
Abstract—A new conserving approach in the context of
Immersed Boundary Method (IBM) is presented to simulate one
dimensional, incompressible flow in a moving boundary problem.
The method employs control volume scheme to simulate the flow
field. The concept of ghost node is used at the boundaries to conserve
the mass and momentum equations. The Present methodimplements
the conservation laws in all cells including boundary control
volumes. Application of the method is studied in a test case with
moving boundary. Comparison between the results of this new
method and a sharp interface (Image Point Method) IBM algorithm
shows a well distinguished improvement in both pressure and
velocity fields of the present method. Fluctuations in pressure field
are fully resolved in this proposed method. This approach expands
the IBM capability to simulate flow field for variety of problems by
implementing conservation laws in a fully Cartesian grid compared to
other conserving methods.

Keywords—Immersed Boundary Method, conservation of mass
and momentum laws, moving boundary, boundary condition.

I. INTRODUCTION

HE Immersed Boundary Method (IBM) is a powerful
approach for simulating flows in moving boundary and

complex geometry problems. In this method discretization of
equations are carried out on a Cartesian grid which is simple
to generate. However the boundary does not conform to the
grid lines and therefore indirect methods are employed to
apply the boundary conditions. This creates a range of
different methods developed in the context of IBM which are
applied to elastic [1]-[5] and solid [6]-[9] boundaries. The
methods generally employed so far for solid boundaries, use
nodes (i.e. ghost nodes) in the Cartesian grid located outside
the fluid to apply boundary conditions. The value of ghost
nodes is set so as to meet the boundary conditions. In these
methods, Finite Difference scheme is usually used to simulate
the flow field and the ghost node value is determined using a
kind of interpolation schemes [10]-[12]. Although these
approaches are almost fast and simple, conservation of mass
and momentum equations in boundary cells are neglected.
There is also a different category of methods based on
Cartesian grids called “cut cell” [3], [13]-[18] that implement
conservation laws in boundary cells.

However the shape of Cartesian cells in the vicinity of
boundary is changed to fit the boundary. In these methods
cells are cut by the boundary which passes through them, and
conservation laws are implemented in these cut cells
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conforming to the boundary. This approach is more
complicated especially compared to IBM as the boundary may
cut the Cartesian grids anywhere on the cells and create new
boundary cell geometry. These cells are no longer a
rectangular cell and are considered conformed to the boundary
the way they are. This complicates the discretizing of
equations and calculation of fluxes particularly in two and
three dimensional and moving problems.

In the current study a control volume scheme based on IBM
is proposed in which Cartesian grid is used even in the vicinity
of the boundary. In this method the mass and momentum
equations are conserved taking advantage of ghost nodes
concept in IBM.

II. NUMERICAL ALGORITHM

In this section, governing equations are described, and
different control volume and node types encountered in
present method are explained. This is followed by
discretization of equations and implementation of boundary
conditions. A detailed discussion of the method used for
imposing the boundary condition is presented.

A. Governing Equations

Governing equations of one dimensional incompressible
inviscid flow in a moving boundary problem for a control
volume shown in Fig. 1 include the mass conservation
equation of

(1)

and the momentum conservation equation of

(2)

Where is the flow velocity in the x direction, is density,
P is pressure, is the grid velocity and t represents time.

B. Control Volume and Node Types

The dotted area in Fig. 1 represents the Control volume of
node i. Each Control Volume is surrounded by two integral
points which are located halfway between two neighboring
nodes and are depicted via cross symbol in Fig. 1.Three kinds
of control volumes are presented in this method. The first
control volume is the one that is in the middle of the solution
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domain and does not contain the boundary as shown in Fig. 1.
This control volume is called ordinary control volume. The
node pertaining to this control volume is also an ordinary
node.

The second control volume is related to a node which the
boundary has passed from it but has not yet left its control
volume. This control volume is called ghost control volume
type one and is shown in Fig. 2. The node pertaining to this
control volume is named a ghost node. The third control
volume is related to a node which boundary has passed from it
and has left its control volume.

