
 

 

 
Abstract—Neuromorphic computing based on spiking neural 

networks (SNNs) has emerged as a promising avenue for building the 
next generation of intelligent computing systems. Owing to their high-
density integration, low power, and outstanding nonlinearity, 
memristors have attracted emerging attention on achieving SNNs. 
However, fabricating a low-power and robust memristor-based spiking 
neuron without extra electrical components is still a challenge for 
brain-inspired systems. In this work, we demonstrate a TiO2-based 
threshold switching (TS) memristor to emulate a leaky integrate-and-
fire (LIF) neuron without auxiliary circuits, used to realize single layer 
fully connected (FC) SNNs. Moreover, our TiO2-based resistive 
switching (RS) memristors realize spiking-time-dependent-plasticity 
(STDP), originating from the Ag diffusion-based filamentary 
mechanism. This work demonstrates that TiO2-based memristors may 
provide an efficient method to construct hardware neuromorphic 
computing systems. 

 
Keywords—Leaky integrate-and-fire, memristor, spiking neural 

networks, spiking-time-dependent-plasticity. 

I. INTRODUCTION 

NSPIRED by the human brain’s highly parallel data 
processing capability, artificial neural networks (ANNs) have 

been developed to run large-scale neuromorphic and deep 
learning algorithms. On the embedded system or Internet of 
Things (IoT) edge computing side, such as autonomous driving, 
smart sensors, and wearable devices, artificial neural networks 
have severe design constraints due to their poor performance, 
high power consumption, and large area. SNNs, often regarded 
as third-generation brain-inspired neural networks (Maass, 
1997) [1], that enable event-driven, sparse and irregular input 
encoding, can be highly power-efficient and have competitive 
capabilities to deal with low latency and low power 
consumption tasks. Memristor is one of the most promising 
candidates for achieving SNNs due to its high-density 
integration, low-power, and outstanding nonlinearity [1]-[3]. 
Some recent researches have proved that the memristor can be 
able to implement SNNs [5], such as the memristor used to 
comply with SNNs structure in the “Tianjic” chip reported in 
2019 [6] and the “TrueNorth”, similarity. Therefore, the 
memristor has been considered to have the potential to 
implement SNNs in hardware.  

In our work, we fabricate a low-power (1.4 μW) artificial 
neuron based on a single memristor (Ag/TiO2/Pt). It has the RS 
and TS modes, by using different compliance currents (Icc) at 7 
μA and 1 mA, respectively [7]-[10]. In addition, the resultant 
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device exhibited excellent electrical performance, such as low 
and concentrated switching voltage (~0.25 V), large switching 
window (> 104), and good retention properties (~4000 s). Our 
memristors also show remarkable analog behavior after cycling 
operation, demonstrating brain-inspired emulation ability. 
Additionally, the single device implements STDP learning rules 
under non-volatility and LIF neuron simulation under volatility, 
and we design a LIF model that can be used for SNNs with a 
network scale of 784×10 single-layer FC. In the handwritten 
digit recognition set Mixed National Institute of Standards and 
Technology (MNIST) database test, the accuracy rate can reach 
91.57%. Finally, the emulations of the synaptic and neuron 
functions have been successfully implemented by Ag/TiO2/Pt 
memristors, revealing the great potential in developing low-
power brain-inspired computing [11]-[19].  

II. EXPERIMENTS 

The devices in this work consist of a 100 nm Ag/80 nm 
TiO2/80 nm Pt structure in a crossbar array (Fig. 1 (a)).  

 

 

Fig. 1 (a) The structure diagram of the Ag/TiO2/Pt device; (b) The 
metallographic microscopy crossbar array image; (c) TS behaviors of 

devices with low Icc of 7 μA; (d) The device showed RS behaviors 
with a high Icc of 1 mA 

 
As for the fabrication, first, an 80 nm-thick Pt layer was 

deposited on the SiO2/Si substrate through the reticle as the 
bottom electrodes (BEs). Then, an 80 nm-thick TiO2 layer 
serving as a resistive layer was sputtered from the SiO2 target 
with an Ar gas with a flow rate of 10 sccm and a pressure of 1 
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morr. Finally, 100 nm-thick Ag was sputtered and patterned for 
the top electrodes (TEs). The radio frequency power was fixed 
at 100 W, 100 W, and 50 W and under a background vacuum 
of 4.510-5 Pa. The optical image of the vertical structure 
Ag/TiO2/Pt is shown in Fig. 1 (b). Electrical characteristics of 
our devices were measured by a four-probe system Cascade 
Summit 11,000 and Keithley 4200A-SCS semiconductor 
characterization analyzer. 

