
 

 

 
Abstract—The Malfatti’s problem solves the problem of fitting 

three circles into a right triangle such that these three circles are tangent 
to each other, and each circle is also tangent to a pair of the triangle’s 
sides. This problem has been extended to any triangle (called general 
Malfatti’s problem). Furthermore, the problem has been extended to 
have 1 + 2 + … + n circles inside the triangle with special tangency 
properties among circles and triangle sides; it is called the extended 
general Malfatti’s problem. In the extended general Malfatti’s 
problem, call it Tri(Tn), where Tn is the triangle number, there are 
closed-form solutions for the Tri(T ) (inscribed circle) problem and 
Tri(T ) (3 Malfatti’s circles) problem. These problems become more 
complex when n is greater than 2. In solving the Tri(Tn) problem, n > 
2, algorithms have been proposed to solve these problems numerically. 
With a similar idea, this paper proposed an algorithm to find the radii 
of circles with the same tangency properties. Instead of the boundary 
of the triangle being a straight line, we use a convex circular arc as the 
boundary and try to find Tn circles inside this convex circular triangle 
with the same tangency properties among circles and boundary as in 
Tri(Tn) problems. We call these problems the Carc(Tn) problems. The 
algorithm is a mO(Tn) algorithm, where m is the number of iterations 
in the loop. It takes less than 1000 iterations and less than 1 second for 
the Carc(T16) problem, which finds 136 circles inside a convex circular 
triangle with specified tangency properties. This algorithm gives a 
solution for circle packing problem inside convex circular triangle with 
arbitrarily-sized circles. Many applications concerning circle packing 
may come from the result of the algorithm, such as logo design, 
architecture design, etc. 

 
Keywords—Circle packing, computer-aided geometric design, 

geometric constraint solver, Malfatti’s problem. 

I. INTRODUCTION 
N this paper, we would like to propose an algorithm to find 
one, three, six, ten, …, all triangle numbers, with special 

tangency properties among these circles. Moreover, these 
circles are situated within a convex region enclosed by three 
circular arcs, and they are tangent to the boundary circular arc 
as indicated. Before we illustrate the problem, we introduce the 
related topics including the extended Malfatti’s problem inside 
a triangle in this section. 

Given a triangle, we want to find three circles inside the 
triangle, these circles tangent to each other, and every two 
circles tangent to one edge of the given triangle, this problem is 
called the Malfatti’s problem. The problem generalized to any 
triangle is called the general Malfatti’s problem. An instance of 
this general Malfatti’s problem is shown in Fig. 1 [5]. And, 
these three circles are called the Malfatti circles. 
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Fig. 1 Malfatti’s problem 
 

There are several known solutions of Malfatti’s problem. 
Fukagawa and Pedoe [1] mentioned that the general Malfatti’s 
problem on an arbitrary triangle was actually formulated and 
solved by Chokuen Ajima. The interested reader is referred to 
[2]-[4] for a history of the problem and an explanation of 
various solutions and generalizations. 

Before extending the Malfatti's problem to involve more than 
three circles within the triangle, we require a more detailed 
specification of the tangency relationships among these circles 
and the sides of the triangle.  

The triangle number Tn counts objects arranged in the 
following way: The first triangle number T1 is one, represented 
by a dot, as shown in Fig. 2 (a). The n-th triangle number Tn 
has the form that Tn-1 on top, and following by one more row 
with n objects, as shown in Figs. 2 (b)-(d). Tn can be easily 
derived as Tn = 1 + 2 + 3 … + n = n(n + 1) / 2, where n = 1, 2, 
3, … 

 

            
(a) T1 = 1       (b)T2 = 3        (c) T3 = 6       (d) T4 = 10 

Fig. 2 Triangle number 
 

The general Malfatti's problem involves finding three circles 
for any given triangle. We aim to extend this problem to include 
more than three circles. Instead of three circles, we extend the 
number of circles from 3 to Tn, where n = 1, 2, 3, …, with 
tangency properties among circles and edge of triangles. When 
we consider Tn circles problem, it is called the Tri(Tn) problem, 
means the problem with Tn circles inside a triangle (see Fig. 3 
for n = 2, 4, 31).  
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(a) Tri(T2)                       (b) Tri(T4)               
 

 

(c) Tri(T31) 