Fig. 1 Ordinary Control Volume

But since the boundary is still between this node, i.e. node i,
and its neighbor node, i.e. node i+1, this control volume is
called ghost control volume and is tagged as ghost control
volume type two, in Fig. 3. In general whenever immersed
boundary is located between two nodes, the node that is
outside of the flow filed is called ghost node and its
corresponding control volume is called ghost control volume.
Immersed boundary is always treated by ghost control
volumes. Note that in both cases control volume i+1 will be
treated as an ordinary control volume; this will be described
later.

Fig. 2 Ghost Control Volume type one

Fig. 3 Ghost Control Volume Type two

C. Ordinary Control Volume

In this part discretization of mass and momentum equations
are carried out for ordinary control volume. Having substituted
the volume integral in the second term of (2) with surface
integral one can get:

(3)

Density is constant and in an ordinary control volume there
is no change in volume. Therefore only the second term
remains to be discretized between integral point’s e and w as
given below

( − ) | − ( − ) | = 0 (4)

In (4), u is the grid velocity which is zero since in contrast
to the ordinary moving mesh methods [19], in IBM the grid is
stationary and does not move. Mass conserving velocities u at
integration points e and w are modelled as described in [20].
At integration point e this is given by

=
+

2
−

1

2
( − ) (5)

A similar equation is used to model uat integration point w.
Substitution of these definitions of u at integration points e
and w in (5)

+

2
−

1

2
( − )

−
+

2

−
1

2
( − ) = 0

(6)

In which ds has been assumed to be constant. Having
applied a similar procedure used for the mass conservation
equation, to the momentum conservation equation, (2), one
can get

−

Δ
+ ( − ) | + |

+ ( − ) | + |

= 0

(7)

As mentioned previously, for an ordinary control volume
u is zero. Mass conserving velocities u and u are calculated
using their values from the previous linearization iteration.
Convected velocities, u, at integration points e and w
areupwinded and set equal to u and u respectively.
Pressures at the integration points are averaged from their
neighbor nodes. With these approximations (7) will become as
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−

Δ
+ | + |

+
2

| +
2

|

= 0

(8)

ds | is considered unity and positive while ds | is also
unity but negative. V is Δx as said before. Applying this to
(8) we will have:

−

Δ
Δ + − +

2

−
2

= 0
(9)

Where ds has been assumed to be constant. Coefficients of
velocity and pressure for each node are calculated after
discretization of conservation of mass and momentum
equations.

III. APPLYING BOUNDARY CONDITION

The key point of the algorithm described in this paper is the
discretization of conservation equations at the boundaries, i.e.
for ghost control volumes that is described earlier

A. Ghost Control Volume Type One

As seen in Fig. 4, ghost control volume i that is known as
type one includes an immersed moving boundary which has
not left this control volume [21]. A part of flow field indicated
by dots, is still in this ghost control volume. This dotted area is
designated as the volume of ghost control volume i. We first
write mass conservation equation for ghost control volume i,
i.e. the dotted area. As seen in Fig. 4, a moving boundary
causes volume change and this should be considered in the
first term of the mass conservation equation, (1). Second term
of (1) is evaluated between integral point e and boundary b.
Therefore mass conservation equation for ghost control
volume type oneis written as

Δ
+ ( − ) | = 0 (10)

or

. ( − ) − . ( − )

Δ
+ ( − )

− ( − ) = 0
(11)

Grid velocity at the integral point e is zero, i.e. u = 0, and
also u = u . Therefore for a constant area duct one can get

Δ
+ = 0 (12)

Having calculated the first term geometrically and
substituted u from (5) in (12), mass conservation equation for
ghost control volume type one is obtained as

Δ
+

+

2
−

1

2
( − ) = 0 (13)

The same procedure followed for the mass conservation
equation is applied to (3) to obtain the following discretized
form of momentum conservation equation for the ghost
control volume type one.

Δ
+ ( − ) | + (

− ) | + − = 0
(14)

Substituting = 0 and = in above equation it
returns to:

Δ
+ + − = 0 (15)

Discretization of mass and momentum conservation
equations for ghost control volume type one is closed. In the
next section discretization of conservation equations for the
ghost control volume type two is addressed.

