Search results for: Turbulent combustion
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 469

Search results for: Turbulent combustion

169 Evaluation of Optimal Residence Time in a Hot Rolled Reheating Furnace

Authors: Dong-Eun Lee

Abstract:

To calculate the temperature distribution of the slab in a hot rolled reheating furnace a mathematical model has been developed by considering the thermal radiation in the furnace and transient conduction in the slab. The furnace is modeled as radiating medium with spatially varying temperature. Radiative heat flux within the furnace including the effect of furnace walls, combustion gases, skid beams and buttons is calculated using the FVM and is applied as the boundary condition of the transient conduction equation of the slab. After determining the slab emissivity by comparison between simulation and experimental work, variation of heating characteristics in the slab is investigated in the case of changing furnace temperature with various time and the slab residence time is optimized with this evaluation.

Keywords: Reheating Furnace, Thermal Radiation, ResidenceTime, FVM for Radiation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2458
168 The Role of Nozzle-Exit Conditions on the Flow Field of a Plane Jet

Authors: Ravinesh C. Deo

Abstract:

This article reviews the role of nozzle-exit conditions on the flow field of a plane jet. The jet issuing from a sharp-edged orifice plate at a Reynolds number (Re=18000) with nozzle aspect ratio (AR=72) exhibits the greatest shear-layer instabilities, highest entrainment and jet-spreading rates compared to the radially contoured nozzle. The growth rate of the shear-layer is the highest for the orifice-jet although this property could be amplified for larger Re or AR. A local peak in turbulent energy is found at x»10h. The peak appears to be elevated for an orifice-jet with lower Re or AR. The far-field energy sustained by the orifice-jet exceeds the contoured case although a higher Re and AR may enhance this value. The spectra demonstrated the largest eddy structures for the contoured nozzle. However, the frequency of coherent eddies is higher for the orifice-jet, with a larger magnitude achievable for lower Re and AR

Keywords: Plane jet, Reynolds number, nozzle-exit conditions, nozzle geometry, aspect ratio.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2777
167 Investigation of the Effect of Nano-Alumina Particles on Adsorption Property of Acrylic Fiber

Authors: Mehdi Ketabchi, Shallah Alijanlo

Abstract:

The flue gas from fossil fuels combustion contains harmful pollutants dangerous for human health and environment. One of the air pollution control methods to restrict the emission of these pollutants is based on using the nanoparticle in adsorption process. In the present research, gamma nano-alumina particle is added to polyacrylonitrile (PAN) polymer through simple loading method, and the adsorption capacity of the wet spun fiber is investigated. The results of exposure the fiber to the acid gases including SO2, CO, NO2, NO, and CO2 show the noticeable increase of gas adsorption capacity on fiber contains nanoparticle. The research has been conducted in Acrylic II Plant of Polyacryl Iran Corporation.

Keywords: Acrylic fiber, adsorbent, wet spun, polyacryl company, gamma nano-alumina.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 653
166 Numerical Comparison of Rushton Turbine and CD-6 Impeller in Non-Newtonian Fluid Stirred Tank

Authors: Akhilesh Khapre, Basudeb Munshi

Abstract:

A computational fluid dynamics simulation is done for non-Newtonian fluid in a baffled stirred tank. The CMC solution is taken as non-Newtonian shear thinning fluid for simulation. The Reynolds Average Navier Stocks equation with steady state multi reference frame approach is used to simulate flow in the stirred tank. The turbulent flow field is modelled using realizable k-ε turbulence model. The simulated velocity profiles of Rushton turbine is validated with literature data. Then, the simulated flow field of CD-6 impeller is compared with the Rushton turbine. The flow field generated by CD-6 impeller is less in magnitude than the Rushton turbine. The impeller global parameter, power number and flow number, and entropy generation due to viscous dissipation rate is also reported.

