Search results for: electrical
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 784

Search results for: electrical

154 Study on Ultrasonic Vibration Effects on Grinding Process of Alumina Ceramic (Al2O3)

Authors: Javad Akbari, Hassan Borzoie, Mohammad Hossein Mamduhi

Abstract:

Nowadays, engineering ceramics have significant applications in different industries such as; automotive, aerospace, electrical, electronics and even martial industries due to their attractive physical and mechanical properties like very high hardness and strength at elevated temperatures, chemical stability, low friction and high wear resistance. However, these interesting properties plus low heat conductivity make their machining processes too hard, costly and time consuming. Many attempts have been made in order to make the grinding process of engineering ceramics easier and many scientists have tried to find proper techniques to economize ceramics' machining processes. This paper proposes a new diamond plunge grinding technique using ultrasonic vibration for grinding Alumina ceramic (Al2O3). For this purpose, a set of laboratory equipments have been designed and simulated using Finite Element Method (FEM) and constructed in order to be used in various measurements. The results obtained have been compared with the conventional plunge grinding process without ultrasonic vibration and indicated that the surface roughness and fracture strength improved and the grinding forces decreased.

Keywords: Engineering ceramic, Finite Element Method, Plunge grinding, Ultrasonic vibration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2346
153 Near Shore Wave Manipulation for Electricity Generation

Authors: K. D. R. Jagath-Kumara, D. D. Dias

Abstract:

The sea waves carry thousands of GWs of power globally. Although there are a number of different approaches to harness offshore energy, they are likely to be expensive, practically challenging, and vulnerable to storms. Therefore, this paper considers using the near shore waves for generating mechanical and electrical power. It introduces two new approaches, the wave manipulation and using a variable duct turbine, for intercepting very wide wave fronts and coping with the fluctuations of the wave height and the sea level, respectively. The first approach effectively allows capturing much more energy yet with a much narrower turbine rotor. The second approach allows using a rotor with a smaller radius but captures energy of higher wave fronts at higher sea levels yet preventing it from totally submerging. To illustrate the effectiveness of the first approach, the paper contains a description and the simulation results of a scale model of a wave manipulator. Then, it includes the results of testing a physical model of the manipulator and a single duct, axial flow turbine in a wave flume in the laboratory. The paper also includes comparisons of theoretical predictions, simulation results, and wave flume tests with respect to the incident energy, loss in wave manipulation, minimal loss, brake torque, and the angular velocity.

Keywords: Near-shore sea waves, Renewable energy, Wave energy conversion, Wave manipulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1934
152 Genetic Algorithm Optimization of the Economical, Ecological and Self-Consumption Impact of the Energy Production of a Single Building

Authors: Ludovic Favre, Thibaut M. Schafer, Jean-Luc Robyr, Elena-Lavinia Niederhäuser

Abstract:

This paper presents an optimization method based on genetic algorithm for the energy management inside buildings developed in the frame of the project Smart Living Lab (SLL) in Fribourg (Switzerland). This algorithm optimizes the interaction between renewable energy production, storage systems and energy consumers. In comparison with standard algorithms, the innovative aspect of this project is the extension of the smart regulation over three simultaneous criteria: the energy self-consumption, the decrease of greenhouse gas emissions and operating costs. The genetic algorithm approach was chosen due to the large quantity of optimization variables and the non-linearity of the optimization function. The optimization process includes also real time data of the building as well as weather forecast and users habits. This information is used by a physical model of the building energy resources to predict the future energy production and needs, to select the best energetic strategy, to combine production or storage of energy in order to guarantee the demand of electrical and thermal energy. The principle of operation of the algorithm as well as typical output example of the algorithm is presented.

Keywords: Building’s energy, control system, energy management, modelling, genetic optimization algorithm, renewable energy, greenhouse gases, energy storage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 726
151 Comparative Analysis of Different Control Strategies for Electro-hydraulic Servo Systems

Authors: Ismail Algelli Sassi Ehtiwesh, Željko Đurović

Abstract:

The main goal of the study is to analyze all relevant properties of the electro hydraulic systems and based on that to make a proper choice of the control strategy that may be used for the control of the servomechanism system. A combination of electronic and hydraulic systems is widely used since it combines the advantages of both. Hydraulic systems are widely spread because of their properties as accuracy, flexibility, high horsepower-to-weight ratio, fast starting, stopping and reversal with smoothness and precision, and simplicity of operations. On the other hand, the modern control of hydraulic systems is based on control of the circuit fed to the inductive solenoid that controls the position of the hydraulic valve. Since this circuit may be easily handled by PWM (Pulse Width Modulation) signal with a proper frequency, the combination of electrical and hydraulic systems became very fruitful and usable in specific areas as airplane and military industry. The study shows and discusses the experimental results obtained by the control strategy (classical feedback (PID) & neural network) using MATLAB and SIMULINK [1]. Finally, the special attention was paid to the possibility of neuro-controller design and its application to control of electro-hydraulic systems and to make comparative with classical control.

