Search results for: fault detector
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 539

Search results for: fault detector

149 A New Method for Identifying Broken Rotor Bars in Squirrel Cage Induction Motor Based on Particle Swarm Optimization Method

Authors: V. Rashtchi, R. Aghmasheh

Abstract:

Detection of squirrel cage induction motor (SCIM) broken bars has long been an important but difficult job in the detection area of motor faults. Early detection of this abnormality in the motor would help to avoid costly breakdowns. A new detection method based on particle swarm optimization (PSO) is presented in this paper. Stator current in an induction motor will be measured and characteristic frequency components of faylted rotor will be detected by minimizing a fitness function using pso. Supply frequency and side band frequencies and their amplitudes can be estimated by the proposed method. The proposed method is applied to a faulty motor with one and two broken bars in different loading condition. Experimental results prove that the proposed method is effective and applicable.

Keywords: broken bar, PSO, fault detection, SCIM

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1679
148 Analytic on Various Grounding Configurations in Uniform Layer Soil

Authors: Mohd Shahriman B. Mohd Yunus, Mohd Hanif B. Jamaludin, Norain Bt. Bahror

Abstract:

The performance of an embedded grounding system is very important for the safe operation of electrical appliances and human beings. In principle, a safe grounding system has two objectives, which are to dissipate fault current without exceeding any operating and equipment limits and to ensure there is no risk of electric shock to humans in the vicinity of earthed facilities. The case studies in this paper present the calculating grounding resistance for multiple configurations of vertical and horizontally by using a simple and accurate formula. From the analytic calculated results, observed good/empirical relationship between the grounding resistance and length of the embedded grounding configurations. Moreover, the configurations of vertical and horizontal observed effectiveness of grounding resistance and good agreement on the reduction of grounding resistance values especially for vertical configuration.

Keywords: Grounding system, grounding resistance, soil resistivity, electrode geometry, configurations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 430
147 Separating Permanent and Induced Magnetic Signature: A Simple Approach

Authors: O. J. G. Somsen, G. P. M. Wagemakers

Abstract:

Magnetic signature detection provides sensitive detection of metal objects, especially in the natural environment. Our group is developing a tabletop setup for magnetic signatures of various small and model objects. A particular issue is the separation of permanent and induced magnetization. While the latter depends only on the composition and shape of the object, the former also depends on the magnetization history. With common deperming techniques, a significant permanent signature may still remain, which confuses measurements of the induced component. We investigate a basic technique of separating the two. Measurements were done by moving the object along an aluminum rail while the three field components are recorded by a detector attached near the center. This is done first with the rail parallel to the Earth magnetic field and then with anti-parallel orientation. The reversal changes the sign of the induced- but not the permanent magnetization so that the two can be separated. Our preliminary results on a small iron block show excellent reproducibility. A considerable permanent magnetization was indeed present, resulting in a complex asymmetric signature. After separation, a much more symmetric induced signature was obtained that can be studied in detail and compared with theoretical calculations.

Keywords: Magnetic signature, data analysis, magnetization, deperming techniques.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1025
146 Anomaly Detection with ANN and SVM for Telemedicine Networks

Authors: Edward Guillén, Jeisson Sánchez, Carlos Omar Ramos

Abstract:

In recent years, a wide variety of applications are developed with Support Vector Machines -SVM- methods and Artificial Neural Networks -ANN-. In general, these methods depend on intrusion knowledge databases such as KDD99, ISCX, and CAIDA among others. New classes of detectors are generated by machine learning techniques, trained and tested over network databases. Thereafter, detectors are employed to detect anomalies in network communication scenarios according to user’s connections behavior. The first detector based on training dataset is deployed in different real-world networks with mobile and non-mobile devices to analyze the performance and accuracy over static detection. The vulnerabilities are based on previous work in telemedicine apps that were developed on the research group. This paper presents the differences on detections results between some network scenarios by applying traditional detectors deployed with artificial neural networks and support vector machines.