Keywords: Computational fluid dynamics, non-Newtonian, Rushton turbine, CD-6 impeller, power number, flow number, viscous dissipation rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4096
165 Experimental Investigation of Hydrogen Addition in the Intake Air of Compressed Engines Running on Biodiesel Blend

Authors: Hendrick Maxil Zárate Rocha, Ricardo da Silva Pereira, Manoel Fernandes Martins Nogueira, Carlos R. Pereira Belchior, Maria Emilia de Lima Tostes

Abstract:

This study investigates experimentally the effects of hydrogen addition in the intake manifold of a diesel generator operating with a 7% biodiesel-diesel oil blend (B7). An experimental apparatus setup was used to conduct performance and emissions tests in a single cylinder, air cooled diesel engine. This setup consisted of a generator set connected to a wirewound resistor load bank that was used to vary engine load. In addition, a flowmeter was used to determine hydrogen volumetric flowrate and a digital anemometer coupled with an air box to measure air flowrate. Furthermore, a digital precision electronic scale was used to measure engine fuel consumption and a gas analyzer was used to determine exhaust gas composition and exhaust gas temperature. A thermopar was installed near the exhaust collection to measure cylinder temperature. In-cylinder pressure was measured using an AVL Indumicro data acquisition system with a piezoelectric pressure sensor. An AVL optical encoder was installed in the crankshaft and synchronized with in-cylinder pressure in real time. The experimental procedure consisted of injecting hydrogen into the engine intake manifold at different mass concentrations of 2,6,8 and 10% of total fuel mass (B7 + hydrogen), which represented energy fractions of 5,15, 20 and 24% of total fuel energy respectively. Due to hydrogen addition, the total amount of fuel energy introduced increased and the generators fuel injection governor prevented any increases of engine speed. Several conclusions can be stated from the test results. A reduction in specific fuel consumption as a function of hydrogen concentration increase was noted. Likewise, carbon dioxide emissions (CO2), carbon monoxide (CO) and unburned hydrocarbons (HC) decreased as hydrogen concentration increased. On the other hand, nitrogen oxides emissions (NOx) increased due to average temperatures inside the cylinder being higher. There was also an increase in peak cylinder pressure and heat release rate inside the cylinder, since the fuel ignition delay was smaller due to hydrogen content increase. All this indicates that hydrogen promotes faster combustion and higher heat release rates and can be an important additive to all kind of fuels used in diesel generators.

Keywords: Diesel engine, hydrogen, dual fuel, combustion analysis, performance, emissions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1277
164 Analytical and Experimental Methods of Design for Supersonic Two-Stage Ejectors

Authors: S. Daneshmand, C. Aghanajafi, A. Bahrami

Abstract:

In this paper the supersonic ejectors are experimentally and analytically studied. Ejector is a device that uses the energy of a fluid to move another fluid. This device works like a vacuum pump without usage of piston, rotor or any other moving component. An ejector contains an active nozzle, a passive nozzle, a mixing chamber and a diffuser. Since the fluid viscosity is large, and the flow is turbulent and three dimensional in the mixing chamber, the numerical methods consume long time and high cost to analyze the flow in ejectors. Therefore this paper presents a simple analytical method that is based on the precise governing equations in fluid mechanics. According to achieved analytical relations, a computer code has been prepared to analyze the flow in different components of the ejector. An experiment has been performed in supersonic regime 1.5Keywords: Ejector, Wind Tunnel, Supersonic, Diffuser, Machnumber, Mixing Chamber

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3175
163 Changes in Selected Fuel Properties of Sewage Sludge as a Result of its Storage

Authors: Michal M. Koziol

Abstract:

The article presents test results on the changes occurring in sewage sludge during the process of its storage. Tests were conducted on mechanically dehydrated sewage sludge derived from large municipal sewage treatment plants equipped with biological sewage treatment systems. In testing presented in the paper the focus was on the basic fuel properties of sewage sludge: moisture content, heat of combustion, carbon share. In the first part of the article the overview of the issues concerning the sewage sludge management is presented and the genesis of tests is explained. Further in the paper, selected results of conducted tests are discussed. Changes in tested parameters were determined in the period of a 10- month sewage storage.

Keywords: fuel properties, laboratory tests, sewage sludge, storage

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1239
162 Numerical Analysis of Roughness Effect on Mini and Microchannels: Hydrodynamics and Heat Transfer

Authors: El-Ghalia Filali, Cherif Gadouche, Mohamed Tahar

Abstract:

A three-dimensional numerical simulation of flow through mini and microchannels with designed roughness is conducted here. The effect of the roughness height (surface roughness), geometry, Reynolds number on the friction factor, and Nusselt number is investigated. The study is carried out by employing CFD software, CFX. Our work focuses on a water flow inside a circular mini-channel of 1 mm and microchannels of 500 and 100 m in diameter. The speed entry varies from 0.1 m/s to 20 m/s. The general trend can be observed that bigger sizes of roughness element lead to higher flow resistance. It is found that the friction factor increases in a nonlinear fashion with the increase in obstruction height. Particularly, the effect of roughness can no longer be ignored at relative roughness height higher than 3%. A significant increase in Poiseuille number is detected for all configurations considered. The same observation can be done for Nusselt number. The transition zone between laminar and turbulent flow depends on the channel diameter.

