
values in the fuzzy image should reveal its texture surface 
information. The texture spectrum histogram ( ( ))Hist i is
obtained as the frequency distribution of all the texture units, 
with the abscissa showing indicating the belief degree or the 
fuzzy “NTU” and the ordinate representing its occurrence 
frequency. The texture spectra of various image components 
{V (Value of Intensity), R (Red), G (Green), B (Blue), H 
(Hue), S (Saturation)} are obtained from their texture unit 
numbers. The statistical features are then estimated on the 
histograms of the “NTU” fuzzy transformations of the 
chromatic and achromatic planes of the image (R,G,B,H,S,V). 

III. IMAGE FEATURES EVALUATION

Recently, the concept of combining multiple classifiers has 
been actively exploited for developing highly reliable 
“diagnostic” systems [18]. One of the key issues of this 
approach is how to combine the results of the various systems 
to give the best estimate of the optimal result. A 
straightforward approach is to decompose the problem into 
manageable ones for several different sub-systems and 
combine them via a gating network. The presumption is that 
each classifier/sub-system is “an expert” in some local area of 
the feature space. The sub-systems are local in the sense that 
the weights in one “expert” are decoupled from the weights in 
other sub-networks.  

Fig. 6 Proposed fusion scheme 

In this study, six subsystems have been developed, and each 
of them was associated with the six planes specified in the 

World Academy of Science, Engineering and Technology
International Journal of Electrical and Computer Engineering

 Vol:2, No:9, 2008 

1911International Scholarly and Scientific Research & Innovation 2(9) 2008 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 E
le

ct
ri

ca
l a

nd
 C

om
pu

te
r 

E
ng

in
ee

ri
ng

 V
ol

:2
, N

o:
9,

 2
00

8 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/9
86

2.
pd

f



feature extraction process (i.e. R, G, B, H, S, & V). For each 
subsystem, 9 statistical features have been associated with, 
resulting thus a total 54 features space. Each subsystem was 
modeled with the proposed neurofuzzy learning scheme. This 
provides a degree of certainty for each classification based on 
the statistics for each plane. The outputs of each of these 
networks must then be combined to produce a total output for 
the system as a whole as can be seen in Fig. 6.  

While a usual scheme chooses one best subsystem from 
amongst the set of candidate subsystems based on a winner-
takes-all strategy, the current proposed approach runs all 
multiple subsystems with an appropriate collective decision 
strategy. The aim in this study is to incorporate information 
from each plane/space so that decisions are based on the 
whole input space. The simplest method is to take the average 
output from each classifier as the system output. This does not 
take into account the objective evidence supplied by each of 
the individual classifiers and confidence which we have in 
that classifiers results. The fuzzy integral is an alternative 
method that claims to resolve both of these issues by 
combining evidence of a classification with the systems 
expectation of the importance of that evidence. 

The fuzzy integral introduced by Sugeno [19] and the fuzzy 
measures from Yager [20] are very useful in combining 
information. A fuzzy measure g is a set function such that,  

the fuzzy measure of an empty set is equal to zero - 
( 0 ) 0g ,

the fuzzy measure of an entire set Q is equal to one - 
( ) 1g Q , and 

the fuzzy measure of set A is less than or equal to that 
of set B if A  is a subset of 

( ) ( )  if  B g A g B A B
This function can be interpreted as finding the maximal grade 
of agreement between networks’ outputs and their fuzzy 
measures for a particular class. If the following additional 
property is also satisfied, the fuzzy measure is referred to as a 
g fuzzy measure. 

,   and  0, ( ) ( ) ( ) ( ) ( )A B Q A B g A B g A g B g A g B

1,                   (5) 

where the measure can be given by solving the following 
non-linear equation [21] 

1

1 1
n

i

i

g    1         (6) 

When combining multiple NNs, let ig denote the fuzzy 
measure of network i . These measures can be interpreted as 
quantifying how well a network properly classified the 
samples/patterns. They must be known and can be determined 
in different ways i.e., the fuzzy measure of a network could 
equal the ratio of correctly classified patterns during 
supervised training over the total number of patterns being 
classified. In this research, each network’s fuzzy measure 

equaled 1 iK , where iK  was network ith overall testing 
kappa value [22]. A pattern is being classified to one of m 
possible output classes, jc for 1,....,j m . The outputs of n 

different networks are being combined, where NNi denotes the 
ith network. First, these networks must be 
renumbered/rearranged such that their a posteriori class 
probabilities are in descending order of magnitude for each 
output class j, 