Keywords: Electro-hydraulic systems, PID, Neural network controller.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1797
150 Process Parameter Optimization in Resistance Spot Welding of Dissimilar Thickness Materials

Authors: Pradeep M., N. S. Mahesh, Raja Hussain

Abstract:

Resistance spot welding (RSW) has been used widely to join sheet metals. It has been a challenge to get required weld quality in spot welding of dissimilar thickness materials. Weld parameters are not generally available in standards for thickness beyond 4mm. This paper presents the welding process design and parameter optimization of RSW used in joining of low carbon steel sheet of thickness 0.8 mm and metal strips of cross section 10 x 5mm for electrical motor applications. Taguchi quality design was adopted for weld current and time optimization using L9 orthogonal array. Optimum process parameters (current- 3.5kA and time- 10 cycles) were obtained from the Taguchi analysis and shear test results. Confirmation experiment result revealed that the weld quality was within acceptable interval. Further, numerical simulation of RSW process was carried out with selected weld parameters to quantify the temperature at faying surface and check for formation of appropriate nugget. The nugget geometry measured after peel test and predicted from numerical validation method were similar and in accordance with the standards.

Keywords: Resistance spot welding, dissimilar thickness, weld parameters, Taguchi method, numerical modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5142
149 Effect of Chlorophyll Concentration Variations from Extract of Papaya Leaves on Dye-Sensitized Solar Cell

Authors: Eka Maulana, Sholeh Hadi Pramono, Dody Fanditya, M. Julius

Abstract:

In this paper, extract of papaya leaves are used as a natural dye and combined by variations of solvent concentration applied on DSSC (Dye-Sensitized Solar Cell). Indonesian geographic located on the equator line occasions the magnitude of the potential to develop organic solar cells made from extracts of chlorophyll as a substitute for inorganic materials or synthetic dye on DSSC material. Dye serves as absorbing photons which are then converted into electrical energy. A conductive coated glass layer called TCO (Transparent Conductive Oxide) is used as a substrate of electrode. TiO2 nanoparticles as binding dye molecules, redox couple iodide/ tri-iodide as the electrolyte and carbon as the counter electrode in the DSSC are used. TiO2 nanoparticles, organic dyes, electrolytes, and counter electrode are arranged and combined with the layered structure of the photo-catalyst absorption layer. Dye absorption measurements using a spectrophotometer at 400-800 nm light spectrum produces a total amount of chlorophyll 80.076 mg/l. The test cell at 7 watt LED light with 5000 lux luminescence was obtained Voc and Isc of 235.5 mV and 14 μA, respectively.

Keywords: DSSC (Dye-Sensitized Solar Cell), natural dye, chlorophyll, absorption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2904
148 Numerical Investigation on Performance of Expanded Polystyrene Geofoam Block in Protecting Buried Lifeline Structures

Authors: M. Abdollahi, S. N. Moghaddas Tafreshi

Abstract:

Expanded polystyrene (EPS) geofoam is often used in below ground applications in geotechnical engineering. A most recent configuration system implemented in roadways to protect lifelines such as buried pipes, electrical cables and culvert systems could be consisted of two EPS geofoam blocks, “posts” placed on each side of the structure, an EPS block capping, “beam” put atop two posts, and soil cover on the beam. In this configuration, a rectangular void space will be built atop the lifeline. EPS blocks will stand all the imposed vertical forces due to their strength and deformability, thus the lifeline will experience no vertical stress. The present paper describes the results of a numerical study on the post and beam configuration subjected to the static loading. Three-dimensional finite element analysis using ABAQUS software is carried out to investigate the effect of different parameters such as beam thickness, soil thickness over the beam, post height to width ratio, EPS density, and free span between two posts, on the stress distribution and the deflection of the beam. The results show favorable performance of EPS geofoam for protecting sensitive infrastructures.

Keywords: Beam, EPS block, numerical analysis, post, stress distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1088
147 Fatigue Analysis of Crack Growing Rate and Stress Intensity Factor for Stress Corrosion Cracking in a Pipeline System

Authors: A. R. Shahani, E. Mahdavi, M. Amidpour

Abstract:

Environment-assisted cracking (EAC) is one of the most serious causes of structural failure over a broad range of industrial applications including offshore structures. In EAC condition there is not a definite relation such as Paris equation in Linear Elastic Fracture Mechanics (LEFM). According to studying and searching a lot what the researchers said either a material has contact with hydrogen or any other corrosive environment, phenomenon of electrical and chemical reactions of material with its environment will be happened. In the literature, there are many different works to consider fatigue crack growing and solve it but they are experimental works. Thus, in this paper, authors have an aim to evaluate mathematically the pervious works in LEFM. Obviously, if an environment is more sour and corrosive, the changes of stress intensity factor is more and the calculation of stress intensity factor is difficult. A mathematical relation to deal with the stress intensity factor during the diffusion of sour environment especially hydrogen in a marine pipeline is presented. By using this relation having and some experimental relation an analytical formulation will be presented which enables the fatigue crack growth and critical crack length under cyclic loading to be predicted. In addition, we can calculate KSCC and stress intensity factor in the pipeline caused by EAC.