Keywords: Heat transfer, hydrodynamics, micro-channel, roughness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1725
161 Torrefaction of Biomass Pellets: Modeling of the Process in a Fixed Bed Reactor

Authors: Ekaterina Artiukhina, Panagiotis Grammelis

Abstract:

Torrefaction of biomass pellets is considered as a useful pretreatment technology in order to convert them into a high quality solid biofuel that is more suitable for pyrolysis, gasification, combustion, and co-firing applications. In the course of torrefaction, the temperature varies across the pellet, and therefore chemical reactions proceed unevenly within the pellet. However, the uniformity of the thermal distribution along the pellet is generally assumed. The torrefaction process of a single cylindrical pellet is modeled here, accounting for heat transfer coupled with chemical kinetics. The drying sub-model was also introduced. The nonstationary process of wood pellet decomposition is described by the system of non-linear partial differential equations over the temperature and mass. The model captures well the main features of the experimental data.

Keywords: Torrefaction, biomass pellets, model, heat and mass transfer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1764
160 Numerical Optimization of Pin-Fin Heat Sink with Forced Cooling

Authors: Y. T. Yang, H. S. Peng, H. T. Hsu

Abstract:

This study presents the numerical simulation of optimum pin-fin heat sink with air impinging cooling by using Taguchi method. 9 L ( 4 3 ) orthogonal array is selected as a plan for the four design-parameters with three levels. The governing equations are discretized by using the control-volume-based-finite-difference method with a power-law scheme on the non-uniform staggered grid. We solved the coupling of the velocity and the pressure terms of momentum equations using SIMPLEC algorithm. We employ the k −ε two-equations turbulence model to describe the turbulent behavior. The parameters studied include fin height H (35mm-45mm), inter-fin spacing a , b , and c (2 mm-6.4 mm), and Reynolds number ( Re = 10000- 25000). The objective of this study is to examine the effects of the fin spacings and fin height on the thermal resistance and to find the optimum group by using the Taguchi method. We found that the fin spacings from the center to the edge of the heat sink gradually extended, and the longer the fin’s height the better the results. The optimum group is 3 1 2 3 H a b c . In addition, the effects of parameters are ranked by importance as a , H , c , and b .

Keywords: Heat sink, Optimum, Electronics cooling, CFD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3664
159 Assessment of Modern RANS Models for the C3X Vane Film Cooling Prediction

Authors: Mikhail Gritskevich, Sebastian Hohenstein

Abstract:

The paper presents the results of a detailed assessment of several modern Reynolds Averaged Navier-Stokes (RANS) turbulence models for prediction of C3X vane film cooling at various injection regimes. Three models are considered, namely the Shear Stress Transport (SST) model, the modification of the SST model accounting for the streamlines curvature (SST-CC), and the Explicit Algebraic Reynolds Stress Model (EARSM). It is shown that all the considered models face with a problem in prediction of the adiabatic effectiveness in the vicinity of the cooling holes; however, accounting for the Reynolds stress anisotropy within the EARSM model noticeably increases the solution accuracy. On the other hand, further downstream all the models provide a reasonable agreement with the experimental data for the adiabatic effectiveness and among the considered models the most accurate results are obtained with the use EARMS.

Keywords: Discrete holes film cooling, Reynolds Averaged Navier-Stokes, Reynolds stress tensor anisotropy, turbulent heat transfer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1077
158 Tests and Comparison of Two Mobile Industrial Analytical Systems for Mercury Speciation in Flue Gas

Authors: Karel Borovec, Jerzy Gorecki, Tadeas Ochodek

Abstract:

Combustion of solid fuels is one of the main sources of mercury in the environment. To reduce the amount of mercury emitted to the atmosphere, it is necessary to modify or optimize old purification technologies or introduce the new ones. Effective reduction of mercury level in the flue gas requires the use of speciation systems for mercury form determination. This paper describes tests and provides comparison of two industrial portable and continuous systems for mercury speciation in the flue gas: Durag HM-1400 TRX with a speciation module and the Portable Continuous Mercury Speciation System based on the SGM-8 mercury speciation set, made by Nippon Instruments Corporation. Additionally, the paper describes a few analytical problems that were encountered during a two-year period of using the systems.

