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 
Abstract—The paper introduces a method to efficiently simulate 

nonlinear changing electrostatic fields occurring in micro-
electromechanical systems (MEMS). Large deflections of the 
capacitor electrodes usually introduce nonlinear electromechanical 
forces on the mechanical system. Traditional finite element methods 
require a time-consuming remeshing process to capture exact results 
for this physical domain interaction. In order to accelerate the 
simulation process and eliminate the remeshing process, a formulation 
of a strongly coupled electromechanical transducer element will be 
introduced which uses a combination of finite-element with an 
advanced mesh morphing technique using radial basis functions 
(RBF). The RBF allows large geometrical changes of the electric field 
domain while retain high element quality of the deformed mesh. 
Coupling effects between mechanical and electrical domains are 
directly included within the element formulation. Fringing field effects 
are described accurate by using traditional arbitrary shape functions. 
 

Keywords—Electromechanical, electric field, transducer, 
simulation, modeling, finite-element, mesh morphing, radial basis 
function. 

I. INTRODUCTION 
HE continually improving manufacturing technology of 
micro-electromechanical systems (MEMS) leads to 

increasingly smaller and more geometrical complex structures. 
With the decreasing size of functional elements, the physical 
behavior can show an increase of nonlinear effects. In 
electrostatic driven actuators or sensors, the large deflection of 
the mechanical structures results in nonlinear changing electric 
fields. In addition, fringing field effects can become more 
dominant. At this point electromechanical lumped elements are 
not valid anymore. To efficiently describe the behavior of such 
complex systems a strongly coupled electromechanical finite 
element is introduced. This element is combined with an 
advanced mesh morphing technique to avoid time consuming 
remeshing of the electric domain. By using traditional shape 
function in the element formulation, the new element is 
compatible with the interfacing mechanical structure. The 
strong coupling between mechanical and electrical domain of 
the element gives the possibility to apply small signal analysis 
as modal or harmonic analysis. 

In the following first the state of the art of simulating 
electromechanical coupled domains is investigated. After this 
the theory behind the new element formulation and the mesh 
morphing algorithm using radial basis functions is depicted. 

 
 

The resulting transducer element is validated on well-known 
electrode setups used in MEMS. The advantages of the element 
using an integrated and automated mesh morphing algorithm is 
shown on some more complex examples. 

II. STATE OF THE ART 
The investigation of electromechanical coupled field 

elements has been done with different methods in the literature. 
There are mainly weakly coupled and strongly coupled 
approaches. The weakly coupled approaches need sequentially 
computation of the mechanical and electrical domain [1]. This 
leads to slower convergence rates and the use of small signal 
analysis procedures is not possible. 

Using boundary element method (BEM), a meshless 
electromechanical domain can be described [2]. The problem 
here is the element formulation itself which requires special 
solvers and the BEM domain must interfacing with FE domain 
in non-traditional ways. 

Strongly coupled electromechanical elements which can 
convert electrostatic energy into mechanical energy and vice 
versa were formulated with different approaches. A variational 
approach was applied to a 2D domain in [3]. Another energy 
based concept was proven in [4] on a 2D with only triangular 
shape function which limits the complexity. In all approaches 
the deformation of the mesh is one of the key problems. The 
quality of the mesh correlates with the quality of the results. 

III. ELEMENT FORMULATION 
The coupling between electrical and mechanical domains can 

be described as an energy transfer between these two domains. 
The capacitance changes with a mechanical motion of the 
electrodes. Thereby electrical energy is converted to 
mechanical and produces a nonlinear mechanical force on the 
domain interface. For this reason, we are using an energy 
approach. The electrostatic energy ܹୣ  is given in (1) where ߝ is 
the electric permittivity, ܧ is the electric field and Ω the domain 
volume. 

 ܹୣ = ଵଶ ׬ ஐ்ܧ  dΩ                        (1) ܧߝ
 

The electric field ܧ is a function of the electric potential ߶ 
and the shape function ܰ(ܲ) depending on the global node 
coordinates ܲ of the element [1]. 
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ܧ = −∇ܰ(ܲ) ߶ =  (2)                 ߶ (ߦ)ܰ∇ଵିܬ−
 

Applying the virtual work principle, the tangent element 
stiffness matrix which couples mechanical degree of freedom 
(DOFs) ݔ and electrical DOFs ߶ can be modeled as following 
[4]: 

 ൤ܭ௫௫ థ௫ܭ௫థܭ థథ൨ܭ ൤ΔݔΔ߶൨ = ൤Δୣܨ ୪Δܳ ൨                    (3) 

 
The components of the right-hand side are the electrostatic 

forces ୣܨ ୪ and charges ܳ . Using the fact that the shape functions 
is a function of the isoparametric coordinates ߦ and the Jacobi 
matrix ܬ, the electric energy can be differentiated against 
mechanical and electric DOFs, since the Jacobi matrix can be 
expressed as a function of mechanical DOFs. The domain 
volume Ω is also a function of the Jacobi matrix which makes 
it differentiable. 

