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Maximum Norm Analysis of a Nonmatching Grids
Method for Nonlinear Elliptic Boundary Value
Problem —Au = f(u)

Abida Harbi

Abstract—We provide a maximum norm analysis of a finite
element Schwarz alternating method for a nonlinear elliptic boundary
value problem of the form —Awu = f(u), on two overlapping sub
domains with non matching grids. We consider a domain which is
the union of two overlapping sub domains where each sub domain
has its own independently generated grid. The two meshes being
mutually independent on the overlap region, a triangle belonging to
one triangulation does not necessarily belong to the other one. Under
a Lipschitz assumption on the nonlinearity, we establish, on each sub
domain, an optimal L°° error estimate between the discrete Schwarz
sequence and the exact solution of the boundary value problem.

Keywords—EFError estimates, Finite elements, Nonlinear PDEs,
Schwarz method.

I. INTRODUCTION

HE Schwarz alternating method can be used to solve

elliptic boundary value problems on domains which
consist of two or more overlapping subdomains. The solution
is approximated by an infinite sequence of functions which
results from solving a sequence of elliptic boundary value
problems in each of the subdomains. Extensive analysis of
Schwarz alternating method for nonlinear elliptic boundary
value problems can be found in [8], [9], [10] and [11] and
the references therein. In this paper, we are interested in the
error analysis in the maximum norm for a class of nonlinear
elliptic boundary value problems in the context of overlapping
nonmatching grids: we consider a domain which is the union
of two overlapping subdomains where each subdomain has its
own triangulation. Quite a few works on maximum norm error
analysis of overlapping nonmatching grids methods for elliptic
problems are known in the literature cf., e.g., [1], [2] , [4], [6]
and [12]. To prove the main result of this paper, we proceed as
in [2] and [6]. More precisely, we develop an approach which
combines a geometrical convergence result due to [8] and a
lemma which consists of estimating the error in the maximum
norm between the continuous and discrete Schwarz iterates.
The optimal convergence order is then derived making use
of standard finite element L°°-error estimate for linear elliptic
equations. In the present paper, the proof of this lemma stands
on a Lipschitz continuous dependency with respect to both
the boundary condition and the source term for linear elliptic
equations see [6]. Now, we give an outline of the paper. In
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Section 2 we state a continuous alternating Schwarz sequences

and define their respective finite element counterparts in the

context of nonmatching overlapping grids. Section 3 is devoted
to the L°-error analysis of the method.

mds
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II. PRELIMINARIES

We begin by laying down some definitions and classical
results related to linear elliptic equations.

A. Linear Elliptic Equations

Let Q be a bounded polyhedral domain of 2 or R3 with
sufficiently smooth boundary 0{2. We consider the bilinear
form

a(u,v) = [ (Vu.Vv)dz (1)
/
the linear form
(fiv) = [ f(@)v(z)dz, 2)
/

the right hand side f, a regular function and the space
V9 = {v e H'(Q) such that v = g on 9N}, 3)

where g is a regular function defined on 0€2. We consider the
linear elliptic equation: Find ¢€V(9) such that:

a(¢,v) + ¢ v) = (f,v), Yo € V9, @
where ¢ €R ¢ > 0, such that
c>p>0 (5)

Let V}, be the space of finite elements consisting of contin-
uous piecewise linear functions v vanishing on 92 and s,
s = 1,2,...,m(h) be the basis function of V},. The discrete
counterpart of (4) consists of finding (heV,fg ) such that

a(Cp,v) + c(Ch,v) = (f,v),Yv € Vh(g) 6)

where
th ={v €V} :v=mu(g) on 0N} @)

and 7, is an interpolation operator on Of2.
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Theorem 2.1 (cf.[13]) Under suitable regularity of the
solution of problem (4), there exists a constant C' independent
of h such that

1€ = Crllzoe (o) < Ch?|logh|. 8)

Lemma 2.1 (cf.[11]) Let w € H1(2)NC(Q) satisty a(w, )+
c(w, ®) > 0 for all non-negative ® € H}(Q) and w > 0 on
09. Then w >0 on € .