Keywords: Mercury determination, speciation, continuous measurement, flue gas.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 839
157 A Strategic Sustainability Analysis of Electric Vehicles in EU Today and Towards 2050

Authors: Sven Borén, Henrik Ny

Abstract:

Ambitions within the EU for moving towards sustainable transport include major emission reductions for fossil fuel road vehicles, especially for buses, trucks, and cars. The electric driveline seems to be an attractive solution for such development. This study first applied the Framework for Strategic Sustainable Development to compare sustainability effects of today’s fossil fuel vehicles with electric vehicles that have batteries or hydrogen fuel cells. The study then addressed a scenario were electric vehicles might be in majority in Europe by 2050. The methodology called Strategic Lifecycle Assessment was first used, were each life cycle phase was assessed for violations against sustainability principles. This indicates where further analysis could be done in order to quantify the magnitude of each violation, and later to create alternative strategies and actions that lead towards sustainability. A Life Cycle Assessment of combustion engine cars, plug-in hybrid cars, battery electric cars and hydrogen fuel cell cars was then conducted to compare and quantify environmental impacts. The authors found major violations of sustainability principles like use of fossil fuels, which contribute to the increase of emission related impacts such as climate change, acidification, eutrophication, ozone depletion, and particulate matters. Other violations were found, such as use of scarce materials for batteries and fuel cells, and also for most life cycle phases for all vehicles when using fossil fuel vehicles for mining, production and transport. Still, the studied current battery and hydrogen fuel cell cars have less severe violations than fossil fuel cars. The life cycle assessment revealed that fossil fuel cars have overall considerably higher environmental impacts compared to electric cars as long as the latter are powered by renewable electricity. By 2050, there will likely be even more sustainable alternatives than the studied electric vehicles when the EU electricity mix mainly should stem from renewable sources, batteries should be recycled, fuel cells should be a mature technology for use in vehicles (containing no scarce materials), and electric drivelines should have replaced combustion engines in other sectors. An uncertainty for fuel cells in 2050 is whether the production of hydrogen will have had time to switch to renewable resources. If so, that would contribute even more to a sustainable development. Except for being adopted in the GreenCharge roadmap, the authors suggest that the results can contribute to planning in the upcoming decades for a sustainable increase of EVs in Europe, and potentially serve as an inspiration for other smaller or larger regions. Further studies could map the environmental effects in LCA further, and include other road vehicles to get a more precise perception of how much they could affect sustainable development.

Keywords: Strategic, electric vehicles, fuel cell, LCA, sustainability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3672
156 Thermal Performance Analysis of Nanofluids in a Concetric Heat Exchanger Equipped with Turbulators

Authors: Feyza Eda Akyurek, Bayram Sahin, Kadir Gelis, Eyuphan Manay, Murat Ceylan

Abstract:

Turbulent forced convection heat transfer and pressure drop characteristics of Al2O3–water nanofluid flowing through a concentric tube heat exchanger with and without coiled wire turbulators were studied experimentally. The experiments were conducted in the Reynolds number ranging from 4000 to 20000, particle volume concentrations of 0.8 vol.% and 1.6 vol.%. Two turbulators with the pitches of 25 mm and 39 mm were used. The results of nanofluids indicated that average Nusselt number increased much more with increasing Reynolds number compared to that of pure water. Thermal conductivity enhancement by the nanofluids resulted in heat transfer enhancement. Once the pressure drop of the alumina/water nanofluid was analyzed, it was nearly equal to that of pure water at the same Reynolds number range. It was concluded that nanofluids with the volume fractions of 0.8 and 1.6 did not have a significant effect on pressure drop change. However, the use of wire coils in heat exchanger enhanced heat transfer as well as the pressure drop.