Keywords: Embrittlement, Fracture mechanics, Hydrogen diffusion, Stress intensity factor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2295
146 The Relationship between Fugacity and Stress Intensity Factor for Corrosive Environment in Presence of Hydrogen Embrittlement

Authors: A. R. Shahani, E. Mahdavi, M. Amidpour

Abstract:

Hydrogen diffusion is the main problem for corrosion fatigue in corrosive environment. In order to analyze the phenomenon, it is needed to understand their behaviors specially the hydrogen behavior during the diffusion. So, Hydrogen embrittlement and prediction its behavior as a main corrosive part of the fractions, needed to solve combinations of different equations mathematically. The main point to obtain the equation, having knowledge about the source of causing diffusion and running the atoms into materials, called driving force. This is produced by either gradient of electrical or chemical potential. In this work, we consider the gradient of chemical potential to obtain the property equation. In diffusion of atoms, some of them may be trapped but, it could be ignorable in some conditions. According to the phenomenon of hydrogen embrittlement, the thermodynamic and chemical properties of hydrogen are considered to justify and relate them to fracture mechanics. It is very important to get a stress intensity factor by using fugacity as a property of hydrogen or other gases. Although, the diffusive behavior and embrittlement event are common and the same for other gases but, for making it more clear, we describe it for hydrogen. This considering on the definite gas and describing it helps us to understand better the importance of this relation.

Keywords: Hydrogen embrittlement, Fracture mechanics, Thermodynamic, Stress intensity factor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1917
145 Design Neural Network Controller for Mechatronic System

Authors: Ismail Algelli Sassi Ehtiwesh, Mohamed Ali Elhaj

Abstract:

The main goal of the study is to analyze all relevant properties of the electro hydraulic systems and based on that to make a proper choice of the neural network control strategy that may be used for the control of the mechatronic system. A combination of electronic and hydraulic systems is widely used since it combines the advantages of both. Hydraulic systems are widely spread because of their properties as accuracy, flexibility, high horsepower-to-weight ratio, fast starting, stopping and reversal with smoothness and precision, and simplicity of operations. On the other hand, the modern control of hydraulic systems is based on control of the circuit fed to the inductive solenoid that controls the position of the hydraulic valve. Since this circuit may be easily handled by PWM (Pulse Width Modulation) signal with a proper frequency, the combination of electrical and hydraulic systems became very fruitful and usable in specific areas as airplane and military industry. The study shows and discusses the experimental results obtained by the control strategy of neural network control using MATLAB and SIMULINK [1]. Finally, the special attention was paid to the possibility of neuro-controller design and its application to control of electro-hydraulic systems and to make comparative with other kinds of control.

Keywords: Neural-Network controller, Mechatronic, electrohydraulic

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2140
144 Strongly Coupled Finite Element Formulation of Electromechanical Systems with Integrated Mesh Morphing using Radial Basis Functions

Authors: D. Kriebel, J. E. Mehner

Abstract:

The paper introduces a method to efficiently simulate nonlinear changing electrostatic fields occurring in micro-electromechanical systems (MEMS). Large deflections of the capacitor electrodes usually introduce nonlinear electromechanical forces on the mechanical system. Traditional finite element methods require a time-consuming remeshing process to capture exact results for this physical domain interaction. In order to accelerate the simulation process and eliminate the remeshing process, a formulation of a strongly coupled electromechanical transducer element will be introduced which uses a combination of finite-element with an advanced mesh morphing technique using radial basis functions (RBF). The RBF allows large geometrical changes of the electric field domain while retain high element quality of the deformed mesh. Coupling effects between mechanical and electrical domains are directly included within the element formulation. Fringing field effects are described accurate by using traditional arbitrary shape functions.