Keywords: Anomaly detection, back-propagation neural networks, network intrusion detection systems, support vector machines.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1943
145 Computational Model for Prediction of Soil-Gas Radon-222 Concentration in Soil-Depths and Soil Grain Size Particles

Authors: I. M. Yusuff, O. M. Oni, A. A. Aremu

Abstract:

Percentage of soil-gas radon-222 concentration (222Rn) from soil-depths contributing to outdoor radon atmospheric level depends largely on some physical parameters of the soil. To determine its dependency in soil-depths, survey tests were carried out on soil depths and grain size particles using in-situ measurement method of soil-gas radon-222 concentration at different soil depths. The measurements were carried out with an electronic active radon detector (RAD-7) manufactured by Durridge Company USA. Radon-222 concentrations (222Rn) in soil-gas were measured at four different soil depths of 20, 40, 60 and 100 cm in five feasible locations. At each soil depth, soil samples were collected for grain size particle analysis using soil grasp sampler. The result showed that highest value of radon-222 concentration (24,680 ± 1960 Bqm-3) was measured at 100 cm depth with utmost grain size particle of 17.64% while the lowest concentration (7370 ± 1139 Bqm-3) was measured at 100 cm depth with least grain size particle of 10.75% respectively. A computational model was derived using SPSS regression package. This model could be a yardstick for prediction on soil gas radon concentration reference to soil grain size particle at different soil-depths.

Keywords: Concentration, radon, porosity, diffusion, colorectal, emanation, yardstick.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 651
144 Faults Forecasting System

Authors: Hanaa E.Sayed, Hossam A. Gabbar, Shigeji Miyazaki

Abstract:

This paper presents Faults Forecasting System (FFS) that utilizes statistical forecasting techniques in analyzing process variables data in order to forecast faults occurrences. FFS is proposing new idea in detecting faults. Current techniques used in faults detection are based on analyzing the current status of the system variables in order to check if the current status is fault or not. FFS is using forecasting techniques to predict future timing for faults before it happens. Proposed model is applying subset modeling strategy and Bayesian approach in order to decrease dimensionality of the process variables and improve faults forecasting accuracy. A practical experiment, designed and implemented in Okayama University, Japan, is implemented, and the comparison shows that our proposed model is showing high forecasting accuracy and BEFORE-TIME.

Keywords: Bayesian Techniques, Faults Detection, Forecasting techniques, Multivariate Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1512
143 An Examination and Validation of the Theoretical Resistivity-Temperature Relationship for Conductors

Authors: Fred Lacy

Abstract:

Electrical resistivity is a fundamental parameter of metals or electrical conductors. Since resistivity is a function of temperature, in order to completely understand the behavior of metals, a temperature dependent theoretical model is needed. A model based on physics principles has recently been developed to obtain an equation that relates electrical resistivity to temperature. This equation is dependent upon a parameter associated with the electron travel time before being scattered, and a parameter that relates the energy of the atoms and their separation distance. Analysis of the energy parameter reveals that the equation is optimized if the proportionality term in the equation is not constant but varies over the temperature range. Additional analysis reveals that the theoretical equation can be used to determine the mean free path of conduction electrons, the number of defects in the atomic lattice, and the ‘equivalent’ charge associated with the metallic bonding of the atoms. All of this analysis provides validation for the theoretical model and provides insight into the behavior of metals where performance is affected by temperatures (e.g., integrated circuits and temperature sensors).

Keywords: Callendar–van Dusen, conductivity, mean free path, resistance temperature detector, temperature sensor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2150
142 Application of Life Data Analysis for the Reliability Assessment of Numerical Overcurrent Relays

Authors: Mohd Iqbal Ridwan, Kerk Lee Yen, Aminuddin Musa, Bahisham Yunus

Abstract:

Protective relays are components of a protection system in a power system domain that provides decision making element for correct protection and fault clearing operations. Failure of the protection devices may reduce the integrity and reliability of the power system protection that will impact the overall performance of the power system. Hence it is imperative for power utilities to assess the reliability of protective relays to assure it will perform its intended function without failure. This paper will discuss the application of reliability analysis using statistical method called Life Data Analysis in Tenaga Nasional Berhad (TNB), a government linked power utility company in Malaysia, namely Transmission Division, to assess and evaluate the reliability of numerical overcurrent protective relays from two different manufacturers.