Keywords: Turbulators, heat exchanger, nanofluids, heat transfer enhancement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1625
155 Numerical Modeling of Flow in USBR II Stilling Basin with End Adverse Slope

Authors: Hamidreza Babaali, Alireza Mojtahedi, Nasim Soori, Saba Soori

Abstract:

Hydraulic jump is one of the effective ways of energy dissipation in stilling basins that the ‎energy is highly dissipated by jumping. Adverse slope surface at the end stilling basin is ‎caused to increase energy dissipation and stability of the hydraulic jump. In this study, the adverse slope ‎has been added to end of United States Bureau of Reclamation (USBR) II stilling basin in hydraulic model of Nazloochay dam with scale 1:40, and flow simulated into stilling basin using Flow-3D ‎software. The numerical model is verified by experimental data of water depth in ‎stilling basin. Then, the parameters of water level profile, Froude Number, pressure, air ‎entrainment and turbulent dissipation investigated for discharging 300 m3/s using K-Ɛ and Re-Normalization Group (RNG) turbulence ‎models. The results showed a good agreement between numerical and experimental model‎ as ‎numerical model can be used to optimize of stilling basins.‎

Keywords: Experimental and numerical modeling, end adverse slope, flow ‎parameters, USBR II Stilling Basin.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 930
154 NOx Emission and Computational Analysis of Jatropha Curcus Fuel and Crude Oil

Authors: Vipan Kumar Sohpal, Rajesh K Sharma

Abstract:

Diminishing of conventional fuels and hysterical vehicles emission leads to deterioration of the environment, which emphasize the research to work on biofuels. Biofuels from different sources attract the attention of research due to low emission and biodegradability. Emission of carbon monoxide, carbon dioxide and H-C reduced drastically using Biofuels (B-20) combustion. Contrary to the conventional fuel, engine emission results indicated that nitrous oxide emission is higher in Biofuels. So this paper examines and compares the nitrogen oxide emission of Jatropha Curcus (JCO) B-20% blends with the vegetable oil. In addition to that computational analysis of crude non edible oil performed to assess the impact of composition on emission quality. In conclusion, JCO have the potential feedstock for the biodiesel production after the genetic modification in the plant.

Keywords: Jatropha Curcus, computational analysis, emissions, biofuels.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1606
153 Burning Rate Response of Solid Fuels in Laminar Boundary Layer

Authors: A. M. Tahsini

Abstract:

Solid fuel transient burning behavior under oxidizer gas flow is numerically investigated. It is done using analysis of the regression rate responses to the imposed sudden and oscillatory variation at inflow properties. The conjugate problem is considered by simultaneous solution of flow and solid phase governing equations to compute the fuel regression rate. The advection upstream splitting method is used as flow computational scheme in finite volume method. The ignition phase is completely simulated to obtain the exact initial condition for response analysis. The results show that the transient burning effects which lead to the combustion instabilities and intermittent extinctions could be observed in solid fuels as the solid propellants.

Keywords: Extinction, Oscillation, Regression rate, Response, Transient burning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2323
152 Energy Analysis of Pressurized Solid Oxide Fuel Cell Combined Power Turbine

Authors: M. Ayazi, R. Karami, B. Kamkari

Abstract:

Solid oxide fuel cells have been considered in the last years as one of the most promising technologies for very highefficiency electric energy generation from hydrogen or other hydrocarbons, both with simple fuel cell plants and with integrated gas turbine-fuel cell systems. In the present study, a detailed thermodynamic analysis has been carried out. Mass and exergy balances are performed not only for the whole plant but also for each component in order to evaluate the thermal efficiency of combined cycle. Moreover, different sources of irreversibilities within the SOFC stack have been discussed and a parametric study conducted to evaluate the effect of temperature as well as pressure on SOFC irreversibilities and its performance. In this investigation methane and hydrogen have been used for fueling the SOFC stack and combustion chamber.

Keywords: SOFC, Energy, Power turbine, Irreversibility.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1771
151 Despiking of Turbulent Flow Data in Gravel Bed Stream

Authors: Ratul Das

Abstract:

The present experimental study insights the decontamination of instantaneous velocity fluctuations captured by Acoustic Doppler Velocimeter (ADV) in gravel-bed streams to ascertain near-bed turbulence for low Reynolds number. The interference between incidental and reflected pulses produce spikes in the ADV data especially in the near-bed flow zone and therefore filtering the data are very essential. Nortek’s Vectrino four-receiver ADV probe was used to capture the instantaneous three-dimensional velocity fluctuations over a non-cohesive bed. A spike removal algorithm based on the acceleration threshold method was applied to note the bed roughness and its influence on velocity fluctuations and velocity power spectra in the carrier fluid. The velocity power spectra of despiked signals with a best combination of velocity threshold (VT) and acceleration threshold (AT) are proposed which ascertained velocity power spectra a satisfactory fit with the Kolmogorov “–5/3 scaling-law” in the inertial sub-range. Also, velocity distributions below the roughness crest level fairly follows a third-degree polynomial series.

