Search results for: Two-point boundary value problem.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4151

Search results for: Two-point boundary value problem.

4151 Optimal Control of a Linear Distributed Parameter System via Shifted Legendre Polynomials

Authors: Sanjeeb Kumar Kar

Abstract:

The optimal control problem of a linear distributed parameter system is studied via shifted Legendre polynomials (SLPs) in this paper. The partial differential equation, representing the linear distributed parameter system, is decomposed into an n - set of ordinary differential equations, the optimal control problem is transformed into a two-point boundary value problem, and the twopoint boundary value problem is reduced to an initial value problem by using SLPs. A recursive algorithm for evaluating optimal control input and output trajectory is developed. The proposed algorithm is computationally simple. An illustrative example is given to show the simplicity of the proposed approach.

Keywords: Optimal control, linear systems, distributed parametersystems, Legendre polynomials.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1311
4150 Sliding Mode Control with Fuzzy Boundary Layer to Air-Air Interception Problem

Authors: Mustafa Resa Becan

Abstract:

The performance of a type of fuzzy sliding mode control is researched by considering the nonlinear characteristic of a missile-target interception problem to obtain a robust interception process. The variable boundary layer by using fuzzy logic is proposed to reduce the chattering around the switching surface then is applied to the interception model which was derived. The performances of the sliding mode control with constant and fuzzy boundary layer are compared at the end of the study and the results are evaluated.

Keywords: Sliding mode control, fuzzy, boundary layer, interception problem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2010
4149 An Asymptotic Solution for the Free Boundary Parabolic Equations

Authors: Hsuan-Ku Liu, Ming Long Liu

Abstract:

In this paper, we investigate the solution of a two dimensional parabolic free boundary problem. The free boundary of this problem is modelled as a nonlinear integral equation (IE). For this integral equation, we propose an asymptotic solution as time is near to maturity and develop an integral iterative method. The computational results reveal that our asymptotic solution is very close to the numerical solution as time is near to maturity.

Keywords: Integral equation, asymptotic solution, free boundary problem, American exchange option.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1473
4148 Existence of Positive Solutions for Second-Order Difference Equation with Discrete Boundary Value Problem

Authors: Thanin Sitthiwirattham, Jiraporn Reunsumrit

Abstract:

We study the existence of positive solutions to the three points difference-summation boundary value problem. We show the existence of at least one positive solution if f is either superlinear or sublinear by applying the fixed point theorem due to Krasnoselskii in cones.

Keywords: Positive solution, Boundary value problem, Fixed point theorem, Cone.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1729
4147 Non-reflection Boundary Conditions for Numerical Simulation of Supersonic Flow

Authors: A. Abdalla, A. Kaltayev

Abstract:

This article presents the boundary conditions for the problem of turbulent supersonic gas flow in a plane channel with a perpendicular injection jets. The non-reflection boundary conditions for direct modeling of compressible viscous gases are studied. A formulation using the NSCBC (Navier- Stocks characteristic boundary conditions) through boundaries is derived for the subsonic inflow and subsonic non-reflection outflow situations. Verification of the constructed algorithm of boundary conditions is carried out by solving a test problem of perpendicular sound of jets injection into a supersonic gas flow in a plane channel.

Keywords: WENO scheme, non-reflection boundary conditions, NSCBC, supersonic flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2196
4146 Numerical Computation of Sturm-Liouville Problem with Robin Boundary Condition

Authors: Theddeus T. Akano, Omotayo A. Fakinlede

Abstract:

The modelling of physical phenomena, such as the earth’s free oscillations, the vibration of strings, the interaction of atomic particles, or the steady state flow in a bar give rise to Sturm- Liouville (SL) eigenvalue problems. The boundary applications of some systems like the convection-diffusion equation, electromagnetic and heat transfer problems requires the combination of Dirichlet and Neumann boundary conditions. Hence, the incorporation of Robin boundary condition in the analyses of Sturm-Liouville problem. This paper deals with the computation of the eigenvalues and eigenfunction of generalized Sturm-Liouville problems with Robin boundary condition using the finite element method. Numerical solution of classical Sturm–Liouville problem is presented. The results show an agreement with the exact solution. High results precision is achieved with higher number of elements.