Keywords: Life data analysis, Protective relays, Reliability, Weibull Distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3946
141 States Estimation and Fault Detection of a Doubly Fed Induction Machine by Moving Horizon Estimation

Authors: A. T. Boum, L. Bitjoka, N. N. Léandre, S. Bennet

Abstract:

This paper presents the estimation of the key parameters of a double fed induction machine (DFIM) by the use of the moving horizon estimator (MHE) for control and monitoring purpose. A study was conducted on the behavior of this observer in the presence of some faults which can occur during the operation of the machine. In the first case a stator phase has been suppressed. In the second case the rotor resistance has been multiplied by a factor. The results show a good estimation of different parameters such as rotor flux, rotor speed, stator current with a very small estimation error. The robustness of the observer was also tested in the practical case of DFIM by using another model different from the real one at a constant close. The very small estimation error makes the MHE a good software sensor candidate for monitoring purpose for the DFIM. 

Keywords: Doubly fed induction machine, moving horizon estimator parameters’ estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 724
140 A New Digital Transceiver Circuit for Asynchronous Communication

Authors: Aakash Subramanian, Vansh Pal Singh Makh, Abhijit Mitra

Abstract:

A new digital transceiver circuit for asynchronous frame detection is proposed where both the transmitter and receiver contain all digital components, thereby avoiding possible use of conventional devices like monostable multivibrators with unstable external components such as resistances and capacitances. The proposed receiver circuit, in particular, uses a combinational logic block yielding an output which changes its state as soon as the start bit of a new frame is detected. This, in turn, helps in generating an efficient receiver sampling clock. A data latching circuit is also used in the receiver to latch the recovered data bits in any new frame. The proposed receiver structure is also extended from 4- bit information to any general n data bits within a frame with a common expression for the output of the combinational logic block. Performance of the proposed hardware design is evaluated in terms of time delay, reliability and robustness in comparison with the standard schemes using monostable multivibrators. It is observed from hardware implementation that the proposed circuit achieves almost 33 percent speed up over any conventional circuit.

Keywords: Asynchronous Communication, Digital Detector, Combinational logic output, Sampling clock generator, Hardwareimplementation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2164
139 Preconcentration and Determination of Cyproheptadine in Biological Samples by Hollow Fiber Liquid Phase Microextraction Coupled with High Performance Liquid Chromatography

Authors: Najari Moghadam Sh., Qomi M., Raofie F., Khadiv J.

Abstract:

In this study, a liquid phase microextraction by hollow fiber (HF-LPME) combined with high performance liquid chromatography-UV detector was applied to preconcentrate and determine trace levels of Cyproheptadine in human urine and plasma samples. Cyproheptadine was extracted from 10 mL alkaline aqueous solution (pH: 9.81) into an organic solvent (n-octnol) which was immobilized in the wall pores of a hollow fiber. Then was back-extracted into an acidified aqueous solution (pH: 2.59) located inside the lumen of the hollow fiber. This method is simple, efficient and cost-effective. It is based on pH gradient and differences between two aqueous phases. In order to optimize the HF-LPME some affecting parameters including the pH of donor and acceptor phases, the type of organic solvent, ionic strength, stirring rate, extraction time and temperature were studied and optimized. Under optimal conditions enrichment factor, limit of detection (LOD) and relative standard deviation (RSD(%), n=3) were up to 112, 15 μg.L−1 and 2.7, respectively.

Keywords: Biological samples, Cyproheptadine, hollow fiber, liquid phase microextraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2197
138 Transient Stability Improvement in Multi-Machine System Using Power System Stabilizer (PSS) and Static Var Compensator (SVC)

Authors: Khoshnaw Khalid Hama Saleh, Ergun Ercelebi

Abstract:

Increasingly complex modern power systems require stability, especially for transient and small disturbances. Transient stability plays a major role in stability during fault and large disturbance. This paper compares a power system stabilizer (PSS) and static Var compensator (SVC) to improve damping oscillation and enhance transient stability. The effectiveness of a PSS connected to the exciter and/or governor in damping electromechanical oscillations of isolated synchronous generator was tested. The SVC device is a member of the shunt FACTS (flexible alternating current transmission system) family, utilized in power transmission systems. The designed model was tested with a multi-machine system consisting of four machines six bus, using MATLAB/SIMULINK software. The results obtained indicate that SVC solutions are better than PSS.