1 2( ) ( ) .... ( )j j n jy c y c y c
where ( )i jy c is the ith network’s a posteriori class j 

probability. Next, each network/ set of networks’ 
g fuzzy  measure is computed for every output class j 

and is denoted by ( )j ig A . 1 2{ , ,..., }i iA NN NN NN is the 

set of the first i networks ordered correspondingly to class j’s 
associated a posteriori probabilities. These values can then be 
computed using the following recursive method, 

1
1 1( ) ({ })j jg A g NN g

1 1 1( ) ({ ,..., }) ( ) ( )   for  1i i
j i j i i ig A g NN NN g g A g g A i n

1( ) ({ ,..., }) 1j n j ng A g NN NN

Finally, the fuzzy integral for each class j is defined as [23], 

1max [min[ ( ), ( )]]n
i i j j iy c g A         (7) 

The class with the largest fuzzy integral value is then chosen 
as the output class to which the pattern is classified. Eq. 7 
summarizes combining multiple NNs using a fuzzy integral 
approach.

1 1 1 1

2 1 1 2

1 1

1 2 2 1

2 2 2 2

2 2

m in [ ( ) , ( ) ]
m in [ ( ) , ( ) ]

m a x
         . . . . . . . . . . . . .
m in [ ( ) , ( ) ]

m in [ ( ) , ( ) ]
m in [ ( ) , ( ) ]

m a x
m a x          . . . . . . . . . . . . .

m in [ ( ) , ( ) ]

n e tw o r k

n n

n e tw o r k
c la s s

n n

y c g A
y c g A

y c g A

y c g A
y c g A

y c g A

1 1

2 2

             . . . . . . . . . . . . . . . . . . . . . . . . . .
m in [ ( ) , ( ) ]
m in [ ( ) , ( ) ]

m a x
         . . . . . . . . . . . . .
m in [ ( ) , ( ) ]

m m

m m
n e tw o r k

n m m n

y c g A
y c g A

y c g A

   (8) 

The classification scheme utilized here is a neuro-fuzzy 
system that incorporates a two-stages clustering algorithm for 
finding the initial parameters of rules. 

IV. NEURO-FUZZY CLASSIFIER

Although Neural Networks (NNs) and Fuzzy Logic (FL) 
systems have well-established strengths and weaknesses, they 
are both capable of modeling highly complex non-linear 
relationships. NNs’ highly interconnected structure enables 
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them to learn the low-level interdependencies of a system. The 
difficulty is that the resulting model is often as complex as the 
system itself making thus hard to interpret what has been 
learnt or to include expert knowledge. FL systems on the other 
hand are often less able to learn such low level information 
but the knowledge is represented in the form of IF-THEN type 
rules. These are readily interpreted by a human expert to 
validate or expand the learnt information. Fuzzy rules define 
active areas of the input domain through the product of a 
number of partitions defined on a single of the domains axis. 
Neuro-Fuzzy (NF) systems attempt in general to combine the 
low-level numerical modeling capabilities of NNs with some 
of the representational transparencies of FLs, but like FL often 
suffer from the so-called “curse of dimensionality” [24]. 

The neuro-fuzzy classifier-scheme adopted in this study 
tries to overcome the increased number of rules by utilizing a 
two stage process, a clustering sections and a neuro-fuzzy 
inference network.  

A. Clustering Algorithm 
The clustering algorithm we apply in this paper consists of 

two stages. In the first stage the method similar to LVQ 
algorithm generates crisp c-partitions of the data set. The 
number of clusters c and the cluster centers ,   1,..., ,iv i c
obtained from this stage are used by FCM (Fuzzy c-means) 
algorithm in the second stage. The first stage clustering 
algorithm determines the number of clusters by dividing the 
learning data into these crisp clusters and calculates the cluster 
centers which are the initial values of the fuzzy cluster centers 
derived the second stage algorithm. Let 

np
1[ , ..., ]    RnZ z z be a learning data. The first cluster is 

created starting with the first data vector from Z and the initial 
value of the cluster centre is taking as a value of this data 
vector. Then other data vectors are included into the cluster 
but only these ones which satisfy the following condition 

k iz v D             (9) 

where   , 1,...,kz Z k n and ,  1,...,iv i c are cluster centers, 
cp

1[ ,..., ]    RnV v v , the constant value D is fixed at the 

beginning of the algorithm. Cluster centers iv are modified for 

each cluster (i.e., 1,...,i c ) according to the following 
equation 

( 1) ( ) ( ( ))i i t k iv t v t a z v t          (10) 