Keywords: Sturm-Liouville problem, Robin boundary condition, finite element method, eigenvalue problems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2995
4145 Solution of Two-Point Nonlinear Boundary Problems Using Taylor Series Approximation and the Ying Buzu Shu Algorithm

Authors: U. C. Amadi, N. A. Udoh

Abstract:

One of the major challenges faced in solving initial and boundary problems is how to find approximate solutions with minimal deviation from the exact solution without so much rigor and complications. The Taylor series method provides a simple way of obtaining an infinite series which converges to the exact solution for initial value problems and this method of solution is somewhat limited for a two point boundary problem since the infinite series has to be truncated to include the boundary conditions. In this paper, the Ying Buzu Shu algorithm is used to solve a two point boundary nonlinear diffusion problem for the fourth and sixth order solution and compare their relative error and rate of convergence to the exact solution.

Keywords: Ying Buzu Shu, nonlinear boundary problem, Taylor series algorithm, infinite series.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 455
4144 An Alternative Proof for the NP-completeness of Top Right Access point-Minimum Length Corridor Problem

Authors: Priyadarsini P.L.K, Hemalatha T.

Abstract:

In the Top Right Access point Minimum Length Corridor (TRA-MLC) problem [1], a rectangular boundary partitioned into rectilinear polygons is given and the problem is to find a corridor of least total length and it must include the top right corner of the outer rectangular boundary. A corridor is a tree containing a set of line segments lying along the outer rectangular boundary and/or on the boundary of the rectilinear polygons. The corridor must contain at least one point from the boundaries of the outer rectangle and also the rectilinear polygons. Gutierrez and Gonzalez [1] proved that the MLC problem, along with some of its restricted versions and variants, are NP-complete. In this paper, we give a shorter proof of NP-Completeness of TRA-MLC by findig the reduction in the following way.

Keywords: NP-complete, 2-connected planar graph, Grid embedding of a plane graph.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1284
4143 Positive Solutions for Discrete Third-order Three-point Boundary Value Problem

Authors: Benshi Zhu

Abstract:

In this paper, the existence of multiple positive solutions for a class of third-order three-point discrete boundary value problem is studied by applying algebraic topology method.

Keywords: Positive solutions, Discrete boundary value problem, Third-order, Three-point, Algebraic topology

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1245
4142 An Efficient Method for Solving Multipoint Equation Boundary Value Problems

Authors: Ampon Dhamacharoen, Kanittha Chompuvised

Abstract:

In this work, we solve multipoint boundary value problems where the boundary value conditions are equations using the Newton-Broyden Shooting method (NBSM).The proposed method is tested upon several problems from the literature and the results are compared with the available exact solution. The experiments are given to illustrate the efficiency and implementation of the method.

Keywords: Boundary value problem; Multipoint equation boundary value problems, Shooting Method, Newton-Broyden method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1785
4141 Application of Novel Conserving Immersed Boundary Method to Moving Boundary Problem

Authors: S. N. Hosseini, S. M. H. Karimian

Abstract:

A new conserving approach in the context of Immersed Boundary Method (IBM) is presented to simulate one dimensional, incompressible flow in a moving boundary problem. The method employs control volume scheme to simulate the flow field. The concept of ghost node is used at the boundaries to conserve the mass and momentum equations. The Present method implements the conservation laws in all cells including boundary control volumes. Application of the method is studied in a test case with moving boundary. Comparison between the results of this new method and a sharp interface (Image Point Method) IBM algorithm shows a well distinguished improvement in both pressure and velocity fields of the present method. Fluctuations in pressure field are fully resolved in this proposed method. This approach expands the IBM capability to simulate flow field for variety of problems by implementing conservation laws in a fully Cartesian grid compared to other conserving methods.