Keywords: FACTS, MATLAB/SIMULINK, multi-machine system, PSS, SVC, transient stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3315
137 Groundwater Seepage Estimation into Amirkabir Tunnel Using Analytical Methods and DEM and SGR Method

Authors: Hadi Farhadian, Homayoon Katibeh

Abstract:

In this paper, groundwater seepage into Amirkabir tunnel has been estimated using analytical and numerical methods for 14 different sections of the tunnel. Site Groundwater Rating (SGR) method also has been performed for qualitative and quantitative classification of the tunnel sections. The obtained results of above mentioned methods were compared together. The study shows reasonable accordance with results of the all methods unless for two sections of tunnel. In these two sections there are some significant discrepancies between numerical and analytical results mainly originated from model geometry and high overburden. SGR and the analytical and numerical calculations, confirm high concentration of seepage inflow in fault zones. Maximum seepage flow into tunnel has been estimated 0.425 lit/sec/m using analytical method and 0.628 lit/sec/m using numerical method occured in crashed zone. Based on SGR method, six sections of 14 sections in Amirkabir tunnel axis are found to be in "No Risk" class that is supported by the analytical and numerical seepage value of less than 0.04 lit/sec/m.

Keywords: Water Seepage, Amirkabir Tunnel, Analytical Method, DEM, SGR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3905
136 Fuzzy Neuro Approach to Busbar Protection; Design and Implementation

Authors: M. R. Aghaebrahimi, H. Khorashadi Zadeh

Abstract:

This paper presents a new approach for busbar protection with stable operation of current transformer during saturation, using fuzzy neuro and symmetrical components theory. This technique uses symmetrical components of current signals to learn the hidden relationship existing in the input patterns. Simulation studies are preformed and the influence of changing system parameters such as inception fault and source impedance is studied. Details of the design procedure and the results of performance studies with the proposed relay are given in the paper. An analysis of the performance of the proposed technique during ct saturation conditions is presented. The performance of the technique was investigated for a variety of operating conditions and for several busbar configurations. Data generated by EMTDC simulations of model power systems were used in the investigations. The results indicate that the proposed technique is stable during ct saturation conditions.

Keywords: Busbar protection, fuzzy neuro, Ct saturation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1834
135 Alignment of Emission Gamma Ray Sources with Nai(Ti) Scintillation Detectors by Two Laser Beams to Pre-Operation using Alternating Minimization Technique

Authors: Abbas Ali Mahmood Karwi

Abstract:

Accurate timing alignment and stability is important to maximize the true counts and minimize the random counts in positron emission tomography So signals output from detectors must be centering with the two isotopes to pre-operation and fed signals into four units of pulse-processing units, each unit can accept up to eight inputs. The dual source computed tomography consist two units on the left for 15 detector signals of Cs-137 isotope and two units on the right are for 15 detectors signals of Co-60 isotope. The gamma spectrum consisting of either single or multiple photo peaks. This allows for the use of energy discrimination electronic hardware associated with the data acquisition system to acquire photon counts data with a specific energy, even if poor energy resolution detectors are used. This also helps to avoid counting of the Compton scatter counts especially if a single discrete gamma photo peak is emitted by the source as in the case of Cs-137. In this study the polyenergetic version of the alternating minimization algorithm is applied to the dual energy gamma computed tomography problem.

Keywords: Alignment, Spectrum, Laser, Detectors, Image

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1578
134 Tuning of Power System Stabilizers in a Multi- Machine Power System using C-Catfish PSO

Authors: M. H. Moradi, S. M. Moosavi, A. R. Reisi

Abstract:

The main objective of this paper is to investigate the enhancement of power system stability via coordinated tuning of Power System Stabilizers (PSSs) in a multi-machine power system. The design problem of the proposed controllers is formulated as an optimization problem. Chaotic catfish particle swarm optimization (C-Catfish PSO) algorithm is used to minimize the ITAE objective function. The proposed algorithm is evaluated on a two-area, 4- machines system. The robustness of the proposed algorithm is verified on this system under different operating conditions and applying a three-phase fault. The nonlinear time-domain simulation results and some performance indices show the effectiveness of the proposed controller in damping power system oscillations and this novel optimization algorithm is compared with particle swarm optimization (PSO).