Keywords: Acoustic Doppler Velocimeter, gravel-bed, spike removal, Reynolds shear stress, near-bed turbulence, velocity power spectra.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1143
150 Evaluation of Biomass Introduction Methods in Coal Co-Gasification

Authors: Ruwaida Abdul Rasid, Kevin J. Hughes, Peter J. Heggs, Mohamed Pourkashanian

Abstract:

Heightened concerns over the amount of carbon emitted from coal-related processes are generating shifts to the application of biomass. In co-gasification, where coal is gasified along with biomass, the biomass may be fed together with coal (cofeeding) or an independent biomass gasifier needs to be integrated with the coal gasifier. The main aim of this work is to evaluate the biomass introduction methods in coal co-gasification. This includes the evaluation of biomass concentration input (B0 to B100) and its gasification performance. A process model is developed and simulated in Aspen HYSYS, where both coal and biomass are modelled according to its ultimate analysis. It was found that the syngas produced increased with increasing biomass content for both co-feeding and independent schemes. However, the heating values and heat duties decreases with biomass concentration as more CO2 are produced from complete combustion.

Keywords: Aspen HYSYS, biomass, coal, co-gasification modelling and simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2280
149 The Use of FBC Ash for Preparation of Types of Hydraulic Binders Similar to Portland Cement

Authors: Karel Dvořák, Karel Kulísek, Radek Magrla

Abstract:

The reduction of greenhouse gases emissions is highly discussed ecological theme at present. In addition to power industry also main production sectors of binders, i.e. cement, air and hydraulic lime are very sensitive to these questions. One of the possibilities how CO2 emissions can be reduced directly at clinker burnout is represented by partial substitution of lime with a material containing limy ions at absence of carbonate group. Fluidised fly ash is one of such potential raw materials where CaO can be found free and also bound in anhydrite, CaSO4. At application of FBC (fluidized bed combustion) fly ash with approximate 20% CaO content and its dosing ratio to high percent lime 1:2, corresponding stechiometrically to the preparation of raw material powder, approximately 0,37 t CO2 per 1 ton of one-component cement would be released at clinker burnout compared to 0,46 t CO2 when orthodox raw materials are used. The reduction of CO2 emissions thus could reach even 20%.

Keywords: FBC ash, cement, hydraulic binders.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1795
148 Detached-Eddy Simulation of Vortex Generator Jet Using Chimera Grids

Authors: Saqib Mahmood, Rolf Radespiel

Abstract:

This paper aims at numerically analysing the effect of an active flow control (AFC) by a vortex generator jet (VGJ) submerged in a boundary layer via Chimera Grids and Detached- Eddy Simulation (DES). The performance of DES results are judged against Reynolds-Averaged Navier-Stokes (RANS) and compared with the experiments that showed an unsteady vortex motion downstream of VGJ. Experimental results showed that the mechanism of embedding logitudinal vortex structure in the main stream flow is quite effective in increasing the near wall momentum of separated aircraft wing. In order to simulate such a flow configuration together with the VGJ, an efficient numerical approach is required. This requirement is fulfilled by performing the DES simulation over the flat plate using the DLR TAU Code. The DES predictions identify the vortex region via smooth hybrid length scale and predict the unsteady vortex motion observed in the experiments. The DES results also showed that the sufficient grid refinement in the vortex region resolves the turbulent scales downstream of the VGJ, the spatial vortex core postion and nondimensional momentum coefficient RVx .