Fig. 4 Ghost Control Volume Type One

B. Ghost Control Volume Type Two

Consider ghost control volume iin Fig. 5, which is known as
ghost control volume type two. This is a control volume that
the boundary has left it but is still between its node, i, and its
neighbour node, i+1, which is within the flow field. The
control volume that should be considered here is the one
between the boundary b and integral point e, shown by dotted
area in Fig. 5. However we would like to remain in the general
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frame work of IBM, i.e. consider control volume of every
node within the flow field as a complete one and do not cut it
to pieces. Therefore control volume of node i+1 is treated as
an ordinary control volume between integral points w and e,
illustrated by horizontal lines in Fig. 5. Boundary conditions,
then will be treated throughout the ghost nodes. Based on this
strategy nodes within the flow field are always considered as
ordinary nodes and their corresponding control volumes are
treated as complete control volumes. What so ever happens on
the boundary is then treated by ghost control volumes. To
handle this, the difference between the real control volume
and the complete one, i.e. the volume between integral point w
and boundary b, is assigned to the ghost control volume i as
the subtracted volume, shown as dashed diagonal lines in Fig.
5.

At the boundary, conservation equations are written for the
ghost control volume only. However these equations together
with the conservation equations of control volume i+1will
result in conservation equations for the real control volume,
i.e. the dotted area. Here it is shown that how this strategy
works.

Mass conservation equation, (3), for the ghost control
volume i, i.e. the volume with dashed diagonal lines in Fig. 5,
is given bellow.

( − ) − 0

Δ
+ ( − ) |

+ ( − ) | = 0

(16)

In which the volume at the present time step is V − V ,
and the volume at the previous time step is zero. For the
control volume of node i+1, mass conservation equation can
easily written as

( − ) | + ( − ) | = 0 (17)

Fig. 5 Ghost Control Volume Type One

Now consider equations, (16) and (17) in a system of
equations as follows.

( − ) − 0

Δ
+ ( − ) |

+ ( − ) | = 0

( − ) | + ( − ) | = 0
(18)

Solving this system of equations to eliminate mass flux on
integration point w, one can get

−
( − ) − 0

Δ
+ ( − ) |

+ ( − ) | = 0

(19)

and with a few simplifications get

Δ
+ ( − ) | + ( −

) | =0 (20)

Equation (21) is in fact the mass conservation equation for
the real control volume between boundary b and the
integration point e, as shown by dotted volume in Fig. 5.
Therefore, with the above strategy boundary conditions can be
handled merely by the ghost nodes and it does not need to cut
boundary cells or control volumes. At the same time we have
been able to implement conservation laws at the boundary
control volumes.

We now explain the discretization of momentum
conservation law for ghost control volume type two with the
same procedure as discretization of mass conservation law.
Mass conservation equation, (2), for the ghost control volume
i, i.e. the volume with dashed diagonal lines in Fig. 5, is given
bellow.

( ( − )) − × 0

Δ

+ − |

+ − | + | = 0

(21)

In which the volume at the present time step is V − V ,
and the volume at the previous time step is zero. For the
control volume of node i+1 (volume depicted with horizontal
lines), momentum conservation equation can easily written as

−

Δ
+ ( − ) | + |

+ ( − ) | + |

= 0

(22)

Δ

Δ
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Now consider equations, (21) and (22) in a
equations as follows.

( ( − )) − × 0

Δ
+ ( − ) |

+ ( − ) | + | = 0

−

Δ
+ ( − ) |

+ | + ( − ) | + | =

(23)

Solving this system of equations to eliminate m
integration point w, one can get

− − +

Δ
+ ( − ) | + |

( − ) | + | = 0

(24)

and with a few simplifications such as u = u w

−

Δ
+ − |

+ ( − ) | + |

+ | = 0

(25)

Likewise what is described for discretizatio
equation, (25) is in fact the momentum conservati
for the real control volume between boundary 
integration point e, as shown by dotted volume in 
means that astrategy similar to mass conservation
applied for the momentum conservation law, i.e. 
need to change the method of solution when boun
the integral point e.