ܨୣ  ୪ = డௐ౛డ௫ = ׬ డாడ௫் ߗd ܧߝ + ׬ ଵଶ ܧߝ்ܧ డఆడ௫             (4) 
 ܳ = డௐ౛డథ = ׬ డாడథ்  (5)                       ߗd ܧߝ
 

The components of the stiffness matrix consist of 3 different 
terms since the matrix is symmetrical (ܭథ௫ =  ௫థ்). All termsܭ
are generated in the same way as the right-hand side by using 
the product rule. We drop high order derivatives, but hold 
mixed partial derivatives. 

థథܭ  = డమௐ౛డథమ = ׬ డாడథ் ߝ డாడథ  d(6)                    ߗ  
௫௫ܭ  = డమௐ౛డ௫మ = ׬ డாడ௫் ߝ డாడ௫  dߗ + 2 ׬ డாడ௫் ߝ ܧ డఆడ௫             (7) 
థ௫ܭ  = డమௐ౛డ௫డథ = ׬ డమாడ௫డఝ் ߗd ܧߝ + ׬ డாడ௫் ߝ డாడఝ  dߗ ׬+ డாడఝ் ܧߝ డఆడ௫                                   (8) 
 ௫௫ is the electrostaticܭ ,థథ describes the electric fieldܭ 

softening effect on the mechanical structure and ܭథ௫ is the 
strong coupling between mechanical and electrical domain. 
These definitions make nonlinear coupled field simulation 
possible. 

It is important to mention that only on the domain interface 
nodes the mechanical DOFs are considered in the element 
definition. These mechanical DOFs are coincident with the ones 
on the mechanical structure and don’t create additional DOFs. 
In the electrical domain every node has an electrical DOF. The 
coordinates of non-interface nodes of all nodes are updated 
using an advanced mesh morphing algorithm.  

IV. MESH MORPHING 
The main problem on quite every electromechanical FE 

technology are large geometrical changes. This is caused by the 
missing mechanical force equilibrium. The electrical domain 

usually consists of air, which has no mechanical properties in a 
traditional way. This makes it hard to apply force balancing 
algorithms. Remeshing can be done, but it’s the one of the most 
time-consuming operations. 

The preferred way to compute the node displacements of the 
inner nodes is to use mesh smoothing or mesh morphing 
algorithms. Mesh smoothing can be done by using a Laplace 
smoother [5]. This method works quite well as long as the mesh 
deformation doesn’t exceed a critical level. If a critical level is 
reached, elements could overlap each other or even invert. Both 
cases cause false results. These critical levels are reached fast 
especially around singularities, like sharp corners. With 
application to typical MEMS structures like comb drives, 
perforated membranes or micro mirrors, large displacements 
and deformations typically occur. To overcome these problems 
a mesh morphing algorithm using radial basis functions (RBF) 
is used [6]-[8]. 

The resulting meshes of an example structure with large 
displacement is compared in the following figure (Figure 1). 
The mechanical structure (grey filled) is moved and the 
resulting mesh is shown after applying the Laplace smoother 
and the RBF mesh morphing algorithm. An element 
overlapping occur with the Laplace equation because every 
direction in space is independently solved. A perfect alignment 
of the deformed mesh is achieved by using RBFs. 
 

 
Fig. 1 Mesh deformation on a sample structure. (a) Laplace smoother 

result, (b) Undeformed mesh, (c) Mesh morphing with RBF 
 

The theory behind this mesh morphing technique is presented 
in the following. The displacements ݔ on the mechanical 
interface/boundary nodes and ݊୫ are known. The remaining 
node displacements are approximated using a sum of basis 
functions and a linear polynomial. 

(ܲ)ݔ  = ∑ ௝Φ(ฮܲߙ − ୫ܲ,௝ฮଶ)௡ౘ௝ୀଵ +  (9)            (ܲ)݌
 

There are two different coefficient vectors ࢻ and ࢼ which are 
determined through the known displacements at the interface 
and boundary nodes on the mechanical domain. The first 
coefficient ࢻ is related to the distance or Euclidian norm wrt. 
the mechanical nodes. The second coefficient ࢼ is related to a 
linear polynomial term ݌(ܲ) which takes the global node 
coordinates ܲ into account. This term generates an additional 
dependence between all directions in space (10), where ୫ܲ is a ݊୫ × 4 matrix consists of 3D interface and boundary node 
coordinates with its components [1 ୫ܲ,௫ ୫ܲ,௬ ୫ܲ,௭]. 