Keywords: Immersed Boundary Method, conservation of mass and momentum laws, moving boundary, boundary condition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1990
4140 Existence of Solution for Singular Two-point Boundary Value Problem of Second-order Differential Equation

Authors: Xiguang Li

Abstract:

In this paper, by constructing a special set and utilizing fixed point theory in coin, we study the existence of solution of singular two point’s boundary value problem for second-order differential equation, which improved and generalize the result of related paper.

Keywords: Singular differential equation, boundary value problem, coin, fixed point theory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1131
4139 Quartic Nonpolynomial Spline Solutions for Third Order Two-Point Boundary Value Problem

Authors: Talaat S. El-Danaf

Abstract:

In this paper, we develop quartic nonpolynomial spline method for the numerical solution of third order two point boundary value problems. It is shown that the new method gives approximations, which are better than those produced by other spline methods. Convergence analysis of the method is discussed through standard procedures. Two numerical examples are given to illustrate the applicability and efficiency of the novel method.

Keywords: Quartic nonpolynomial spline, Two-point boundary value problem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2008
4138 Unique Positive Solution of Nonlinear Fractional Differential Equation Boundary Value Problem

Authors: Fengxia Zheng

Abstract:

By using two new fixed point theorems for mixed monotone operators, the positive solution of nonlinear fractional differential equation boundary value problem is studied. Its existence and uniqueness is proved, and an iterative scheme is constructed to approximate it.

Keywords: Fractional differential equation, boundary value problem, positive solution, existence and uniqueness, fixed point theorem, mixed monotone operator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1600
4137 A Sum Operator Method for Unique Positive Solution to a Class of Boundary Value Problem of Nonlinear Fractional Differential Equation

Authors: Fengxia Zheng, Chuanyun Gu

Abstract:

By using a fixed point theorem of a sum operator, the existence and uniqueness of positive solution for a class of boundary value problem of nonlinear fractional differential equation is studied. An iterative scheme is constructed to approximate it. Finally, an example is given to illustrate the main result.

Keywords: Fractional differential equation, Boundary value problem, Positive solution, Existence and uniqueness, Fixed point theorem of a sum operator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1483
4136 The Existence and Uniqueness of Positive Solution for Nonlinear Fractional Differential Equation Boundary Value Problem

Authors: Chuanyun Gu, Shouming Zhong

Abstract:

In this paper, the existence and uniqueness of positive solutions for nonlinear fractional differential equation boundary value problem is concerned by a fixed point theorem of a sum operator. Our results can not only guarantee the existence and uniqueness of positive solution, but also be applied to construct an iterative scheme for approximating it. Finally, the example is given to illustrate the main result.

Keywords: Fractional differential equation, Boundary value problem, Positive solution, Existence and uniqueness, Fixed point theorem of a sum operator

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1490
4135 Extended Cubic B-spline Interpolation Method Applied to Linear Two-Point Boundary Value Problems

Authors: Nur Nadiah Abd Hamid, Ahmad Abd. Majid, Ahmad Izani Md. Ismail

Abstract:

Linear two-point boundary value problem of order two is solved using extended cubic B-spline interpolation method. There is one free parameters, λ, that control the tension of the solution curve. For some λ, this method produced better results than cubic B-spline interpolation method.

Keywords: two-point boundary value problem, B-spline, extendedcubic B-spline.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2180
4134 Maximum Norm Analysis of a Nonmatching Grids Method for Nonlinear Elliptic Boundary Value Problem −Δu = f(u)

Authors: Abida Harbi

Abstract:

We provide a maximum norm analysis of a finite element Schwarz alternating method for a nonlinear elliptic boundary value problem of the form -Δu = f(u), on two overlapping sub domains with non matching grids. We consider a domain which is the union of two overlapping sub domains where each sub domain has its own independently generated grid. The two meshes being mutually independent on the overlap region, a triangle belonging to one triangulation does not necessarily belong to the other one. Under a Lipschitz assumption on the nonlinearity, we establish, on each sub domain, an optimal L∞ error estimate between the discrete Schwarz sequence and the exact solution of the boundary value problem.