Keywords: electromechanical, electric field, transducer, simulation, modeling, finite-element, mesh morphing, radial basis function

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 438
143 The Effect of Electric Field Distributions on Grains and Insect for Dielectric Heating Applications

Authors: S. Santalunai, T. Thosdeekoraphat, C. Thongsopa

Abstract:

This paper presents the effect of electric field distribution which is an electric field intensity analysis. Consideration of the dielectric heating of grains and insects, the rice and rice weevils are utilized for dielectric heating analysis. Furthermore, this analysis compares the effect of electric field distribution in rice and rice weevil. In this simulation, two copper plates are used to generate the electric field for dielectric heating system and put the rice materials between the copper plates. The simulation is classified in two cases, which are case I one rice weevil is placed in the rice and case II two rice weevils are placed at different position in the rice. Moreover, the probes are located in various different positions on plate. The power feeding on this plate is optimized by using CST EM studio program of 1000 watt electrical power at 39 MHz resonance frequency. The results of two cases are indicated that the most electric field distribution and intensity are occurred on the rice and rice weevils at the near point of the probes. Moreover, the heat is directed to the rice weevils more than the rice. When the temperature of rice and rice weevils are calculated and compared, the rice weevils has the temperature more than rice is about 41.62 Celsius degrees. These results can be applied for the dielectric heating applications to eliminate insect.

Keywords: Copper plates, Electric field distribution, Dielectric heating.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2287
142 Simulation-Based Optimization of a Non-Uniform Piezoelectric Energy Harvester with Stack Boundary

Authors: Alireza Keshmiri, Shahriar Bagheri, Nan Wu

Abstract:

This research presents an analytical model for the development of an energy harvester with piezoelectric rings stacked at the boundary of the structure based on the Adomian decomposition method. The model is applied to geometrically non-uniform beams to derive the steady-state dynamic response of the structure subjected to base motion excitation and efficiently harvest the subsequent vibrational energy. The in-plane polarization of the piezoelectric rings is employed to enhance the electrical power output. A parametric study for the proposed energy harvester with various design parameters is done to prepare the dataset required for optimization. Finally, simulation-based optimization technique helps to find the optimum structural design with maximum efficiency. To solve the optimization problem, an artificial neural network is first trained to replace the simulation model, and then, a genetic algorithm is employed to find the optimized design variables. Higher geometrical non-uniformity and length of the beam lowers the structure natural frequency and generates a larger power output.

Keywords: Piezoelectricity, energy harvesting, simulation-based optimization, artificial neural network, genetic algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 800
141 Design and Implementation a Fully Autonomous Soccer Player Robot

Authors: S. H. Mohades Kasaei, S. M. Mohades Kasaei, S. A. Mohades Kasaei, M. Taheri, M. Rahimi, H. Vahiddastgerdi, M. Saeidinezhad

Abstract:

Omni directional mobile robots have been popularly employed in several applications especially in soccer player robots considered in Robocup competitions. However, Omni directional navigation system, Omni-vision system and solenoid kicking mechanism in such mobile robots have not ever been combined. This situation brings the idea of a robot with no head direction into existence, a comprehensive Omni directional mobile robot. Such a robot can respond more quickly and it would be capable for more sophisticated behaviors with multi-sensor data fusion algorithm for global localization base on the data fusion. This paper has tried to focus on the research improvements in the mechanical, electrical and software design of the robots of team ADRO Iran. The main improvements are the world model, the new strategy framework, mechanical structure, Omni-vision sensor for object detection, robot path planning, active ball handling mechanism and the new kicker design, , and other subjects related to mobile robot

Keywords: Mobile robot, Machine vision, Omni directional movement, Autonomous Systems, Robot path planning, Object Localization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2101
140 Fuzzy Modeling for Micro EDM Parameters Optimization in Drilling of Biomedical Implants Ti-6Al-4V Alloy for Higher Machining Performance

Authors: Ahmed A.D. Sarhan, Lim Siew Fen, Mum Wai Yip, M. Sayuti

Abstract:

Ti6Al4V alloy is highly used in the automotive and aerospace industry due to its good machining characteristics. Micro EDM drilling is commonly used to drill micro hole on extremely hard material with very high depth to diameter ratio. In this study, the parameters of micro-electrical discharge machining (EDM) in drilling of Ti6Al4V alloy is optimized for higher machining accuracy with less hole-dilation and hole taper ratio. The micro-EDM machining parameters includes, peak current and pulse on time. Fuzzy analysis was developed to evaluate the machining accuracy. The analysis shows that hole-dilation and hole-taper ratio are increased with the increasing of peak current and pulse on time. However, the surface quality deteriorates as the peak current and pulse on time increase. The combination that gives the optimum result for hole dilation is medium peak current and short pulse on time. Meanwhile, the optimum result for hole taper ratio is low peak current and short pulse on time.