Fig. 3 Extended General Malfatti′s Problem Tri(Tn) 
 

We consider the dots in Fig. 2 are vertices in a graph, we 
want to add edges to construct a special class of graph. The T2 
(n = 2) case in Fig. 2 (b) has three vertices, we add edges 
pairwise for these three vertices, as shown in Fig. 3 (b). There 
are only two rows, and one edge connect two vertices in the 
second row, and two edges connect the only one vertex in the 
first row with two vertices in the second rows. The T3 cases in 
Fig. 2 have three rows, we use the same way to add edges for 
the first and second rows, and add edges for the second rows 
with the third row. There are two vertices in the second rows, 
and three vertices in the third rows. The first vertex at the 
second row connects to the first and second vertices at the third 
row and the second vertex at the second row connects to the 
second and third vertices at the third row. We can use the same 
approach to add the edges form Tn cases to Tn+1 cases similarly. 
The graph for T1 to T6 cases is shown in Fig. 3. We call this 
graph a triangle graph for Tn. We notice that Tn = Tn-1+n, T1 = 
1 or Tn = n(n+1)/2, which is the vertices number of the triangle 
graph for Tn. The number of edges for the triangle graph for Tn, 
denoted En, is En = En-1+3(n-1), E1 = 0 or En = 3n(n-1)/2.  

We consider the triangle graph for Tn, every dot represents a 
circle, and edge connecting two dots means these two circles 
are externally tangent to each other. We assume the triangle 
graph for Tn is inside a triangle, we want to specify the tangency 
properties for triangle graph for Tn and three sides of the 
triangle. We consider triangle graph for T1 inside a triangle, it 
represents a dot(circle) inside a triangle, as shown in Fig. 4 (a). 
In this graph, there is a circle V inside the triangle, the edge 
connects V and perpendicular to  means that circle V tangent 
to  side of the triangle. So, the problem in Fig. 4 (a) indicates 
the problem of finding the inscribed circle of a triangle. When 
we change this graph from T1 to T2 inside the triangle, see Fig. 
4 (b), we want to find three circles (represents by three dots V1, 
V2, V3), these three circles tangency to each other represented 
by the edge connect these three vertices, and the circle V1 
tangents to edge  and , the circle V2 tangents to edge  
and , the circle V3 tangents to edge  and . This is the 
malfatti’s Problem. We can extend the problem, so that the 
graph inside the triangle from triangle graph for Tn to triangle 
graph for Tn+1, we established a problem from the circle number 

equal the triangle number Tn. to the circle number equal to Tn+1. 

 
 (a) Tri(T1)                             (b) Tri(T2) 

 

 

(c) Tri(T3)                          (d) Tri(T4) 

Fig. 4 Tangency graph for Tri(Tn) 
 

We call these graphs, which connect the triangle graph with 
triangle edges, a tangency graph for Tri(Tn). This tangency 
graph has a triangle graph for Tn inside the triangle and we need 
to add edges to specified the tangency property for circles, 
represented by dots in triangle graph for Tn, with sides of 
triangle. The tangency graph for Tri(T3) and Tri(T4) are shown 
in Figs. 4 (c) and (d). We classified these circles (represented 
by dots in a triangle) into three categories: corner circles, edge 
circles and inner circles. The circle at the first row (represented 
by dots in triangle graph), the first and last circle at the last rows 
are called the corner circles, and the corner circles always 
tangent to two side of the triangle. The first and the last circles 
for the second to (n-1) rows and the circles except the first and 
last circles in the last row are called the boundary circle, it is 
always tangent to one side of the triangle. The remainder circles 
are called the inner circles, which are not tangent to sides of the 
triangle. It is worth noting that all of these problems involve 
corner circles, and in cases where n is equal to or greater than 
3, boundary circles are also included. And, the first inner circle 
starts from n = 4. The results [5], [6] of the Tri(Tn), n = 2,4,31 
problems are presented in Figs. 3 (a)-(c), respectively. 