The strategy implemented in this study is to re
IBM context. Therefore nodes within the flow field
considered ordinary with complete control volume
conditions are always implemented via the ghost n
on the conservation of conserved quantities. This is
to other methods in which boundary conditions 
using non-conserving methods such as linear, b
quadratic interpolations or extrapolations [21].

So far conserving methods such as cut cell
moving boundary problem, mass and 
conservations laws are applied to the dotted area 
ghost control volume type II, and to the dotted ar
plus the ordinary control volume of node i+1 in g
volume type I. As a result, in certain cases a 
ordinary control volume is formed that may 
accuracy of solution. However in the strategy prop
study, the control volume of node i+1 is always
complete and unchanged, and for ghost nodes (typ
the conservation laws is applied to the area b

 a system of

0

(23)

 mass flux on

+ (24)

we get

(25)

tion of mass
ation equation
ry b and the
in Fig. 5. This
on law can be
.e. there is no
undary passes

 remain in the
eld are always
es. Boundary

st nodes based
s is in contrast
ns are applied
, bilinear, and

ll [18], for a
 momentum
ea in Fig. 5 in
 area in Fig. 4
 ghost control
a larger than

ay affect the
roposed in this
ys considered
type I and II),
 between the

boundary and the integral point and this are
ordinary control volume.

IV.RESULTS

Present method is applied to a 
incompressible, inviscid moving boundary
in Fig. 6. A piston within a cylinder mo
position to the right with a speed of u c
flow out of the domain. Constant mass flo
the walls of the cylinder into the flow 
volumes are considered in this test case w
shown schematically in Fig. 7. Accordi
presented in the previous section control vo
node 10, in this schematic, are considered 
volumes. Control volume of node 1 is 
stencil, and control volume of node 2 would
volume type one.

Fig. 6 Schematic of the test case stu

Cylinder length is assumed to be 1 me
constant and equal to 0.005m/s, and time s
be 2 seconds. The back pressure is set
pressure of 1 atm, and the constant mass
kg/(m.s) is applied along the wall. Piston is
at node 1, and initial values ofzero veloci
pressure are applied on the interior nodes.

Having solved this test case using the
time variation of calculated piston press
drawn in Fig. 8 with the thick solid line. In
the piston pressure rises at once to slightly
pressure of 1 atm, and then decreases to a
the following time steps which is accordin
the flow. Among sharp interface method
method of Ghias, et al., 2007, has been app
for comparison purpose.

Fig. 7 Schematic of the control volumes of the t

Comparison between piston pressures ca
method and the method presented in this pa
plotted in Fig. 8 As seen, oscillations occ
Image Point method. This is in contrast to
proposed method where no oscillations
solution domain. This improvement in 

( ( − )) − × 0

Δ
+ ( − ) |

+ ( − ) | + | = 0

−

Δ
+ ( − ) |

+ | + ( − ) | + | = 0

(23)

− − +

Δ
+ ( − ) | + | +

( − ) | + | = 0

(24)

−

Δ
+ − |

+ ( − ) | + |

+ | = 0

(25)

area never exceeds an

a one dimensional,
ry problem as shown
oves from its initial
causing the fluid to

flow rate enters from
w field. Ten control
 with an arrangement
rding to the method
 volumes of node 3 to
ed as ordinary control
is out of calculation
uld be a ghost control

studied here.

eter, speed piston is
e step Δt is chosen to
set equal to ambient
ass flow rate of 0.01
 is initially positioned
city and atmospheric
.
the proposed method
essure versus time is
. In the first time step
tly above the ambient
o ambient pressure in
ding to the physics of
ods, the Image Point
pplied to this problem

e test case studied here

calculated using this
 paper versus time are
ccur in the results of
t to the results of the
ns produced in the

in results is due to
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conserving mass and momentum equations withoutany
arbitrary boundary forcing or flow-field modification.