Keywords: Power system stabilizer, C-Catfish PSO, ITAE objective function, Power system control, Multi-machine power system

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2380
133 A Simple and Efficient Method for Accurate Measurement and Control of Power Frequency Deviation

Authors: S. J. Arif

Abstract:

In the presented technique, a simple method is given for accurate measurement and control of power frequency deviation. The sinusoidal signal for which the frequency deviation measurement is required is transformed to a low voltage level and passed through a zero crossing detector to convert it into a pulse train. Another stable square wave signal of 10 KHz is obtained using a crystal oscillator and decade dividing assemblies (DDA). These signals are combined digitally and then passed through decade counters to give a unique combination of pulses or levels, which are further encoded to make them equally suitable for both control applications and display units. The developed circuit using discrete components has a resolution of 0.5 Hz and completes measurement within 20 ms. The realized circuit is simulated and synthesized using Verilog HDL and subsequently implemented on FPGA. The results of measurement on FPGA are observed on a very high resolution logic analyzer. These results accurately match the simulation results as well as the results of same circuit implemented with discrete components. The proposed system is suitable for accurate measurement and control of power frequency deviation.

Keywords: Digital encoder for frequency measurement, frequency deviation measurement, measurement and control systems, power systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1396
132 Fatigue Life Prediction on Steel Beam Bridges under Variable Amplitude Loading

Authors: M. F. V. Montezuma, E. P. Deus, M. C. Carvalho

Abstract:

Steel bridges are normally subjected to random loads with different traffic frequencies. They are structures with dynamic behavior and are subject to fatigue failure process, where the nucleation of a crack, growth and failure can occur. After locating and determining the size of an existing fault, it is important to predict the crack propagation and the convenient time for repair. Therefore, fracture mechanics and fatigue concepts are essential to the right approach to the problem. To study the fatigue crack growth, a computational code was developed by using the root mean square (RMS) and the cycle-by-cycle models. One observes the variable amplitude loading influence on the life structural prediction. Different loads histories and initial crack length were considered as input variables. Thus, it was evaluated the dispersion of results of the expected structural life choosing different initial parameters.

Keywords: Fatigue crack propagation, life prediction, variable loadings, steel bridges.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 466
131 Software Maintenance Severity Prediction with Soft Computing Approach

Authors: E. Ardil, Erdem Uçar, Parvinder S. Sandhu

Abstract:

As the majority of faults are found in a few of its modules so there is a need to investigate the modules that are affected severely as compared to other modules and proper maintenance need to be done on time especially for the critical applications. In this paper, we have explored the different predictor models to NASA-s public domain defect dataset coded in Perl programming language. Different machine learning algorithms belonging to the different learner categories of the WEKA project including Mamdani Based Fuzzy Inference System and Neuro-fuzzy based system have been evaluated for the modeling of maintenance severity or impact of fault severity. The results are recorded in terms of Accuracy, Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE). The results show that Neuro-fuzzy based model provides relatively better prediction accuracy as compared to other models and hence, can be used for the maintenance severity prediction of the software.

Keywords: Software Metrics, Fuzzy, Neuro-Fuzzy, SoftwareFaults, Accuracy, MAE, RMSE.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1539
130 The Use of the Flat Field Panel for the On-Ground Calibration of Metis Coronagraph on Board of Solar Orbiter

Authors: C. Casini, V. Da Deppo, P. Zuppella, P. Chioetto, A. Slemer, F. Frassetto, M. Romoli, F. Landini, M. Pancrazzi, V. Andretta, E. Antonucci, A. Bemporad, M. Casti, Y. De Leo, M. Fabi, S. Fineschi, F. Frassati, C. Grimani, G. Jerse, P. Heinzel, K. Heerlein, A. Liberatore, E. Magli, G. Naletto, G. Nicolini, M.G. Pelizzo, P. Romano, C. Sasso, D. Spadaro, M. Stangalini, T. Straus, R. Susino, L. Teriaca, M. Uslenghi, A. Volpicelli