Keywords: Micro EDM, Ti-6Al-4V alloy, fuzzy logic based analysis, optimization, machining accuracy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2691
139 An Efficient Technique for EMI Mitigation in Fluorescent Lamps using Frequency Modulation and Evolutionary Programming

Authors: V.Sekar, T.G.Palanivelu, B.Revathi

Abstract:

Electromagnetic interference (EMI) is one of the serious problems in most electrical and electronic appliances including fluorescent lamps. The electronic ballast used to regulate the power flow through the lamp is the major cause for EMI. The interference is because of the high frequency switching operation of the ballast. Formerly, some EMI mitigation techniques were in practice, but they were not satisfactory because of the hardware complexity in the circuit design, increased parasitic components and power consumption and so on. The majority of the researchers have their spotlight only on EMI mitigation without considering the other constraints such as cost, effective operation of the equipment etc. In this paper, we propose a technique for EMI mitigation in fluorescent lamps by integrating Frequency Modulation and Evolutionary Programming. By the Frequency Modulation technique, the switching at a single central frequency is extended to a range of frequencies, and so, the power is distributed throughout the range of frequencies leading to EMI mitigation. But in order to meet the operating frequency of the ballast and the operating power of the fluorescent lamps, an optimal modulation index is necessary for Frequency Modulation. The optimal modulation index is determined using Evolutionary Programming. Thereby, the proposed technique mitigates the EMI to a satisfactory level without disturbing the operation of the fluorescent lamp.

Keywords: Ballast, Electromagnetic interference (EMI), EMImitigation, Evolutionary programming (EP), Fluorescent lamp, Frequency Modulation (FM), Modulation index.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2238
138 Integration of Unified Power Flow Controller with Backup Energy Supply System for Enhancing Power System Stability

Authors: K. Saravanan

Abstract:

An electrical power system has some negative aspects such as flickering and deviations of voltage/power. This can be eliminated using energy storage devices that will provide a backup energy at the time of voltage/power deviations. Energy-storage devices get charging when system voltage/power is higher than reference value and discharging when system voltage/power is lower than reference value, it is acting as catalysts to provide energy boost. In this paper, a dynamic control of Unified Power Flow Controller (UPFC) integrated with superconducting magnetic energy storage (SMES) is developed to improve the power quality, power oscillation damping, and dynamic voltage stability through the transmission line. UPFC inter-connected to SMES through an interface with DC-DC chopper. This inter-connected system is capable of injecting (absorbing) the real and reactive power into (from) the system at the beginning of stability problems. In this paper, the simulation results of UPFC integrated with SMES and UPFC integrated with fuel cells (FCs) are compared using MATLAB/Simulink software package.

Keywords: UPFC, SMES, power system stability, flexible ac transmission systems, fuel cells, chopper.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1345
137 Two Area Power Systems Economic Dispatch Problem Solving Considering Transmission Capacity Constraints

Authors: M. Zarei, A. Roozegar, R. Kazemzadeh, J.M. Kauffmann

Abstract:

This paper describes an efficient and practical method for economic dispatch problem in one and two area electrical power systems with considering the constraint of the tie transmission line capacity constraint. Direct search method (DSM) is used with some equality and inequality constraints of the production units with any kind of fuel cost function. By this method, it is possible to use several inequality constraints without having difficulty for complex cost functions or in the case of unavailability of the cost function derivative. To minimize the number of total iterations in searching, process multi-level convergence is incorporated in the DSM. Enhanced direct search method (EDSM) for two area power system will be investigated. The initial calculation step size that causes less iterations and then less calculation time is presented. Effect of the transmission tie line capacity, between areas, on economic dispatch problem and on total generation cost will be studied; line compensation and active power with reactive power dispatch are proposed to overcome the high generation costs for this multi-area system.

Keywords: Economic dispatch, Power System Operation, Direct Search Method, Transmission Capacity Constraint.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2432
136 Temperature Variation Effects on I-V Characteristics of Cu-Phthalocyanine based OFET

Authors: Q. Zafar, R. Akram, Kh.S. Karimov, T.A. Khan, M. Farooq, M.M. Tahir

Abstract:

In this study we present the effect of elevated temperatures from 300K to 400K on the electrical properties of copper Phthalocyanine (CuPc) based organic field effect transistors (OFET). Thin films of organic semiconductor CuPc (40nm) and semitransparent Al (20nm) were deposited in sequence, by vacuum evaporation on a glass substrate with previously deposited Ag source and drain electrodes with a gap of 40 μm. Under resistive mode of operation, where gate was suspended it was observed that drain current of this organic field effect transistor (OFET) show an increase with temperature. While in grounded gate condition metal (aluminum) – semiconductor (Copper Phthalocyanine) Schottky junction dominated the output characteristics and device showed switching effect from low to high conduction states like Zener diode at higher bias voltages. This threshold voltage for switching effect has been found to be inversely proportional to temperature and shows an abrupt decrease after knee temperature of 360K. Change in dynamic resistance (Rd = dV/dI) with respect to temperature was observed to be -1%/K.