The proposition below establishes a Lipschitz continuous
dependency of the solution with respect to the data. Let (f;g)
; (f,g) be a pair of data, and ¢ = o(f,9); ¢ = o(f,g) the
corresponding solutions to (4).

Proposition 2.1 (cf.[6]) Under conditions of the preceding
lemma, we have:

1€ = Cllmiey < maa{(If = Flaes lg = (oo -
©)

Remark 2.1 Lemma 2.1 stays true in the discrete case.
Indeed, assume that the discrete maximum principle (d.m.p)
hold [5], [7] that is the matrix resulting from the finite element
discretization is an M-Matrix. Then we have:

Lemma 2.2 Let w € V), satisfy a(w, s) + ¢(w, s) > 0 for
all s =1,2,...,m(h) and w > 0 on 9Q. Then w >0 on Q .
_Let (f,g); (f,g) be a pair of data, and ¢;, = on(f,9);
Ch = on(f,g) the corresponding solutions to (6);

Proposition 2.2 Let the d.m.p hold. Then, under conditions
of lemma 2.2, we have

~ 1 ~ ~
ICh = CrllLoe () < max{(B)IIf — fllze ) lg = 9l 002 }-
(10)

ITI. SCHWARZ ALTERNATING METHODS FOR NONLINEAR
ELLIPTIC BOUNDARY VALUE PROBLEM

Consider the nonlinear elliptic boundary value problem
—Au = f(u) in Q, (11)
u =0 on 02 12)
where f(.) is a nondecreasing nonlinearity. Thanks to [3],

problem (11) has a unique solution. Let us also assume that
f(.) is a Lipschitz continuous on R; that is

[f(2) = f(y)l < kle—yl, Ve, y € R (13)

The problem (11) is equivalent to
—Au+ cu = F(u) in Q (14)
u =0 on Jf) (15)

where the functional F is defined by: F(u) = f(u) + cu and
its Lipschitz constant is K = k + c. Evidently we have

B<c< K. (16)
The related weak form of (14) is defined by
a(u,v) + c(u,v) = (F,v),Yv € H}(Q), (17)

Remark 2.2 The main idea of this work consists to applied
the multiplicative Schwarz algorithm to the problem (14)
equivalent to (11). We decompose {2 into two overlapping
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smooth subdomains €27 and 25 such that: = Q; U Q,. We
denote by 0f2; the boundary of §2; and I'; = 9Q; N Q;, We
assume that the intersection of I'; and I';, ¢ # j is empty. Let

V") = {v € H'(Q;) such that v = w; on T;}  (18)

We associate with problem (17) the following system: Find
(u1, u) € V" x V") solution of

ai(ui,v) + c(ur,v) = (F(uy),v),Yv € Vl(“2), (19)
as(uz,v) + c(uz,v) = (F(uz),v),Yv € V;ul)7 (20)
where
a;(u,v) = /(Vu Vv)dz; (21)
Q;
u; =u/Q,0=1,2 (22)

A. The Continuous Schwarz Sequences

Let u° be an initialization in C°(Q) (i.e. continuous func-
tions vanishing on OS2 ) such that

a(u®,v) + c(u’,v) = (F,v),Vv € H}(Q). (23)

ud = u%/Qy, we respectively define the alternating Schwarz

sequences (uf"') on ©; such that u} ! € V(#2) solves n > 0
ar (o) + el o) = (P, o € Vi 24)

and (uSH) on 5 such that uSH e V™) solves n >0

n+1
as(ug ™, 0) + cusv) = (Fugt),vpve e Vi,
(25)
The following is a geometrical convergence of the Schwarz
sequences.