Abstract:

Solar Orbiter, launched on February 9th 2020, is an ESA/NASA mission conceived to study the Sun. The payload is composed of 10 instruments, among which there is the Metis coronagraph. A coronagraph aims at taking images of the solar corona: the occulter element simulates a total solar eclipse. This work presents some of the results obtained in the visible light band (580-640 nm) using a flat field panel source. The flat field panel gives a uniform illumination; consequently, it has been used during the on-ground calibration for several purposes: evaluating the response of each pixel of the detector (linearity); and characterizing the Field of View of the coronagraph. As a conclusion, a major result is the verification that the requirement for the Field of View (FoV) of Metis is fulfilled. Some investigations are in progress in order to verify that the performance measured on-ground did not change after launch.

Keywords: Space instrumentation, Metis, solar coronagraph, flat field.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 637
129 Development of Soft-Core System for Heart Rate and Oxygen Saturation

Authors: Caje F. Pinto, Jivan S. Parab, Gourish M. Naik

Abstract:

This paper is about the development of non-invasive heart rate and oxygen saturation in human blood using Altera NIOS II soft-core processor system. In today's world, monitoring oxygen saturation and heart rate is very important in hospitals to keep track of low oxygen levels in blood. We have designed an Embedded System On Peripheral Chip (SOPC) reconfigurable system by interfacing two LED’s of different wavelengths (660 nm/940 nm) with a single photo-detector to measure the absorptions of hemoglobin species at different wavelengths. The implementation of the interface with Finger Probe and Liquid Crystal Display (LCD) was carried out using NIOS II soft-core system running on Altera NANO DE0 board having target as Cyclone IVE. This designed system is used to monitor oxygen saturation in blood and heart rate for different test subjects. The designed NIOS II processor based non-invasive heart rate and oxygen saturation was verified with another Operon Pulse oximeter for 50 measurements on 10 different subjects. It was found that the readings taken were very close to the Operon Pulse oximeter.

Keywords: Heart rate, NIOS II, Oxygen Saturation, photoplethysmography, soft-core, SOPC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1331
128 An Artificial Neural Network Model for Earthquake Prediction and Relations between Environmental Parameters and Earthquakes

Authors: S. Niksarlioglu, F. Kulahci

Abstract:

Earthquakes are natural phenomena that occur with influence of a lot of parameters such as seismic activity, changing in the ground waters' motion, changing in the water-s temperature, etc. On the other hand, the radon gas concentrations in soil vary as nonlinear generally with earthquakes. Continuous measurement of the soil radon gas is very important for determination of characteristic of the seismic activity. The radon gas changes as continuous with strain occurring within the Earth-s surface during an earthquake and effects from the physical and the chemical processes such as soil structure, soil permeability, soil temperature, the barometric pressure, etc. Therefore, at the modeling researches are notsufficient to knowthe concentration ofradon gas. In this research, we determined relationships between radon emissions based on the environmental parameters and earthquakes occurring along the East Anatolian Fault Zone (EAFZ), Turkiye and predicted magnitudes of some earthquakes with the artificial neural network (ANN) model.

Keywords: Earthquake, Modeling, Prediction, Radon.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2959
127 WiPoD Wireless Positioning System based on 802.11 WLAN Infrastructure

Authors: Haluk Gümüskaya, Hüseyin Hakkoymaz

Abstract:

This paper describes WiPoD (Wireless Position Detector) which is a pure software based location determination and tracking (positioning) system. It uses empirical signal strength measurements from different wireless access points for mobile user positioning. It is designed to determine the location of users having 802.11 enabled mobile devices in an 802.11 WLAN infrastructure and track them in real time. WiPoD is the first main module in our LBS (Location Based Services) framework. We tested K-Nearest Neighbor and Triangulation algorithms to estimate the position of a mobile user. We also give the analysis results of these algorithms for real time operations. In this paper, we propose a supportable, i.e. understandable, maintainable, scalable and portable wireless positioning system architecture for an LBS framework. The WiPoD software has a multithreaded structure and was designed and implemented with paying attention to supportability features and real-time constraints and using object oriented design principles. We also describe the real-time software design issues of a wireless positioning system which will be part of an LBS framework.