Keywords: Copper Phthalocyanine, Metal-Semiconductor Schottky Junction, Organic Field Effect Transistor, Switching effect, Temperature Sensor

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2537
135 A Review on the Usage of Ceramic Wastes in Concrete Production

Authors: O. Zimbili, W. Salim, M. Ndambuki

Abstract:

Construction and Demolition (C&D) wastes contribute the highest percentage of wastes worldwide (75%). Furthermore, ceramic materials contribute the highest percentage of wastes within the C&D wastes (54%). The current option for disposal of ceramic wastes is landfill. This is due to unavailability of standards, avoidance of risk, lack of knowledge and experience in using ceramic wastes in construction. The ability of ceramic wastes to act as a pozzolanic material in the production of cement has been effectively explored. The results proved that temperatures used in the manufacturing of these tiles (about 900⁰C) are sufficient to activate pozzolanic properties of clay. They also showed that, after optimization (11-14% substitution); the cement blend performs better, with no morphological difference between the cement blended with ceramic waste, and that blended with other pozzolanic materials. Sanitary ware and electrical insulator porcelain wastes are some wastes investigated for usage as aggregates in concrete production. When optimized, both produced good results, better than when natural aggregates are used. However, the research on ceramic wastes as partial substitute for fine aggregates or cement has not been overly exploited as the other areas. This review has been concluded with focus on investigating whether ceramic wall tile wastes used as partial substitute for cement and fine aggregates could prove to be beneficial since the two materials are the most high-priced during concrete production.

Keywords: Blended, morphological, pozzolanic properties, waste.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8724
134 Artificial Neurons Based on Memristors for Spiking Neural Networks

Authors: Yan Yu, Wang Yu, Chen Xintong, Liu Yi, Zhang Yanzhong, Wang Yanji, Chen Xingyu, Zhang Miaocheng, Tong Yi

Abstract:

Neuromorphic computing based on spiking neural networks (SNNs) has emerged as a promising avenue for building the next generation of intelligent computing systems. Owing to their high-density integration, low power, and outstanding nonlinearity, memristors have attracted emerging attention on achieving SNNs. However, fabricating a low-power and robust memristor-based spiking neuron without extra electrical components is still a challenge for brain-inspired systems. In this work, we demonstrate a TiO2-based threshold switching (TS) memristor to emulate a leaky integrate-and-fire (LIF) neuron without auxiliary circuits, used to realize single layer fully connected (FC) SNNs. Moreover, our TiO2-based resistive switching (RS) memristors realize spiking-time-dependent-plasticity (STDP), originating from the Ag diffusion-based filamentary mechanism. This work demonstrates that TiO2-based memristors may provide an efficient method to construct hardware neuromorphic computing systems.

Keywords: Leaky integrate-and-fire, memristor, spiking neural networks, spiking-time-dependent-plasticity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 609
133 Artificial Intelligence Model to Predict Surface Roughness of Ti-15-3 Alloy in EDM Process

Authors: Md. Ashikur Rahman Khan, M. M. Rahman, K. Kadirgama, M.A. Maleque, Rosli A. Bakar

Abstract:

Conventionally the selection of parameters depends intensely on the operator-s experience or conservative technological data provided by the EDM equipment manufacturers that assign inconsistent machining performance. The parameter settings given by the manufacturers are only relevant with common steel grades. A single parameter change influences the process in a complex way. Hence, the present research proposes artificial neural network (ANN) models for the prediction of surface roughness on first commenced Ti-15-3 alloy in electrical discharge machining (EDM) process. The proposed models use peak current, pulse on time, pulse off time and servo voltage as input parameters. Multilayer perceptron (MLP) with three hidden layer feedforward networks are applied. An assessment is carried out with the models of distinct hidden layer. Training of the models is performed with data from an extensive series of experiments utilizing copper electrode as positive polarity. The predictions based on the above developed models have been verified with another set of experiments and are found to be in good agreement with the experimental results. Beside this they can be exercised as precious tools for the process planning for EDM.

Keywords: Ti-15l-3, surface roughness, copper, positive polarity, multi-layered perceptron.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1854
132 Reliability Indices Evaluation of SEIG Rotor Core Magnetization with Minimum Capacitive Excitation for WECs

Authors: Lokesh Varshney, R. K. Saket

Abstract:

This paper presents reliability indices evaluation of the rotor core magnetization of the induction motor operated as a self excited induction generator by using probability distribution approach and Monte Carlo simulation. Parallel capacitors with calculated minimum capacitive value across the terminals of the induction motor operated as a SEIG with unregulated shaft speed have been connected during the experimental study. A three phase, 4 poles, 50Hz, 5.5 hp, 12.3A, 230V induction motor coupled with DC Shunt Motor was tested in the electrical machine laboratory with variable reactive loads. Based on this experimental study, it is possible to choose a reliable induction machines operated as a SEIG for unregulated renewable energy application in remote area or where grid is not available. Failure density function, cumulative failure distribution function, survivor function, hazard model, probability of success and probability of failure for reliability evaluation of the three phase induction motor operating as a SEIG have been presented graphically in this paper.