III. RESULTS AND DISCUSSION 

Fig. 1 (c) shows the volatile TS behavior in our device under 
direct current (DC) voltage sweeping with a low Icc (7 μA). 
When the positive voltage applied on the device, the current 
increases rapidly at the threshold voltage (0.25 V) and then the 
device switches to the high conductance state (HCS). With the 
voltage decreasing below a certain value (0.1 V), the HCS 
returns back to the initial low conductance state (LCS). The 
volatiles TS behavior may be ascribed to the spontaneous 
fracture of Ag conductive filaments (CFs). 

 

 

Fig. 2 (a) Cumulative probability distribution of ON and OFF 
resistance states during 100 cycles; (b) Retention of the Ag/TiO2/Pt 

devices; (c) Memristive current under six consecutive voltage sweeps 
from 0 V to 0.2V (Voltage sweeping rate = 10 mV/s); (d) Six 

consecutive voltage sweeps from 0 V to -0.25 V with a 10 mV/s 
sweeping rate 

 
The DC I-V characteristics in Fig. 1 (d) exhibit repeatable 

bipolar switching between the high resistance state (HRS) and 
low resistance state (LRS) of the Ag/TiO2/Pt device under a 
compliance current of 1 mA. Under a large voltage and high Icc 
(1 mA), the responded current of the device straightly increases 
at 0.12 V (denoted as the current jump process in the inset of 
Fig. 1 (d)). A sweeping voltage (0 V to 0.2 V to 0 V to -0.1 V 
to 0 V) was applied to the device, which exhibited non-volatile 
RS behaviors. Similarly, in the positive bias voltage, the device 
gradually changed from HRS to LRS under a sweeping voltage 
from 0 V to 0.2 V, named the process of “SET”. Subsequently, 
by applying a negative voltage sweeping from 0 V to -0.1 V, 

the resistive state of the device returns to the HRS from the 
LRS, called the process of “RESET”. 

Drawing the cumulative probability plot is an appropriate 
method to study resistance state changes, which demonstrates 
extremely valuable information to distinguish HRS and LRS. A 
cumulative probability plot of the resistance of the OFF-State 
(Roff) and ON-State (Ron) is shown in Fig. 2 (a). According to 
the cumulative probability distribution, the coefficient of 
variation (CV) of Ron is 0.81% and Roff is 1.15% in devices 
respectively. Moreover, the devices can be switched between 
HRS and LRS keeping enough resistance ratio between them. 
As illustrated in Fig. 2(b), the Roff/Ron-states and the memory 
window of the devices can last about 4000 s, which 
demonstrates that the device has good non-volatility. As shown 
in Figs. 2 (c) and (d), when six consecutive positive/negative 
voltage sweeps are applied on the Ag/TiO2/Pt device, the 
conductance of the device increases/decreases continuously. 

 

 

Fig. 3 (a) Schematic illustration of a biological synapse and the 
structure of Ag/TiO2/Pt synaptic device, (b) Pulse shapes in the 

conductance modulation measurement, (c) Implementation of STDP 
in the Ag/TiO2/Pt 

 
Fig. 3 (a) shows the schematics illustration of a biological 

synapse and the structure of the Ag/TiO2/Pt synaptic device. 
When a positive bias is applied on the Ag electrode, the Ag 
atoms are oxidized to Ag cations which inject into the insulating 
layer under the electrical field, resulting in the increase of 
device conductance. This process can be used to emulate the 
influx of Ca2+ in bio-synapse, which enhances the synapse 
weight by releasing more neurotransmitters [20]. The TEs and 
BEs of the device were used to emulate the presynaptic and 
postsynaptic of the neurons, respectively. The conductance of 
the device was modulated by changing the interval of pulses 
arriving at the TEs and BEs. The triangle-like pulse sequence 
shown in Fig. 3 (b) was applied to both the TEs and the BEs. 
The interval between the presynaptic and postsynaptic pulses 
was taken as 𝛥𝑡. If the two pulses arrive at the same time, it is 
recorded as 𝛥𝑡 ൌ 0. If the presynaptic pulse arrives earlier than 
the postsynaptic pulse, it is recorded as 𝛥𝑡 ൐ 0. Conversely, 
when the presynaptic pulse arrives later than the postsynaptic, 
it is recorded as 𝛥𝑡 ൏ 0 . The absolute value of the voltage 

across the device when 𝛥𝑡 ൏ 0 is the same as that of 𝛥𝑡 ൐ 0, 
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but has the opposite sign. The change in conductance is 

regarded as the change in synaptic weight 𝛥𝑤, according to the 
exponential equation proposed: 

 

 𝛥𝑤 ൌ ቐ
𝑊ା𝑒

ሺି
|△೟|
ഓభ

ሻ
, 𝑖𝑓𝛥𝑡 ൐ 0

𝑊 𝑒
ሺି

|△೟|
ഓమ

ሻ
, 𝑖𝑓𝛥𝑡 ൏ 0

 (1) 

 
where, 𝑊ା  and 𝑊  represent the initial weight, 𝜏ଵ  and 𝜏ଶ are 
the membrane time constant [21]. 