II. PROBLEM STATEMENT 
A circle divides an area into two parts, inside and outside of 

the circles. The inside region contains the center of the circle. 
For every circular arc, we call the “center side” of the arc the 
convex side of the circular arc (convex circular arc in short), 
and the other side the concave circular arc. This paper tries to 
find algorithms to solve similar problems for Tri(Tn), except 
that the area bounded the tangency graph for Tn is not a triangle 
but a convex circular triangle. We call these problems Carc(Tn) 
problems. The tangency graphs for Carc(Tn) are shown in Fig. 
5. These graphs are similar to the tangency graph for Tri(Tn), as 
shown in Fig. 4. They have the same triangle graph for Tn, with 
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a similar approach to connect the tangency properties between 
triangle graph and (convex circular) triangle edges.  

 

 
(a) Carc(T1)              (b) Carc(T2) 

 

 

(c) Carc(T3)                         (d) Carc(T4) 

Fig. 5 The Carc(Tn) problems 
 

The Carc(Tn) problems become more complex compared to 
Tri(Tn) problem, because the sides of the bounded region 
change from straight line to convex circular arc. We need more 
theorem and new algorithms to solve these tangency problems. 
These theorem and algorithms will be introduced in Sections III 
and IV. The experimental results will be shown in Section V.  

III. THEOREM AND ALGORITHM 
In the algorithm we propose later, we give an initial set of 

radii for the circles, and enlarge/reduce its radius by its relation 
with its neighbors. In this process, we need to compute angles 
for different situation. We consider Fig. 5 (b), the center of the 
circle represented by dot V1 emits four vectors to its neighbors, 
including the vectors to the center of circles represented by V2, 
and V3, projection point on boundary Carc  and boundary 
Carc . These four vectors produce four angles, and the sum 
of these four angles should equal to 2 . From the current radii 
of V2 and V3, and information form  and , the sum of 
these four angles is greater than (less than) 2 , we need to 
enlarge (reduce) the radius of circle V1. 

Now, we need to consider different criteria of angle 
computation. We consider three different kinds of circles inside 
three Carc, there are corner circles, boundary circles and inner 
circles, as shown in Fig. 6. We consider the inner circles, see 
Fig. 6 (c), we need to compute the angle i, i = 1,2,3,4,5,6. We 
consider the boundary circles, as shown in Fig. 6 (b), the way 
to compute 2, 3, 4 is the same as we compute angle for inner 
circles, we need a way to compute 1 and 5 here. In the corner 
circle case, as shown in Fig. 6 (a), we need to find a way to find 

1. 
 

 

(a) Corner Circle 
 

 

 (b) Boundary Circle 
 

 

(c) Inner Circle 

Fig. 6 Different circles in convex circular triangle
 

Let us denote the circle centered at v = (x,y) with radius r as 
C(v,r), we have the following three theorems: 
Theorem1. Consider three circles C(C1,r1), C(C2,r2) and 
C(C3,r3) tangent to each other externally, as shown in Fig. 7, 
then the angle C3C1C2 =  is:  
 

       (1) 
 

Proof. We know the length of the triangle sides are r1+r2, r1+r3 
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and r2+r1, so the angle can be computed by the cosine theorem. 
 

 
Fig. 7 Angle computation for inner circle  

 
Theorem2. Consider two circle C(C1,r1) and C(C2,r2) tangent 
to each other externally, and these two circles’ tangents to C(va, 
ra internally, as shown in Fig. 8, then the angle the angle and 

are equal to:
 

       (2) 
 

        (3) 
 

Proof. Consider the triangle whose vertices are C1, C2, and C3. 
The side length for the triangle is r1+r2, ra-r1, ra-r2, so we can 
find three angles for this triangle.  and  can be computed by 

AC1C2, AC2C1.  

 

Fig. 8 Angle computation for boundary circle 
 
Theorem3. Consider two circles C(va, ra) and C(vb,rb)), 
intersect at two points, we call one of these two points C, there 
is a circle tangent to these two circular Carc from the convex 
side center v and radius r, as shown in Fig. 9, then the angle  
is equal to: 
 

        (4) 
 
Proof. Consider the triangle whose vertices are a, vb and c, 

their side lengths are , ra-r, rb-r. So, the angle  = avvb 
can be found by the cosine theorem. 