Keywords: VGJ, Chimera Grid, DES, RANS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2444
147 Effect of Atmospheric Turbulence on AcquisitionTime of Ground to Deep Space Optical Communication System

Authors: Hemani Kaushal, V.K.Jain, Subrat Kar

Abstract:

The performance of ground to deep space optical communication systems is degraded by distortion of the beam as it propagates through the turbulent atmosphere. Turbulence causes fluctuations in the intensity of the received signal which ultimately affects the acquisition time required to acquire and locate the spaceborne target using narrow laser beam. In this paper, performance of free-space optical (FSO) communication system in atmospheric turbulence has been analyzed in terms of acquisition time for coherent and non-coherent modulation schemes. Numerical results presented in graphical and tabular forms show that the acquisition time increases with the increase in turbulence level. This is true for both schemes. The BPSK has lowest acquisition time among all schemes. In non-coherent schemes, M-PPM performs better than the other schemes. With the increase in M, acquisition time becomes lower, but at the cost of increase in system complexity.

Keywords: Atmospheric Turbulence, Acquisition Time, BinaryPhase Shift Keying (BPSK), Free-Space Optical (FSO)Communication System, M-ary Pulse Position Modulation (M-PPM), Coherent/Non-coherent Modulation Schemes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1736
146 High Temperature Hydrogen Sensors Based On Pd/Ta2O5/SiC MOS Capacitor

Authors: J. H. Choi, S. J. Kim, M. S. Jung, S. J. Kim, S. J. Joo, S. C. Kim

Abstract:

There are a many of needs for the development of SiC-based hydrogen sensor for harsh environment applications. We fabricated and investigated Pd/Ta2O5/SiC-based hydrogen sensors with MOS capacitor structure for high temperature process monitoring and leak detection applications in such automotive, chemical and petroleum industries as well as direct monitoring of combustion processes. In this work, we used silicon carbide (SiC) as a substrate to replace silicon which operating temperatures are limited to below 200°C. Tantalum oxide was investigated as dielectric layer which has high permeability for hydrogen gas and high dielectric permittivity, compared with silicon dioxide or silicon nitride. Then, electrical response properties, such as I-V curve and dependence of capacitance on hydrogen concentrations were analyzed in the temperature ranges of room temperature to 500°C for performance evaluation of the sensor.

Keywords: High temperature, hydrogen sensor, SiC, Ta2O5 dielectric layer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2025
145 Experimental Study of the Metal Foam Flow Conditioner for Orifice Plate Flowmeters

Authors: B. Manshoor, N. Ihsak, Amir Khalid

Abstract:

The sensitivity of orifice plate metering to disturbed flow (either asymmetric or swirling) is a subject of great concern to flow meter users and manufacturers. The distortions caused by pipe fittings and pipe installations upstream of the orifice plate are major sources of this type of non-standard flows. These distortions can alter the accuracy of metering to an unacceptable degree. In this work, a multi-scale object known as metal foam has been used to generate a predetermined turbulent flow upstream of the orifice plate. The experimental results showed that the combination of an orifice plate and metal foam flow conditioner is broadly insensitive to upstream disturbances. This metal foam demonstrated a good performance in terms of removing swirl and producing a repeatable flow profile within a short distance downstream of the device. The results of using a combination of a metal foam flow conditioner and orifice plate for non-standard flow conditions including swirling flow and asymmetric flow show this package can preserve the accuracy of metering up to the level required in the standards.

Keywords: Metal foam flow conditioner, flow measurement, orifice plate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2016
144 Effects of Engine Parameters and Fuel Compositions on Ignition Timing and Emission Characteristics of HCCI Engine

Authors: Fridhi Hadia, Soua Wadhah, Hidouri Ammar, Omri Ahmed

Abstract:

In this research, the effects of the engine parameters like compression ratios and steam injection on igniting timing and emission characteristics have been investigated numerically. The in-cylinder temperature and pressure at four different compression ratios have been compared with numerical results, and they show a good agreement with the published data. Two different fuels have been used in this study: Isooctane (IC8H18), and ethanol (C2H5OH). The increasing of the compression ratio (CR) advances the ignition timing, decreases the burn duration and increases the temperature and the pressure. The injection of water vapor lower than 40% decreased the peak temperature and slowed the combustion rate which leads to a lower NOx emission.