Keywords: Indoor location determination and tracking, positioning in Wireless LAN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1952
126 Comparative Analysis and Evaluation of Software Vulnerabilities Testing Techniques

Authors: Khalid Alnafjan, Tazar Hussain, Hanif Ullah, Zia ul haq Paracha

Abstract:

Software and applications are subjected to serious and damaging security threats, these threats are increasing as a result of increased number of potential vulnerabilities. Security testing is an indispensable process to validate software security requirements and to identify security related vulnerabilities. In this paper we analyze and compare different available vulnerabilities testing techniques based on a pre defined criteria using analytical hierarchy process (AHP). We have selected five testing techniques which includes Source code analysis, Fault code injection, Robustness, Stress and Penetration testing techniques. These testing techniques have been evaluated against five criteria which include cost, thoroughness, Ease of use, effectiveness and efficiency. The outcome of the study is helpful for researchers, testers and developers to understand effectiveness of each technique in its respective domain. Also the study helps to compare the inner working of testing techniques against a selected criterion to achieve optimum testing results.

Keywords: Software Security, Security Testing, Testing techniques, vulnerability, AHP.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2844
125 Robust Coordinated Design of Multiple Power System Stabilizers Using Particle Swarm Optimization Technique

Authors: Sidhartha Panda, C. Ardil

Abstract:

Power system stabilizers (PSS) are now routinely used in the industry to damp out power system oscillations. In this paper, particle swarm optimization (PSO) technique is applied to coordinately design multiple power system stabilizers (PSS) in a multi-machine power system. The design problem of the proposed controllers is formulated as an optimization problem and PSO is employed to search for optimal controller parameters. By minimizing the time-domain based objective function, in which the deviation in the oscillatory rotor speed of the generator is involved; stability performance of the system is improved. The non-linear simulation results are presented for various severe disturbances and small disturbance at different locations as well as for various fault clearing sequences to show the effectiveness and robustness of the proposed controller and their ability to provide efficient damping of low frequency oscillations.

Keywords: Low frequency oscillations, Particle swarm optimization, power system stability, power system stabilizer, multimachine power system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 834
124 Secure Secret Recovery by using Weighted Personal Entropy

Authors: Leau Y. B., Dinna Nina M. N., Habeeb S. A. H., Jetol B.

Abstract:

Authentication plays a vital role in many secure systems. Most of these systems require user to log in with his or her secret password or pass phrase before entering it. This is to ensure all the valuables information is kept confidential guaranteeing also its integrity and availability. However, to achieve this goal, users are required to memorize high entropy passwords or pass phrases. Unfortunately, this sometimes causes difficulty for user to remember meaningless strings of data. This paper presents a new scheme which assigns a weight to each personal question given to the user in revealing the encrypted secrets or password. Concentration of this scheme is to offer fault tolerance to users by allowing them to forget the specific password to a subset of questions and still recover the secret and achieve successful authentication. Comparison on level of security for weight-based and weightless secret recovery scheme is also discussed. The paper concludes with the few areas that requires more investigation in this research.

Keywords: Secret Recovery, Personal Entropy, Cryptography, Secret Sharing and Key Management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1924
123 Detection of Ultrasonic Images in the Presence of a Random Number of Scatterers: A Statistical Learning Approach

Authors: J. P. Dubois, O. M. Abdul-Latif

Abstract:

Support Vector Machine (SVM) is a statistical learning tool that was initially developed by Vapnik in 1979 and later developed to a more complex concept of structural risk minimization (SRM). SVM is playing an increasing role in applications to detection problems in various engineering problems, notably in statistical signal processing, pattern recognition, image analysis, and communication systems. In this paper, SVM was applied to the detection of medical ultrasound images in the presence of partially developed speckle noise. The simulation was done for single look and multi-look speckle models to give a complete overlook and insight to the new proposed model of the SVM-based detector. The structure of the SVM was derived and applied to clinical ultrasound images and its performance in terms of the mean square error (MSE) metric was calculated. We showed that the SVM-detected ultrasound images have a very low MSE and are of good quality. The quality of the processed speckled images improved for the multi-look model. Furthermore, the contrast of the SVM detected images was higher than that of the original non-noisy images, indicating that the SVM approach increased the distance between the pixel reflectivity levels (detection hypotheses) in the original images.