where 0,1, 2,...t denotes the number of iterations, 

  [0,1]ta is the learning rate and it is decreasing during 
performance of the algorithm (depending on the number of 
elements in the cluster). As a result of performance of this 
algorithm we get the number of clusters c, we have divided 
data set into the clusters, and we know values of cluster 
centers iv 1,...,i c  which we can use as initial values for 
the second stage clustering algorithm. In the second stage the 
fuzzy c-means algorithm has been used. FCM is a constrained 

optimization procedure which minimizes the weighted within-
groups sum of squared errors objective functions mJ  with 

respect to fuzzy membership's iku cluster centres iv , given 

training data  ,  1,..., ;  1,..,kz i c k n
2

( , )
1 1

min{ ( , ; ) ( ) }
n c

m
m ik k iU V

k i

J U V Z u z v     (11) 

The number of clusters c and the initial values of cluster 
centers iv come from the first stage clustering algorithm. 

B. Fuzzy Inference Neural Networks 
The two-stages clustering algorithm provides the fuzzy c-

partition of the sample data. The number of rules in the 
proposed fuzzy inference neural network (FINN) equals to the 
number of clusters c obtained from the clustering algorithm. 
The proposed FINN scheme is a MIMO adaptive fuzzy logic 
system with centre average as defuzzification concept. The 
schematic of the FINN scheme which is shown in Fig. 7 
consists of four layers. The first two layers LI and L2 
correspond to IF part of fuzzy rules whereas layers L3 and L4 
contain information about THEN part of these rules, and 
perform the defuzzification task. There are c q elements in 
layer Ll. They realize the membership functions which are 
defined by  

2

exp j iji

j

ij

x v            (12) 

for 1,...,j q  and 1,...,i c . The values ijv  in Eq. (12) 

denote the centers of the Gaussian membership functions and 
are equal to the values of the vectors iv which have been 
derived from the second stage clustering algorithm. The value 

ij defines the widths of the Gaussian membership functions. 

These values have been estimated according to  
1 / 2

2

1

1

( )
n

ik k j i j
k

ni j

ik
k

u z v

u

     (13) 

These values are calculated based on the matrix U which 
elements represent fuzzy memberships of kz  ith cluster and 
have values obtained from the second stage clustering 
algorithm. 
The second layer L2 has c elements which realize 
multiplication operation because of using Larsen rule in fuzzy 
reasoning procedure. Each element in this layer is associated 
with one fuzzy rule. Outputs of this layer represent the fire 
strength of the rules, expressed by  

1

( )
q

i
i j j

j
x           (14) 

Layer L3 contains the parameters ipv , for 1,...,i c . The only 

one element in layer L4 performs division operation. Layers 
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L3 and L4 serve as the center average defuzzifier. 

1

1

c

ip i
i

c

i
i

v
y        (15) 

Fig. 7 Schematic of FINN structure 

The multi-layer connectionist structures of FINN scheme 
allow us to apply, learning procedures similar to the back-
propagation method which is commonly used as learning 
algorithm for feed-forward multi-layer artificial neural 
networks [25]. Based on the idea of the back-propagation the 
following updates for tuning the parameters of Gaussian 
membership functions have been derived 

2

1

2

1 1

exp

ˆ( 1) ( ) ( )

exp

q

j ij

ijj

ip ip
qc

j ij

i ijj

x v

v t v t y y
x v

   (16) 

2

1

2 2

1 1

exp
( )( )

ˆ( 1) ( ) ( )

( )
exp

q

h ih

j ij ip h ih

ij ij

qc

ij h ih

i h ih

x v

x v v y
v t v t y y

x v    (17) 

2

2
1

3 2

1 1

exp
( ) ( )

ˆ( 1) ( ) ( )
( )

exp

q
h ih

ihhj ij ip
ij ij qcij h ih

ihi h

x v

x v v y
t t y y

x v
   (18) 

V. RESULTS

The proposed approach was evaluated using 140 clinically 
obtained endoscopic M2A images. For the present analysis, 
two decision-classes are considered: abnormal and normal. 
Seventy images (35 abnormal and 35 normal) were used for 

the training and the remaining ones (35 abnormal and 35 
normal) were used for testing. The extraction of quantitative 
parameters from these endoscopic images is based on texture 
information. This information is represented by a set of 
descriptive statistical features. Nine statistical measures for 
each individual image component are calculated though the 
related texture spectra after applying the proposed fuzzy NTU

transformation. In addition to the proposed FINN scheme, a 
radial basis function network has been implemented for 
comparison purposes. Both types of networks (i.e. FINN and 
RBF) are incorporated into a multiple classifier scheme, where 
the structure of each individual (for R, G, B, H, S, & V 
planes) classifier is composed of 9 input nodes (i.e. nine 
statistical features) and 2 output nodes. 