Fig. 8 Time variation of piston pressure along cylinder; comparison
between the proposed method and the ordinary sharp interface

method (Image Point)

Pressure distributions along the cylinder at different time
steps calculated by the present method are plotted for different
time steps in Fig. 9 Nodes numbers are tagged on the graph
of2nd time step. Pressure decreases along the cylinder to
ambient pressure at the end of the cylinder. While the piston
moves down the cylinder the initial pressure also decreases.
This decrease is consistent with a decrease of mass flow rate
along cylinder during the piston movement. Note that as the
piston moves toward the end of cylinder the surface through
which the flow enters the cylinder decreases.

A graph similar to Fig. 9 is plotted using results of Image
Point method in Fig. 11. In contrast to Fig. 10, pressure
distribution along the cylinder does not obey a monotonic
behaviour with time. As seen pressure distribution along the
cylinder fluctuates with time.

Fig. 9 Pressure distribution along the cylinder at different time steps
calculated by the present method

Fig. 10 Pressure distribution along the cylinder at different time steps
calculated by the Image Point method

The velocities of the ghost and ordinary nodes along the
cylinder versus their distance from the left end for different
time steps obtained via our proposed method are plotted in
Fig. 11. Each velocity diagram has an increasing rate along the
cylinder length as the mass flow rate increases. The nodes
velocity decreases in time as the piston moves toward the end
of the cylinder while the amount of the mass entering the
cylinder also decreases. The slopes in all the diagrams are the
same and equal to the mass flow rate.

A similar diagram is presented in Fig. 12 based on the
results of Image Point Method. In a quick look it can be seen
that velocity diagram for time steps 12, 19 and 29 are quite
similar to the results of our proposed method. After time step
29, velocities of ghost node experience a sharp increase
compared to velocities of the following nodes, and the slope of
velocity graphs has decreased for the following nodes, and
also the velocity value for the final node is less than its actual
value. These results show that our proposed method
demonstrate a more accurate and consistent correspondence
with the actual values in the velocity field.

Fig. 11 Velocity of Nodes for several time steps via our proposed
method
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Fig. 12 Velocity of Nodes for several time steps via Image Point

The important criterion we believe that should be
considered in comparison between two methods is the
conservation of mass equation in ghost control volumes.
Based on the following definition of mass conservation within
the ghost nodes comparison between the two methods is
depicted for this criterion in Fig. 13a, 13b and 13c.

It can be seen that mass equation is fully conserved via our
proposed method (its deviation from mass equation is zero),
while this is not the case in the Image Point method and
deviation from full conservation is seen for this method.
Similar to previous diagrams the higher the mass flow rate, the
larger is the deviation from conservation of mass.

Fig. 13a Deviation from mass conservation equation by the two
methods (mass flow rate 0.0005 (kg/(m.s))

Fig. 13b Deviation from mass conservation equation by the two
methods (mass flow rate 0.001 (kg/(m.s))

Fig. 13c Deviation from mass conservation equation by the two
methods (mass flow rate 0.002 (kg/(m.s))

V. CONCLUSIONS

AnIBM-based new algorithm applying boundary conditions
by fully conserving mass and momentum equations is
presented to solve flow field. The algorithm is applied to a
one-dimensional, incompressible, inviscid flow including
mass source in a moving boundary problem and compared to a
sharp interface i.e. Image Point method. Modeling this case by
Image point method showed some spurious pressure
oscillation, while pressure fluctuations are fully resolved using
the method proposed in the current study. Moreover, the
Image Point model shows a discontinuity in the velocity field
between the piston and the following nodes (i.e. nodes coming
after the first one) velocities. Also as time passes, the velocity
values become less than their actual ones. In the method
proposed in this study, no discontinuity appears in the velocity
field and also the nodes velocity values are more accurate.

It is concluded that the current proposed algorithm is not
problem based and simulate flow field by solving mass and
momentum equations completely, without any assumption or
simplification. While in simpler cases, especially non-moving
problems, where pressure and velocity fields are consistent
with their type and degree, sharp interface methods are
simpler modeling choices, in generally moving boundary
problems with and without source of mass, the new proposed
algorithm introduced in this study presents more reliable
results.
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