Keywords: LS-SVM, medical ultrasound imaging, partially developed speckle, multi-look model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1302
122 SVM-Based Detection of SAR Images in Partially Developed Speckle Noise

Authors: J. P. Dubois, O. M. Abdul-Latif

Abstract:

Support Vector Machine (SVM) is a statistical learning tool that was initially developed by Vapnik in 1979 and later developed to a more complex concept of structural risk minimization (SRM). SVM is playing an increasing role in applications to detection problems in various engineering problems, notably in statistical signal processing, pattern recognition, image analysis, and communication systems. In this paper, SVM was applied to the detection of SAR (synthetic aperture radar) images in the presence of partially developed speckle noise. The simulation was done for single look and multi-look speckle models to give a complete overlook and insight to the new proposed model of the SVM-based detector. The structure of the SVM was derived and applied to real SAR images and its performance in terms of the mean square error (MSE) metric was calculated. We showed that the SVM-detected SAR images have a very low MSE and are of good quality. The quality of the processed speckled images improved for the multi-look model. Furthermore, the contrast of the SVM detected images was higher than that of the original non-noisy images, indicating that the SVM approach increased the distance between the pixel reflectivity levels (the detection hypotheses) in the original images.

Keywords: Least Square-Support Vector Machine, SyntheticAperture Radar. Partially Developed Speckle, Multi-Look Model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1496
121 SWARM: A Meta-Scheduler to Minimize Job Queuing Times on Computational Grids

Authors: Jean-Alain Grunchec, Jules Hernández-Sánchez, Sara Knott

Abstract:

Some meta-schedulers query the information system of individual supercomputers in order to submit jobs to the least busy supercomputer on a computational Grid. However, this information can become outdated by the time a job starts due to changes in scheduling priorities. The MSR scheme is based on Multiple Simultaneous Requests and can take advantage of opportunities resulting from these priorities changes. This paper presents the SWARM meta-scheduler, which can speed up the execution of large sets of tasks by minimizing the job queuing time through the submission of multiple requests. Performance tests have shown that this new meta-scheduler is faster than an implementation of the MSR scheme and the gLite meta-scheduler. SWARM has been used through the GridQTL project beta-testing portal during the past year. Statistics are provided for this usage and demonstrate its capacity to achieve reliably a substantial reduction of the execution time in production conditions.

Keywords: Grid computing, multiple simultaneous requests, fault tolerance, GridQTL.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1870
120 The Search of Anomalous Higgs Boson Couplings at the Large Hadron Electron Collider and Future Circular Electron Hadron Collider

Authors: Ilkay Turk Cakir, Murat Altinli, Zekeriya Uysal, Abdulkadir Senol, Olcay Bolukbasi Yalcinkaya, Ali Yilmaz

Abstract:

The Higgs boson was discovered by the ATLAS and CMS experimental groups in 2012 at the Large Hadron Collider (LHC). Production and decay properties of the Higgs boson, Standard Model (SM) couplings, and limits on effective scale of the Higgs boson’s couplings with other bosons are investigated at particle colliders. Deviations from SM estimates are parametrized by effective Lagrangian terms to investigate Higgs couplings. This is a model-independent method for describing the new physics. In this study, sensitivity to neutral gauge boson anomalous couplings with the Higgs boson is investigated using the parameters of the Large Hadron electron Collider (LHeC) and the Future Circular electron-hadron Collider (FCC-eh) with a model-independent approach. By using MadGraph5_aMC@NLO multi-purpose event generator with the parameters of LHeC and FCC-eh, the bounds on the anomalous Hγγ, HγZ and HZZ couplings in e− p → e− q H process are obtained. Detector simulations are also taken into account in the calculations.

Keywords: Anomalous Couplings, Effective Lagrangian, Electron-Proton Colliders, Higgs Boson.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 816