TABLE 1 FUZZY NTU-BASED PERFORMANCES
Modules RBF Accuracy 

 (70 testing patterns) 
FINN Accuracy
(70 testing patterns) 

R 92.85% (5 mistakes) 94.28% (4 mistakes) 
G 95.71% (3 mistakes) 97.14% (2 mistakes) 
B 91.42% (6 mistakes) 92.85% (5 mistakes) 
H 92.85% (5 mistakes) 94.28% (4 mistakes) 
S 90.00% (7 mistakes) 95.71% (3 mistakes) 
V 94.28% (4 mistakes) 91.42% (6 mistakes) 
Overall 91.42% (6 mistakes) 94.28% (4 mistakes) 

Each of the sub-networks was trained in turn using a threshold 
value of 0.015 to stop training. The values of the learning 
coefficients in this iteration process have been set as 

0.3,  0.01,  0.02 . The value of the weighting 
exponent in the second stage clustering algorithm has been 
chosen as m=1.9. The FINN scheme trained on the R feature 
space and it then achieved an accuracy of 94.28% on the 
testing data incorrectly classifying 3 of the normal images as 
abnormal and 1 abnormal as normal ones. The network trained 
on the G feature space misclassified 2 normal images as 
abnormal but not the same ones as the R space. The B feature 
space achieved an accuracy of 92.85% on the testing data with 
5 misclassifications, i.e. 3 abnormal as normal ones and the 
remaining ones as abnormal one. The network trained on the 
H feature space achieved 94.28% accuracy on the testing data. 
The network trained on the S feature space achieved an 
accuracy of only 95.71% on the testing data. Finally, the 
network for the V feature space misclassified 2 normal case as 
abnormal  and 4 abnormal as normal one, giving it an 
accuracy of 91.42% on the testing data.

The fuzzy integral (FI) concept has been used here to 
combine the results from each sub-network and the overall 
system provided an accuracy of 94.28%. More specifically, 3 
normal cases as abnormal and one abnormal as normal one 
provide us a good indication of a “healthy” diagnostic 
performance. However the level of confidence/certainty was 
0.52 as shown in Fig. 8. 

In a similar way, a multi classifier consisting of RBF 
networks with 9 input nodes and 2 output nodes was trained 
on each of the six feature spaces. Table 1 illustrates the 
performances of the network in the individual components. 
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The RBF network trained on the R feature space and it then 
achieved an accuracy of 92.85% on the testing data incorrectly 
classifying 3 of the normal images as abnormal and 2 
abnormal as normal ones. The network trained on the G 
feature space misclassified 2 normal images as abnormal but 
not the same ones as the R space.  

Fig. 8 Performance of FINN structure 

The remaining one image was misclassified as normal one. 
The B feature space achieved an accuracy of 91.43% on the 
testing data with 6 misclassifications, i.e. 4 abnormal as 
normal ones and the remaining 2 images as abnormal ones. 
The network trained on the H feature space achieved 92.85% 
accuracy on the testing data. The network trained on the S 
feature space achieved an accuracy of only 90% on the testing 
data. Finally, the network for the V feature space misclassified 
2 normal cases as abnormal  and 2 abnormal as normal ones, 
giving it an accuracy of 94.28% on the testing data. The fuzzy 
integral (FI) concept has been used here to combine the results 
from each sub-network and the overall system misclassified 3 
normal cases as abnormal and 3 abnormal as normal ones, 
giving the system an overall accuracy of 91.43% despite the 
fact that RBF was characterized by a very fast training  
process. The confidence level for each correct classification 
was above 0.55. 

VI. CONCLUSION

The major contribution of the proposed system in the 
process of medical diagnosis is that it can provide additional 
information to physicians on the characterization of the 
endoscopic images / tissues, by exploiting its textural 
characteristics, which are consequently used for the 
classification of the corresponding image regions as normal or 
abnormal. An approach on extracting statistical features from 
endoscopic images using the M2A Given Imaging capsule 
have been developed by obtaining those quantitative 
parameters from the texture spectra  from the calculation the 
fuzzy texture unit numbers over the histogram spectrum. In 
this study, an intelligent decision support system has been 
developed for endoscopic diagnosis based on a multiple-
classifier scheme. This multiple-classifier approach using 
Fuzzy integral as a fusion method provided encouraging 
results.  
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