Keywords: Error estimates, Finite elements, Nonlinear PDEs, Schwarz method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2756
4133 The Design of Axisymmetric Ducts for Incompressible Flow with a Parabolic Axial Velocity Inlet Profile

Authors: V.Pavlika

Abstract:

In this paper a numerical algorithm is described for solving the boundary value problem associated with axisymmetric, inviscid, incompressible, rotational (and irrotational) flow in order to obtain duct wall shapes from prescribed wall velocity distributions. The governing equations are formulated in terms of the stream function ψ (x,y)and the function φ (x,y)as independent variables where for irrotational flow φ (x,y)can be recognized as the velocity potential function, for rotational flow φ (x,y)ceases being the velocity potential function but does remain orthogonal to the stream lines. A numerical method based on the finite difference scheme on a uniform mesh is employed. The technique described is capable of tackling the so-called inverse problem where the velocity wall distributions are prescribed from which the duct wall shape is calculated, as well as the direct problem where the velocity distribution on the duct walls are calculated from prescribed duct geometries. The two different cases as outlined in this paper are in fact boundary value problems with Neumann and Dirichlet boundary conditions respectively. Even though both approaches are discussed, only numerical results for the case of the Dirichlet boundary conditions are given. A downstream condition is prescribed such that cylindrical flow, that is flow which is independent of the axial coordinate, exists.

Keywords: Inverse problem, irrotational incompressible flow, Boundary value problem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1643
4132 A Reproduction of Boundary Conditions in Three-Dimensional Continuous Casting Problem

Authors: Iwona Nowak, Jacek Smolka, Andrzej J. Nowak

Abstract:

The paper discusses a 3D numerical solution of the inverse boundary problem for a continuous casting process of alloy. The main goal of the analysis presented within the paper was to estimate heat fluxes along the external surface of the ingot. The verified information on these fluxes was crucial for a good design of a mould, effective cooling system and generally the whole caster. In the study an enthalpy-porosity technique implemented in Fluent package was used for modeling the solidification process. In this method, the phase change interface was determined on the basis of the liquid fraction approach. In inverse procedure the sensitivity analysis was applied for retrieving boundary conditions. A comparison of the measured and retrieved values showed a high accuracy of the computations. Additionally, the influence of the accuracy of measurements on the estimated heat fluxes was also investigated.

Keywords: Boundary inverse problem, sensitivity analysis, continuous casting, numerical simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1526
4131 Comparison of Three Versions of Conjugate Gradient Method in Predicting an Unknown Irregular Boundary Profile

Authors: V. Ghadamyari, F. Samadi, F. Kowsary

Abstract:

An inverse geometry problem is solved to predict an unknown irregular boundary profile. The aim is to minimize the objective function, which is the difference between real and computed temperatures, using three different versions of Conjugate Gradient Method. The gradient of the objective function, considered necessary in this method, obtained as a result of solving the adjoint equation. The abilities of three versions of Conjugate Gradient Method in predicting the boundary profile are compared using a numerical algorithm based on the method. The predicted shapes show that due to its convergence rate and accuracy of predicted values, the Powell-Beale version of the method is more effective than the Fletcher-Reeves and Polak –Ribiere versions.