(ܲ)݌  = [1 ௫ܲ ௬ܲ ௭ܲ] ∙  (10)                  ࢼ
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TABLE I 
COMMON RADIAL BASIS FUNCTIONS 
Radial basis function Φ(ݎ) 

Polyharmonic spline ݎ௞ , odd ݇ 

Multiquadratic ඥ1 +  ଶݎ

Inverse multiquadratic 
1√1 +  ଶݎ

Inverse quadratic 
11 +  ଶݎ

Gaussian ݁ି௥మ
 

 
The function Φ represents a meshless interpolation function. 

It computes the distance from any point to every mechanical 
interface node and weight them with a radial basis function. 
There are many different radial symmetric functions available. 
In the following table the most common and useable RBFs are 
given [9]. 

It turns out that polyharmonic splines and normal/inverse 
multiquadratic basis function are the best choice in terms of 
mesh morphing. The polyharmonic splines have the advantage 
of less computation effort. 

To compute the coefficient vectors ࢻ and ࢼ the following 
system of equations in matrix form is solved in (11). The matrix ܯ୫,୫ is a ݊ ୫ × ݊୫ contains the evaluated radial basis functions Φ୫೔,୫ೕ = Φ(ฮ ୫ܲ೔ − ୫ܲ,௝ฮଶ). Thereby only nodes with known 
displacements ݔ are considered. The coefficient vectors are 
solved for every direction in space and can be done fast since 
the system matrix is symmetrical. 

 ቂݔ୫0 ቃ = ൤ܯ୫,୫ ୫ܲ୫்ܲ 0 ൨ ቂࢼࢻቃ                    (11) 
 

The back transformation from computed coefficients to 
unknown displacements of the mesh can be done using (9). In 
that way a mesh morphing algorithm can be realized. The 
computation of the coefficients is either precomputed in respect 
to the undeformed mesh or iteratively computed with the use of 
the updated node coordinates. Both ways are acceptable to 
achieve good results in a large deformed mesh. The electrical 
properties are nearly independent to the degree of deformation. 
That means the elements can have large distortion and the 
resulting effects are still in an acceptable range. 

V. VALIDATION 
To validate the strongly coupled electromechanical element 

with integrated mesh morphing we investigate in typical 
MEMS capacitive actuators. We compare the results with an 
ANSYS model containing exactly the same mesh. The 
electrical domain in the ANSYS model is remeshed.  

A good validation sample is a comb drive cell. It consists of 
one moving and one fixed comb drive finger structure. In 
addition, there a top and bottom electrode modelled which are 
connected to ground potential. The moving finger can move in 
every space direction. We cover gap-varying and area-varying 
capacitances. The capacitance ܥ and electrostatic force ܨ௘௟ are 
compared to the ANSYS results. We can prove that there is a 
negligible small error between the remeshed ANSYS model 
and our model using mesh morphing. 

 
Fig. 2 Comb cell used for validation 

 

 
Fig. 3 (a) Capacitance vs. x-displacement, (b) electrostatic force vs. 

x-displacement 
 

 
Fig. 4 (a) Capacitance vs. y-displacement, (b) electrostatic force vs. 

y-displacement 
 

 
Fig. 5 (a) Capacitance vs. z-displacement, (b) electrostatic force vs. 

z-displacement 
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VI. FURTHER EXAMPLES 
In order to show the spectrum of possible usages of this FE 

formulation, more complex models were created. Only a 
sectional view is shown to make the complex meshes 
depictable. The mechanical structure (solid gray) is shown 
undeflected on the top and large deflected on bottom. An 
electrical field was also computed to demonstrate the 
independence of element distortion. The deformed meshes 
containing no invalid/inverted elements. 

 

 
Fig. 6 Atomic force microscopy-tip - (a) undeflected, (b) deflected 

 

 
Fig. 7 Micro mirror - (a) undeflected, (b) deflected 

 

 
Fig. 8 Complex comb drive - (a) undeflected, (b) deflected 

VII. CONCLUSION 
A new formulation for electromechanical transducer 

elements was introduced. By differentiating the electrical 
energy an accurate description of the energy transfer 
phenomena in electrostatic field problem was found. This 
formulation uses an integrated mesh morphing algorithm which 
makes a time consuming remeshing of the model while 
simulating unnecessary. Moreover, the radial basis function 
approach in the mesh morphing algorithm allows also highly 
deformed meshes while overlapping or inverting elements are 
avoided. Usage of traditional shape functions and solvers makes 

this method fully integrable into existing FE simulation tools. 
The spectrum of application is widespread in the field of 
MEMS. Some more complex models which demonstrates that 
the FE formulation is independent of the complexity. Structures 
like micro mirrors, atomic force microscopy (AFM) tips, micro 
switches or even more complex is aimed to solve. The effects 
of nonlinear changing capacitances, electrostatic softening and 
fringing field effects are included in the method. The strongly 
coupled matrix formulation opens up the possibility to use any 
kind of analysis, as modal or harmonic analysis. Furthermore, 
additional reduced order model techniques can be to create an 
even more faster simulation model. 
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