Theorem 2.2 (cf. [8] pp. 51-63) The sequences (u}*');
(uh™) ; n > 0 produced by the Schwarz alternating method
converge geometrically to the solution (uy,us2) of the system
(19) (20). More precisely, there exist two constants ki, ks €
]0; 1[ which depend on (Q4,I3) and (Q9,T'1) respectively,
such that for all n > 0;

lur — uf T || ey < EVES u® = ullry) (26)

itz — w3+ ey < AR — ulle,) @27)

B. The Discretization

For i = 1,2, let 7% be a standard regular and quasi-uniform
finite element triangulation in €2;; h;, being the mesh size. The
two meshes being mutually independent on 2; N€2o, a triangle
belonging to one triangulation does not necessarily belong to
the other. We consider the following discrete spaces:

Vi, = {v € C(%) N HE(Q;) such that v/K € P;,VK € 7"}
B (28)
and for every w € C(T;), we set:

Vh(Z“) ={v €V, :v=0o0n 9 NIY%v=m, (w) on T;}
(29)
where 7, denote the interpolation operator on I';.
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1) The Discrete Maximum Principle: ([5], [7]) We assume
that the respective matrices resulting from the discretiztions
of problems (24) and (25) are M-matrices. Note that, as the
two meshes h; and hy are independent over the overlapping
subdomains, it is impossible to formulate a global approximate
problem which would be the direct discrete counterpart of
problem (14).

lui =, < flug —wp, ll+ lwp =, 1
C. The Discrete Schwarz Sequences < HU% - wllzl 1
Now, we define the discrete counterparts of the continuous + maa:{( WE(ul) - F(Uil)HU |ug — u22 o}
Schwarz sequences defined in (24) and (25). Indeed, let u?L be
the discrete analog of «°, defined in (23), let u"+1 S V,L(IL’”Z) then
such that ) lui —un, i < *wilHl
w ) = (F(up™ Yo eV, " in>0
ay (up " v)+e(up L v) = (F(up ), 0) - Vo 0 mal“{( M F(ut) = F(up, )l ug — uj, |2}
and uj ! € V< ) such that thus
a1 w — ul <t — wl
a0 = P s e vt iz BTl = b
(31) + max{plluy — up, [|1; [Juz — up, ll2}
where K
IV. L°°- ERROR ANALYSIS p= 5 >1 (38)

This section is devoted to the proof of the main result of
the present paper. To that end we begin by introducing two
discrete auxiliary sequences and prove a fundamental lemma.

A. Two Auxiliary Schwarz Sequences

For wf), = uj . we define the sequences (w} ') such that

uﬁ'l Vh(uQ) solves
ay (w;fjl,v) c(w"Jrl v) = (F(?/”'1 ,0) 1 Yu € Vh(?;)

. (32)
and (wj +1) such that w”+1 € Vh;l ) solves

ar(wptt,

n+1

2t v) s Vo € V}f:1+ )
(33)
It is then clear that wy, and w"+1 are the finite element
approximation of u"+1 and u”+1 defined in (24) , (25),
respectively. Then, as F(.) is continuous, ||[F(u?)||ec < C
( C independent of n ) and, therefore, making use of standard

maximum norm estimates for linear elliptic problems, we have

(34)

v) + c(w”+1 v) = (F(u

n+1

[uf — wi || 1o () < ChZ|loghy|.

Notation 3.1 From now on, we shall adopt the following
notations:

-1l = [ zoe 1y 1Nl = (2o (1) (35)

B. The Main Results

The following lemma will play a key role in proving the
main result of this paper.

Lemma 3.1 Let u"Jrl the continuous Schwarz sequence and
"jl its discrete counterpart then we have
n+1
1 1
luy™ = up ™ < Z llui = wh, I + Z luy — w, |12

(36)
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n+1 ntl
it — “Z;H” < Z [|us, — wp, [l2 + Z l[ui —wp, [lx
i=0 i=

(37
Proof Let us now prove (36) and (37) simultaneously by
induction. Indeed for n = 1, using the Proposition 2.2, we
have in domain 1

We then have to distinguish between two cases:

(1) = maz{pllui —up, |13 [uz —wp,ll2} = pllut —uj, [l (39)

or

(2) = maz{plluy —up, I|; [ug —up, 2} = [lug —up, |2 (40)
Case 1 implies

luy =, Il < llup = wi, o+ plley =gl @D

lu = wh, 12 < pllur = up, | 42)

By adding |juj — wj, [|1 in (42) we get

lug =i, Iz + [lui = wp, e < ug —wj, [+ pllug = ug, L
(43)
So ut —wp [lx + pllug — u}, |1 is bounded below by [juj —

uj, ||y and ||u2 —uf)_|l2 + [Ju; —wj, ||1. This implies that

(@) ¢ Jlup —wp, [t < Jlug = up, llz2 + llug —wp flr - (44)
or

(b) = llug — up, ll2 + [lug — wp, [l < [lug —up, [l (45)
Which implies

(@) ¢ fur =y, e < Jlu = up, 2+ llug = wi, [l

< lug = wp, I+ pllug — g, 1
or
(b) « [lud —up, ll2 + llui —wp, n < Jlug = wp, [k
< lug = wp, lly + pllug

Hence (a) and (b) are true because they both coincide with
(41). So, there is either a contradiction and thus case 1 is
impossible or case 1 is possible only if

luy = wh, Il = llug = up, ll2 + ug —wp, 1 (46)
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Case 2 implies

lui =, Iy < Jlu —wi, [l + [lug —up,llz - (47
pllut =, ll1 < lug — uj,|l2 48)
That is
lug =g, 1 < (%)Ilug — U, ll2 < [luy — uj, |12
< lug = wpy lly + llug =, 2

Which coincides with (47. So in both cases 1 and 2 we can
write

lut =, < flug —wp, I+ [lud = up,lla 49)
which is equivalent to

1 0
g — b, e < D7 lluh —wh, o+ ) g — uj, |2 (50)

=1 =0

Similarly, we obtain in domain 2

luy =iyl < fluz — wp,l2

+ maz{pllug — up, ll2; lup —up, I}
We then have to distinguish between two cases:
(1) = maz{plluz —wup, |25 lui —up, 1} = pllug—up, |2 (51)
or
(2) = maz{plluy —up,||2; ug —up, 1} = llui —uj, 1 (52)
Case 1 implies

(53)
(54)

luz =ty ll2 < lluy = whyll2 + pllug — up, |12
lug = up, < pllug — up, |2
By adding |[ug — wj,,||2 in (54) we get

llug = why 2 + lut — g, |l < Juy = wp, |2 + plluy =, |2
(55)
Heilce ||§Jé —wy, |2 —i;,o||u§1— up, |2 if bOLlll’lded below by both
lus — up, ll2 and [luz —wy, [l2 + [[ug — uy, |1 then
(@) : [lug — upyll2 < fluz —wp, ll2 + [lug —up, [ (56)
or
(b) : fluy — wp, ll2 + [Jug — up, [ < fluz =, ll2 - (57
which implies
[uz = whyll2 + llut — g, |1

luy = wh, ll2 + pllu — i, 12

(@) « fluz —up,ll2 <
<

or

(b) : [luy — wp, ll2 + lui —wp, 11 luy — wn, |12

<
<

Hence, (a) and (b) are true because they both coincide with
(53). So, there is either a contradiction and thus case 1 is
impossible or case 1 is possible only if

lug = wp,ll2 = lluy = wh,ll2 + pllug — up, |12 (58)
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Case 2 implies

luy —up,lla < luy —wp, ll2 + [Jug —ug,
plluy —up,lla < lug —up, lh
So
Juy — up, ll2 < llug — wi, ll2 + lug —up, [l (59)
and
1
luy —up,ll2 < (;)I\ﬁ*u}nlll<IIU%*U%”H1
< lug — wiy ll2 + lug — g, 1

which coincides with (59). Then both cases 1 and 2 imply
(60)