Keywords: Residual magnetism, magnetization curve, induction motor, self excited induction generator, probability distribution, Monte Carlo simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2077
131 The Techno-Economic and Environmental Assessments of Grid-Connected Photovoltaic Systems in Bhubaneswar, India

Authors: A. K. Pradhan, M. K. Mohanty, S. K. Kar

Abstract:

The power system utility has started to think about the green power technology in order to have an eco-friendly environment. The green power technology utilizes renewable energy sources for reduction of GHG emissions. Odisha state (India) is very rich in potential of renewable energy sources especially in solar energy (about 300 solar days), for installation of grid connected photovoltaic system. This paper focuses on the utilization of photovoltaic systems in an Institute building of Bhubaneswar city, Odisha. Different data like solar insolation (kW/m2/day), sunshine duration has been collected from metrological stations for Bhubaneswar city. The required electrical power and cost are calculated for daily load of 1.0 kW. The HOMER (Hybrid Optimization Model of Electric Renewable) software is used to estimate system size and its performance analysis. The simulation result shows that the cost of energy (COE) is $ 0.194/kWh, the Operating cost is $63/yr and the net present cost (NPC) is $3,917. The energy produced from PV array is 1,756kWh/yr and energy purchased from grid is 410kWh/yr. The AC primary load consumption is 1314 kWh/yr and the Grid sales are 746 kWh/yr. One battery is connected in parallel with 12V DC Bus and the usable nominal capacity 2.4 kWh with 9.6 h autonomy capacity.

Keywords: Economic assessment, HOMER, Optimization, Photovoltaic (PV), Renewable energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2160
130 Value Engineering and Its Effect in Reduction of Industrial Organization Energy Expenses

Authors: Habibollah Najafi, Amir Abbas Yazdani, Hosseinali Nahavandi

Abstract:

The review performed on the condition of energy consumption & rate in Iran, shows that unfortunately the subject of optimization and conservation of energy in active industries of country lacks a practical & effective method and in most factories, the energy consumption and rate is more than in similar industries of industrial countries. The increasing demand of electrical energy and the overheads which it imposes on the organization, forces companies to search for suitable approaches to optimize energy consumption and demand management. Application of value engineering techniques is among these approaches. Value engineering is considered a powerful tool for improving profitability. These tools are used for reduction of expenses, increasing profits, quality improvement, increasing market share, performing works in shorter durations, more efficient utilization of sources & etc. In this article, we shall review the subject of value engineering and its capabilities for creating effective transformations in industrial organizations, in order to reduce energy costs & the results have been investigated and described during a case study in Mazandaran wood and paper industries, the biggest consumer of energy in north of Iran, for the purpose of presenting the effects of performed tasks in optimization of energy consumption by utilizing value engineering techniques in one case study.

Keywords: Value Engineering (VE), Expense, Energy, Industrial

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2227
129 Heat Transfer from a Cylinder in Cross-Flow of Single and Multiphase Flows

Authors: F. A. Hamad, S. He

Abstract:

In this paper, the average heat transfer characteristics for a cross flow cylinder of 16 mm diameter in a vertical pipe has been studied for single-phase flow (water/oil) and multicomponent (non-boiling) flow (water-air, water-oil, oil-air and water-oil-air). The cylinder is uniformly heated by electrical heater placed at the centre of the element. The results show that the values of average heat transfer coefficients for water are around four times the values for oil flow. Introducing air as a second phase with water has very little effect on heat transfer rate, while the heat transfer increased by 70% in case of oil. For water–oil flow, the heat transfer coefficient values are reflecting the percentage of water up to 50%, but increasing the water more than 50% leads to a sharp increase in the heat transfer coefficients to become close to the values of pure water. The enhancement of heat transfer by mixing two phases may be attributed to the changes in flow structure near to cylinder surface which lead to thinner boundary layer and higher turbulence. For three-phase flow, the heat transfer coefficients for all cases fall within the limit of single-phase flow of water and oil and are very close to pure water values. The net effect of the turbulence augmentation due to the introduction of air and the attenuation due to the introduction of oil leads to a thinner boundary layer of oil over the cylinder surface covered by a mixture of water and air bubbles.