Keywords: Compression ratio, emission, HCCI engine, ignition timing, steam injection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1829
143 Comparison of Three Turbulence Models in Wear Prediction of Multi-Size Particulate Flow through Rotating Channel

Authors: Pankaj K. Gupta, Krishnan V. Pagalthivarthi

Abstract:

The present work compares the performance of three turbulence modeling approach (based on the two-equation k -ε model) in predicting erosive wear in multi-size dense slurry flow through rotating channel. All three turbulence models include rotation modification to the production term in the turbulent kineticenergy equation. The two-phase flow field obtained numerically using Galerkin finite element methodology relates the local flow velocity and concentration to the wear rate via a suitable wear model. The wear models for both sliding wear and impact wear mechanisms account for the particle size dependence. Results of predicted wear rates using the three turbulence models are compared for a large number of cases spanning such operating parameters as rotation rate, solids concentration, flow rate, particle size distribution and so forth. The root-mean-square error between FE-generated data and the correlation between maximum wear rate and the operating parameters is found less than 2.5% for all the three models.

Keywords: Rotating channel, maximum wear rate, multi-sizeparticulate flow, k −ε turbulence models.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1735
142 Wind-tunnel Measurement of the Drag-reducing Effect of Compliant Coating

Authors: Inwon Lee, Victor M. Kulik, Andrey V. Boiko, Ho Hwan Chun

Abstract:

A specially designed flat plate was mounted vertically over the axial line in the wind tunnel of the Aerospace Department of the Pusan National University. The plate is 2 m long, 0.8 m high and 8 cm thick. The measurements were performed in velocity range from 15 to 60 m/s. A sand paper turbulizer was placed close to the plate nose to provide fully developed turbulent boundary layer over the most part of the plate. Strain balances were mounted in the trailing part of the plate to measure the skin friction drag over removable insertions of 0.55×0.25m2 size. A set of the insertions was designed and manufactured: 3mm thick polished metal surface and three compliant surfaces. The compliant surfaces were manufactured of a silicone rubber Silastic® S2 (Dow Corning company). To modify the viscoelastic properties of the rubber, its composition was varied: 90% of the rubber + 10% catalyst (standard), 92.5% + 7.5% (weak), 85% + 15% (strong). Modulus of elasticity and the loss tangent were measured accurately for these materials in the frequency range from 40 Hz to 3 KHz using the unique proposed technique.

Keywords: boundary layer, compliant coating, drag reduction, hot wire, wind tunnel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1643
141 Mixed Convection Enhancement in a 3D Lid-Driven Cavity Containing a Rotating Cylinder by Applying an Artificial Roughness

Authors: Ali Khaleel Kareem, Shian Gao, Ahmed Qasim Ahmed

Abstract:

A numerical investigation of unsteady mixed convection heat transfer in a 3D moving top wall enclosure, which has a central rotating cylinder and uses either artificial roughness on the bottom hot plate or smooth bottom hot plate to study the heat transfer enhancement, is completed for fixed circular cylinder, and anticlockwise and clockwise rotational speeds, -1 ≤ Ω ≤ 1, at Reynolds number of 5000. The top lid-driven wall was cooled, while the other remaining walls that completed obstructed cubic were kept insulated and motionless. A standard k-ε model of Unsteady Reynolds-Averaged Navier-Stokes (URANS) method is involved to deal with turbulent flow. It has been clearly noted that artificial roughness can strongly control the thermal fields and fluid flow patterns. Ultimately, the heat transfer rate has been dramatically increased by involving artificial roughness on the heated bottom wall in the presence of rotating cylinder.

Keywords: Artificial roughness, Lid-driven cavity, Mixed convection heat transfer, Rotating cylinder, URANS method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1109
140 Development of Motor and Controller for VVA Module of Gasoline Vehicle

Authors: Joon Sung Park, Jun-Hyuk Choi, Jin-Hong Kim, In-Soung Jung

Abstract:

Due to environmental concerns, the recent regulation on automobile fuel economy has been strengthened. The market demand for efficient vehicles is growing and automakers to improve engine fuel efficiency in the industry have been paying a lot of effort. To improve the fuel efficiency, it is necessary to reduce losses or to improve combustion efficiency of the engine. VVA (Variable Valve Actuation) technology enhances the engine's intake air flow, reduce pumping losses and mechanical friction losses. And also, VVA technology is the engine's low speed and high speed operation to implement each of appropriate valve lift. It improves the performance of engine in the entire operating range. This paper presents a design procedure of DC motor and drive for VVA system and shows the validity of the design result by experimental result with prototype.

Keywords: DC motor, Inverter, VVA, Electric Drive.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1555