luz = wh, ll2 < lluz — whyll2 + lug =, 11
Using (50) we get

lup —up,lla < luz — wp, 12

1 0
+ O Nt —wiy ll+ D llub = uf, o)
i=1 i=0

or equivalently

1 1

lug —up,ll2 < (Y lug = uh,llz + D llui —wi, 1) (61

=0 i=1

Now, let us assume that (62) and (63) are trues

n n—1
uf =yl <Y luh = wh o+ Y lub —ub,lla (62)
=1 1=0

n n
lug —uit,llo <Y luy —uj, Nl + D llus —wh, 1 (63)
i=0 i=1

and prove that

n+1 n
it —up < D g —wi i+ Y (b —up, |2 (64)
i=1 =0

n+1 n+1
fus ™ —up o < ub =, 2+ Y lui —wh, 1 (65)
=0 =1

Indeed, we have in domain 1

gt =t < gt — w4 e —

< gt —wpt

+ maa{ () IF () = Pl g — o, )
then
] P I e R
i,z + maa{()IPE) = Pl = o, o)
thus
Jg < gt =l

n+1

+ maz{plluy ™ —up s uh — |2}

1SN1:0000000091950263
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We then have to distinguish between two cases:

(1) =+ maz{plluy™* —up Pl lup —ui, 2} = plluy ™ —up
(66)

or

(2) s maz{pllui™ —up s llug —up, 2} = lug —uj, |2

(67)
Case 1 implies

o =gl < P plled ™ =y (68)

luz —up,llz < pllui™ —up (69)

n+1 wn+1H1

By adding ||uf in (73) we get

||un+1

g — |2 + fluy™ —wp <

+ plluptt -

n+1

wy ™
n+1||1
1

wh T+ pllud

up !y and fluy —

SO ||un+1 n+l
”unJrl

implies that

(a) « fluy™ -~

"H |l1 is bounded below by

thllz Tt wpy ™ 1. This

el < g =g, o+ lug * —wp o (70)
or
(b) ¢ [l =g, llo+[|uf ™ —wp < Jluy ™ —up o D)

Which implies

Hence
n+1

it =i < ZHUI wh, |1 +Z\|u2 tp, |2 (76)

Which is the desired result (64). Estimate in domain 2 (65)
can be proved similarly using estimate (64).

Theorem 3.1 Let i = max{hq,he}. Then, for n large
enough, there exists a constant C' independent of both h and
n such that

i — up i < Ch?|logh)?;i = 1,2. (77)

Proof Let us give the proof for ¢ = 1. The one for ¢ = 2 is
similar and so will be omitted. Indeed, Let Kk = maxz{k1, k2},
hen making use of Theorem 2.2, Lemma 3.1 and (34) respec-
tively, we get

lur = up Pl < flus = uf P+ it —ap L (78)
So
Juy —up s < &P lus —ul
n+1
+ (Z [ui — wh, I +Z [[uhy, — wh, Il2)
Thus

||y — uh+1||1 < K2|lug — ul||1 + 2(n + 1)Ch%|logh| (79)

@) luftt —up e < fluy — uh2||2+|\u”+1—wh+1|\1 So, for n large enough, we have
< g =l = e o
or
then loah
1 1 1 1 _
(b): o — s+ [l — wpt i < udtt — gty _ Lol _ @)
<t = s plle ! — ogl
and thus

Hence (a) and (b) are true because they both coincide with
(68). So, there is either a contradiction and thus case 1 is
impossible or case 1 is possible only if

it =g = llug = g, o+ i = (72)

Case 2 implies

i =y < i — g — gl (73)
el R vy (74)

That is
o = < Ol il < g = o s
<l —w g —

Which coincides with (73). So in both cases 1 and 2 we can
write

it =g < ™ = T+ g — gl (75)
using (63) we get
ol T Tt
n n
O b =, ll2 + D luh — wh, 1)
i=0 i=1
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luy — uh+1||1 < I<62HU1 — U1H1 +2(Cllogh| + 1)Ch?|logh|

(82)
So
[uy — up |y < CR®|logh|? (83)
which is the desired result.
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