Keywords: Circular cylinder, cross-flow, heat transfer, multicomponent multiphase flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2125
128 Effect of Surface-Modification of Indium Tin Oxide Particles on Their Electrical Conductivity

Authors: Y. Kobayashi, T. Kurosaka, K. Yamamura, T. Yonezawa, K. Yamasaki

Abstract:

The present work reports an effect of surface- modification of indium tin oxide (ITO) particles with chemicals on their electronic conductivity properties. Examined chemicals were polyvinyl alcohol (nonionic polymer), poly(diallyl dimethyl ammonium chloride) (cationic polymer), poly(sodium 4-styrene-sulfonate) (anionic polymer), (2-aminopropyl) trimethoxy silane (APMS) (silane coupling agent with amino group), and (3-mercaptopropyl) trimethoxy silane (MPS) (silane coupling agent with thiol group). For all the examined chemicals, volume resistivities of surface-modified ITO particles did not increase much when they were aged in air at 80 oC, compared to a volume resistivity of un-surface-modified ITO particles. Increases in volume resistivities of ITO particles surface-modified with the silane coupling agents were smaller than those with the polymers, since hydrolysis of the silane coupling agents and condensation of generated silanol and OH groups on ITO particles took place to provide efficient immobilization of them on particles. The APMS gave an increase in volume resistivity smaller than the MPS, since a larger solubility in water of APMS providing a larger amount of APMS immobilized on particles.

Keywords: Indium tin oxide, particles, surface-modification, volume resistivity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1211
127 Application of Medium High Hydrostatic Pressure in Preserving Textural Quality and Safety of Pineapple Compote

Authors: Nazim Uddin, Yohiko Nakaura, Kazutaka Yamamoto

Abstract:

Compote (fruit in syrup) of pineapple (Ananas comosus L. Merrill) is expected to have a high market potential as one of convenient ready-to-eat (RTE) foods worldwide. High hydrostatic pressure (HHP) in combination with low temperature (LT) was applied to the processing of pineapple compote as well as medium HHP (MHHP) in combination with medium-high temperature (MHT) since both processes can enhance liquid impregnation and inactivate microbes. MHHP+MHT (55 or 65 °C) process, as well as the HHP+LT process, has successfully inactivated the microbes in the compote to a non-detectable level. Although the compotes processed by MHHP+MHT or HHP+LT have lost the fresh texture as in a similar manner as those processed solely by heat, it was indicated that the texture degradations by heat were suppressed under MHHP. Degassing process reduced the hardness, while calcium (Ca) contributed to be retained hardness in MHT and MHHP+MHT processes. Electrical impedance measurement supported the damage due to degassing and heat. The color, Brix, and appearance were not affected by the processing methods significantly. MHHP+MHT and HHP+LT processes may be applicable to produce high-quality, safe RTE pineapple compotes. Further studies on the optimization of packaging and storage condition will be indispensable for commercialization.

Keywords: Compote of pineapple, ready-to-eat, medium high hydrostatic pressure, postharvest loss, and texture.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 746
126 The Effect of Acrylic Gel Grouting on Groundwater in Porous Media

Authors: S. Wagner, C. Boley, Y. Forouzandeh

Abstract:

When digging excavations, groundwater bearing layers are often encountered. In order to allow anhydrous excavation, soil groutings are carried out, which form a water-impermeable layer. As it is injected into groundwater areas, the effects of the materials used on the environment must be known. Developing an eco-friendly, economical and low viscous acrylic gel which has a sealing effect on groundwater is therefore a significant task. At this point the study begins. Basic investigations with the rheometer and a reverse column experiment have been performed with different mixing ratios of an acrylic gel. A dynamic rheology study was conducted to determine the time at which the gel still can be processed and the maximum gel strength is reached. To examine the effect of acrylic gel grouting on determine the parameters pH value, turbidity, electric conductivity, and total organic carbon on groundwater, an acrylic gel was injected in saturated sand filled the column. The structure was rinsed with a constant flow and the eluate was subsequently examined. The results show small changes in pH values and turbidity but there is a dependency between electric conductivity and total organic carbon. The curves of the two parameters react at the same time, which means that the electrical conductivity in the eluate can be measured constantly until the maximum is reached and only then must total organic carbon (TOC) samples be taken.

Keywords: Acrylic gel grouting, dynamic rheology study, electric conductivity, total organic carbon.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 472
125 Studying the Effect of Shading by Rooftop PV Panels on Dwellings’ Thermal Performance

Authors: Saad Odeh

Abstract:

Thermal performance is considered to be a key measure in building sustainability. One of the technologies used in the current building sustainable design is the rooftop solar PV power generators. The application of this type of technology has expanded vastly during the last five years in many countries. This paper studies the effect of roof shading developed by the solar PV panels on dwellings’ thermal performance. The analysis in this work is performed by using two types of packages: “AccuRate Sustainability” for rating the energy efficiency of residential building design, and “PVSYST” for the solar PV power system design. The former package is used to calculate the annual heating and cooling load, and the later package is used to evaluate the power production from the roof top PV system. The analysis correlates the electrical energy generated from the PV panels to the change in the heating and cooling load due to roof shading. Different roof orientation, roof inclination, roof insulation, as well as PV panel area are considered in this study. The analysis shows that the drop in energy efficiency due to the shaded area of the roof by PV panels is negligible compared to the energy generated by these panels.

Keywords: Energy efficiency, roof shading, thermal performance, PV panel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1219