Keywords: Boundary elements, Conjugate Gradient Method, Inverse Geometry Problem, Sensitivity equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1834
4130 An Asymptotic Formula for Pricing an American Exchange Option

Authors: Hsuan-Ku Liu

Abstract:

In this paper, the American exchange option (AEO) valuation problem is modelled as a free boundary problem. The critical stock price for an AEO is satisfied an integral equation implicitly. When the remaining time is large enough, an asymptotic formula is provided for pricing an AEO. The numerical results reveal that our asymptotic pricing formula is robust and accurate for the long-term AEO.

Keywords: Integral equation, asymptotic solution, free boundary problem, American exchange option.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1613
4129 Recovering the Boundary Data in the Two Dimensional Inverse Heat Conduction Problem Using the Ritz-Galerkin Method

Authors: Saeed Sarabadan, Kamal Rashedi

Abstract:

This article presents a numerical method to find the heat flux in an inhomogeneous inverse heat conduction problem with linear boundary conditions and an extra specification at the terminal. The method is based upon applying the satisfier function along with the Ritz-Galerkin technique to reduce the approximate solution of the inverse problem to the solution of a system of algebraic equations. The instability of the problem is resolved by taking advantage of the Landweber’s iterations as an admissible regularization strategy. In computations, we find the stable and low-cost results which demonstrate the efficiency of the technique.

Keywords: Inverse problem, parabolic equations, heat equation, Ritz-Galerkin method, Landweber iterations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1193
4128 Fuzzy Boundary Layer Solution to Nonlinear Hydraulic Position Control Problem

Authors: Mustafa Resa Becan

Abstract:

Sliding mode control with a fuzzy boundary layer is presented to hydraulic position control problem in this paper. A nonlinear hydraulic servomechanism which has an asymmetric cylinder is modeled and simulated first, then the proposed control scheme is applied to this model versus the conventional sliding mode control. Simulation results proved that the chattering free position control is achieved by tuning the fuzzy scaling factors properly.

Keywords: Hydraulic servomechanism, position control, sliding mode control, chattering, fuzzy boundary layer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1827
4127 Fourier Galerkin Approach to Wave Equation with Absorbing Boundary Conditions

Authors: Alexandra Leukauf, Alexander Schirrer, Emir Talic

Abstract:

Numerical computation of wave propagation in a large domain usually requires significant computational effort. Hence, the considered domain must be truncated to a smaller domain of interest. In addition, special boundary conditions, which absorb the outward travelling waves, need to be implemented in order to describe the system domains correctly. In this work, the linear one dimensional wave equation is approximated by utilizing the Fourier Galerkin approach. Furthermore, the artificial boundaries are realized with absorbing boundary conditions. Within this work, a systematic work flow for setting up the wave problem, including the absorbing boundary conditions, is proposed. As a result, a convenient modal system description with an effective absorbing boundary formulation is established. Moreover, the truncated model shows high accuracy compared to the global domain.

Keywords: Absorbing boundary conditions, boundary control, Fourier Galerkin approach, modal approach, wave equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 888
4126 The Algorithm to Solve the Extend General Malfatti’s Problem in a Convex Circular Triangle

Authors: Ching-Shoei Chiang

Abstract:

The Malfatti’s problem solves the problem of fitting three circles into a right triangle such that these three circles are tangent to each other, and each circle is also tangent to a pair of the triangle’s sides. This problem has been extended to any triangle (called general Malfatti’s problem). Furthermore, the problem has been extended to have 1 + 2 + … + n circles inside the triangle with special tangency properties among circles and triangle sides; it is called the extended general Malfatti’s problem. In the extended general Malfatti’s problem, call it Tri(Tn), where Tn is the triangle number, there are closed-form solutions for the Tri(T₁) (inscribed circle) problem and Tri(T₂) (3 Malfatti’s circles) problem. These problems become more complex when n is greater than 2. In solving the Tri(Tn) problem, n > 2, algorithms have been proposed to solve these problems numerically. With a similar idea, this paper proposed an algorithm to find the radii of circles with the same tangency properties. Instead of the boundary of the triangle being a straight line, we use a convex circular arc as the boundary and try to find Tn circles inside this convex circular triangle with the same tangency properties among circles and boundary as in Tri(Tn) problems. We call these problems the Carc(Tn) problems. The algorithm is a mO(Tn) algorithm, where m is the number of iterations in the loop. It takes less than 1000 iterations and less than 1 second for the Carc(T16) problem, which finds 136 circles inside a convex circular triangle with specified tangency properties. This algorithm gives a solution for circle packing problem inside convex circular triangle with arbitrarily-sized circles. Many applications concerning circle packing may come from the result of the algorithm, such as logo design, architecture design, etc.