The 𝑊ା and 𝑊  obtained by fitting the experimental data are 
138.61 and 103.46, respectively. The time constants  𝜏ଵ and 
𝜏ଶ are 64.1 ms and 29.2 ms, respectively. 

 

 

Fig. 4 (a) Schematics of a biological neuron receiving input from 
other neurons through interconnected synapses, (b) Plot of response 
conductivity and fitting models (green triangles) of the integration 

(blue balls), firing (red balls) function of the device, (c) The 
experimental conductivity of the relaxation (purple balls) function 

and fitting models (green triangles) 
 

The LIF neuron model as a well-studied model of neuron 
works effectively in spiking and event-based networks and is 
quite fast to simulate, and particularly attractive for large-scale 
network simulations. Fig. 4 (a) shows a schematic diagram of 
our memristors as an artificial neuron. The LIF model is 
described by the neuron membrane potential: 

 

 𝜏 ௗ௨

ௗ௧
ൌ െሾ𝑢ሺ𝑡ሻ െ 𝑢௥௘௦௧ሿ ൅ 𝑅𝐼ሺ𝑡ሻ  (2) 

 
where, 𝑢ሺ𝑡ሻ represents the membrane potential at time 𝑡, 𝑅 is 
the membrane resistance and 𝑢௥௘௦௧ is the reset value [22]. 

Equation (2) describes a simple parallel resistor-capacitor 
circuit where the leakage term is due to the resistor and the 
integration of 𝐼ሺ𝑡ሻ  is due to the capacitor. The total input 
current, 𝐼ሺ𝑡ሻ , is generated by the activity of pre-synaptic 

neurons. When 𝑡 ൐ 0, assuming 𝐼ሺ𝑡ሻ ൐ 0, the initial value is 

the 𝑢௥௘௦௧, and the solution of (3) is: 
 

 𝑢ሺ𝑡ሻ ൌ െ𝑢௥௘௦௧ ൅ 𝑅𝐼଴ ቂ1 െ 𝑒ሺି
೟
ഓ

ሻቃ (3) 

 
As shown in Figs. 4 (b) and (c), the small spherical image 

realizes the three processes of integration, firing, and leakage of 
LIF neurons respectively. The resulting constant 𝑢௥௘௦௧ is 0.43 
mV and 𝜏 is 9.41 ms. In this work, one single TiO2-based 
memristor was in terms of controlling the emulation of the LIF 
neuron accurately. The function of a LIF neuron has been 
experimentally emulated by a single TiO2-based memristor 
without any auxiliary circuits, which may provide a low-cost 
candidate for the implementation of artificial neurons in a 
neuromorphic system [23]. 

 

 

Fig. 5 (a) Schematic layout of the two-layer SNN for MNIST digit 
recognition, (b) The Pulses and Firing rate of the output layer, (c) The 

recognition accuracy of 91.57% 
 

As shown in Fig. 5 (a), the FC network consists of an input 
layer and a supervised learning layer. In the input layer, there 
are 784 neurons, which represent the 28 × 28 pixels of each 
image of characters from the MNIST, and each neuron is 
connected to the 10 neurons in the supervised learning layer 
through 784 memristor LIF neurons. The 10 output neurons in 
the supervised learning layer represent the numbers 0-9, 
respectively. During the training process, the MNIST digit is 
transferred into a Poisson-distributed spike train, with firing 
rate proportional to the intensity of the corresponding pixels, 
and the fitted LIF model is used as the activation function. 
Simultaneously, the gradient surrogate function was chosen to 
implement error backpropagation. Fig. 5 (b) shows the pulse 
firing rate after the integration of 10 neurons, and the number 7 
with the highest firing rate is selected as the accurate answer. 
After testing our SNNs on the MNIST dataset for 100 epochs, 
the accuracy obtained is shown in Fig. 5 (c), which is up to 
91.57%. 

IV. CONCLUSION 

In summary, we fabricated an Ag/TiO2/Pt memristor with 
volatile and non-volatile properties for biomimetic synapses 
and the construction of LIF bio-inspired neurons. By fitting 
non-volatile memristor and LIF model to artificial neurons, the 
leakage, spatiotemporal integration, and discharge functions in 
biological neurons are successfully simulated and a simple FC 
two-layer (784  10) supervised SNNs implemented for a 
recognition accuracy of 91.57%. This work shows the 
capability of memristors for pattern recognition applications in 
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SNNs.  
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