 

 

Fig. 9 Angle computation for corner circle 
 

By knowing the radii for every circle C, we consider all 
vectors from its circle center to its neighbors’ circle centers, or 
to the projection point on boundary circular arc. After sorting 
these vectors in order, we can compute every angle between two 
vectors via Theorem 1 to Theorem 3. We sum up all this angles, 
call it TA(C), and judge the enlarge/reduce the radius of this 
circle C. Using this idea, we have the following algorithm:  
 

Algorithm: 
1. Input information for three circles va, ra, vb, rb, vc, rc, and n. 
2. Enumerate circles, set initial radius ri = 1/(n+1), where i = 

1,2,….,Tn. 
3. Compute TA(Ci) for all circles. 
4. While one of TA(Ci,) is not equal 2π (within a tolerance). 

4.1 Calculate the enlarge/reduce amount for the radius of 
Ci, (enlarge or reduce) if sumangle (Ci,j)>2π (or <2π).  

4.2 Enlarge/reduce all radii in the same time. 
4.3 Enlarge/reduce so that the result figures fit in the region 

bounded by three convex Carc. 
4.4 Compute TA(Ci) for all circles. 

5. Draw the result. 
 

At first (step 1), we can find three convex Carc from the three 
circles, and find the associated three vertices from the 
intersection point of any pairs of circular arc. From the input 
integer n (n > 1), we can generate information (radii) for circles 
for all Tn circles (step 2). Then we compute TA(Ci) (by using 
Theorem 1 to 3) for all circles (step 3). We use a while loop 
(step 3) to repeat many iterations until all circles have the 
properties TA(Ci) = 2π. Inside the while loop, the radii of all 
circles have been enlarged/reduced, depending on their TA(Ci). 
After that, we give one more constraint to enlarge/reduce the 
radii of all circles with one common ratio, so that this group 
circles fit into the convex region bounded by three Carc (step 
4.3). After the end of the while loop, the only thing left is the 
display of the result.  
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IV. IMPLEMENT AND EXAMPLES 
We use Python 3 to implement the above algorithm in a PC 

(Intel Core i7-10750H CPU), and test for the problem Carc(Tn), 
n = 1, 2, 3, 4, 8, 16, … for the convex area inside three circles 
C((11,0),15.9612), C((12.72,12.69),18.5) and C((-
1.3,7.65),16.1327). The results are shown in Fig. 10 and the 
circle information in Table I. 

 

 

(a) n = 1                   (b) n = 2                     (c) n = 3 
 

   

(d) n = 4                 (e) n = 8                      (f) n = 16 

Fig. 10 Solution for Carc(Tn) 
 

TABLE I 
THE PERFORMANCE FOR THE PROPOSED ALGORITHM 

n Time 
(sec) 

Iter. Conner Boundary Inner 

1 0.262 0 8.553 X X 
2 0.001 32 4.098, 

4.611, 
5.666 

X X 

3 0.004 62 2.249, 
2.713,  
3.677 

(3.534, 4.283) X 

4 0.008 104 1.373, 
1.736, 
2.491 

(2.527, 3.523) 2.981 

8 0.079 329 0.357, 
0.501, 
0.785 

(0.791, 2.044) (1.115,1.800) 

16 0.796 915 0.083, 
0.127, 
0.206 

(0.192, 1.114) (0.293,1.020) 

 
In Table I, the first column indicates the value n for Carc(n) 

problem, the second column is the execution time (seconds) for 
associated problem. The third column is the number of 
iterations in the while loop of the proposed algorithm. There are 
only corner circles for Carc(T1) and Carc(T2) cases, and it starts 
to have inner circles from Carc(T4). There are three corner 
circles for all Carc(Tn) problem, and column four indicates the 
radii for these three circles. The fifth column to sixth column 
indicate the radius or radii range for boundary and inner circles 
in the Carc(Tn), n = 3,4,8 problems. 

V.  CONCLUSION AND FUTURE RESEARCH 
The Carc(Tn), n  1, problem can be constructed in the 

proposed algorithm in this paper. It seems that the range of the 
radius for a boundary circle is wider than the range of the radius 
for the inner circle. The CPU time is mainly used for displaying 
the figure, as the computation for the Carc(T1) problem using 
an O(1) algorithm takes almost the same time compared to the 
others. We proposed the algorithm to solve Carc(Tn). The 
boundary convex arc is a circular arc, which represents a curve 
of degree 2. This problem can be easily extended to concave 
Carc. There are many different types and/or different degree of 
boundary curve, such as Bezier curve, which can be further 
investigated.  
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