Keywords: Circle packing, computer-aided geometric design, geometric constraint solver, Malfatti’s problem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 143
4125 Mechanical Quadrature Methods for Solving First Kind Boundary Integral Equations of Stationary Stokes Problem

Authors: Xin Luo, Jin Huang, Pan Cheng

Abstract:

By means of Sidi-Israeli’s quadrature rules, mechanical quadrature methods (MQMs) for solving the first kind boundary integral equations (BIEs) of steady state Stokes problem are presented. The convergence of numerical solutions by MQMs is proved based on Anselone’s collective compact and asymptotical compact theory, and the asymptotic expansions with the odd powers of the errors are provided, which implies that the accuracy of the approximations by MQMs possesses high accuracy order O (h3). Finally, the numerical examples show the efficiency of our methods.

Keywords: Stokes problem, boundary integral equation, mechanical quadrature methods, asymptotic expansions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1398
4124 Topological Sensitivity Analysis for Reconstruction of the Inverse Source Problem from Boundary Measurement

Authors: Maatoug Hassine, Mourad Hrizi

Abstract:

In this paper, we consider a geometric inverse source problem for the heat equation with Dirichlet and Neumann boundary data. We will reconstruct the exact form of the unknown source term from additional boundary conditions. Our motivation is to detect the location, the size and the shape of source support. We present a one-shot algorithm based on the Kohn-Vogelius formulation and the topological gradient method. The geometric inverse source problem is formulated as a topology optimization one. A topological sensitivity analysis is derived from a source function. Then, we present a non-iterative numerical method for the geometric reconstruction of the source term with unknown support using a level curve of the topological gradient. Finally, we give several examples to show the viability of our presented method.

Keywords: Geometric inverse source problem, heat equation, topological sensitivity, topological optimization, Kohn-Vogelius formulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1119
4123 Existence of Solution for Four-Point Boundary Value Problems of Second-Order Impulsive Differential Equations (III)

Authors: Li Ge

Abstract:

In this paper, we study the existence of solution of the four-point boundary value problem for second-order differential equations with impulses by using Leray-Schauder theory:

Keywords: impulsive differential equations, impulsive integraldifferential equation, boundary value problems

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1169
4122 Modeling and Simulating Human Arm Movement Using a 2 Dimensional 3 Segments Coupled Pendulum System

Authors: Loay A. Al-Zu'be, Asma A. Al-Tamimi, Thakir D. Al-Momani, Ayat J. Alkarala, Maryam A. Alzawahreh

Abstract:

A two dimensional three segments coupled pendulum system that mathematically models human arm configuration was developed along with constructing and solving the equations of motions for this model using the energy (work) based approach of Lagrange. The equations of motion of the model were solved iteratively both as an initial value problem and as a two point boundary value problem. In the initial value problem solutions, both the initial system configuration (segment angles) and initial system velocity (segment angular velocities) were used as inputs, whereas, in the two point boundary value problem solutions initial and final configurations and time were used as inputs to solve for the trajectory of motion. The results suggest that the model solutions are sensitive to small changes in the dynamic forces applied to the system as well as to the initial and boundary conditions used. To overcome the system sensitivity a new approach is suggested.

Keywords: Body Configurations, Equations of Motion, Mathematical Modeling, Movement Trajectories.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2157