Tests and Comparison of Two Mobile Industrial Analytical Systems for Mercury Speciation in Flue Gas
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33122
Tests and Comparison of Two Mobile Industrial Analytical Systems for Mercury Speciation in Flue Gas

Authors: Karel Borovec, Jerzy Gorecki, Tadeas Ochodek

Abstract:

Combustion of solid fuels is one of the main sources of mercury in the environment. To reduce the amount of mercury emitted to the atmosphere, it is necessary to modify or optimize old purification technologies or introduce the new ones. Effective reduction of mercury level in the flue gas requires the use of speciation systems for mercury form determination. This paper describes tests and provides comparison of two industrial portable and continuous systems for mercury speciation in the flue gas: Durag HM-1400 TRX with a speciation module and the Portable Continuous Mercury Speciation System based on the SGM-8 mercury speciation set, made by Nippon Instruments Corporation. Additionally, the paper describes a few analytical problems that were encountered during a two-year period of using the systems.

Keywords: Mercury determination, speciation, continuous measurement, flue gas.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1132679

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 886

References:


[1] EPA. Air Pollution and the Clean Air Act. http://www.epa.gov/air/caa/. (accessed 16.09.2017).
[2] EPA. Clean Air Mercury Rule. http://www.epa.gov/camr/. (accessed 16.09.2017).
[3] EPA. Summary of the Clean Air Act. 10.03.2015; http://www2.epa.gov/laws-regulations/summary-clean-air-act. (accessed 16.09.2017).
[4] V. M. Fthenakis, F. W. Lipferta, P. D. Moskowitza, L. Saroffb, “An assessment of mercury emissions and health risks from a coal-fired power plant”, Journal of Hazardous Materials, vol. 44 pp. 267–283 1995.
[5] C. S. Wong. N. S. Duzgoren-Aydin, A. Aydin M. H. Wong, “Sources and trends of environmental mercury emissions in Asia”, Sci Total Environ, vol. 368 pp. 649-62. 2006.
[6] Jun Lee. Seo YC. Jurng J. Hong JH. Park JW. Hyun JE. Gyu Lee T., Mercury emissions from selected stationary combustion sources in Korea, Science of The Total Environment, 325(1–3) (2004) 155–161.
[7] L Uruski, J. Gorecki, M. Macherzynski, T. Dziok, J. Golas, “The ability of Polish coals to release mercury in the process of thermal treatment”, Fuel Processing Technology. Vol. 140 pp. 12-20 2015.
[8] Dziok T. Strugała A. Rozwadowski A. Macherzyński M., Studies on the correlation between mercury content and content of various form of sulfur in Polish hard coals. Fuel. 159 (2015) 206-213.
[9] E. J. Granite, H. Pennline, “Novel Sorbents for Mercury Removal from Flue Gas”, Industrial & Engineering Chemistry Research. Vol. 39 pp. 1020-1029 2000.
[10] E. J. Granite, H. Pennline, “Photochemical Removal of Mercury from Flue Gas”, Industrial & Engineering Chemistry Research. Vol. 41 pp. 5470-5476 2002.
[11] A. A. Presto, E. J. Granite, “Critical Review: Survey of Catalysts for Oxidation of Mercury in Flue Gas. Environmental Science & Technology. Vol 40 pp. 5601-5609, 2006.
[12] A. A. Presto, E. J. Granite, “Noble Metal Catalysts for Mercury Oxidation in Utility Flue Gas”, “Platinum Metals Review” vol. 52 pp. 144-154 2008.
[13] A. A. Presto, E. J. Granite, “Impact of Sulfur Oxides on Mercury Capture by Activated Carbon”, Environmental Science & Technology. Vol. 41 () pp. 6579-6584 2007.
[14] E. Kalisinska, J. Górecki, N. Lanocha, A. Okońska, J. B. Melgarejo, H. Budis, I. Rzad, J. Golas, “Total and methylmercury in soft tissues of white-tailed eagle (Haliaeetus albicilla) and osprey (Pandion haliaetus) collected in Poland”, Ambio. Vol. 43 pp. 858–870 2014.
[15] E. Kalisinska, J. Gorecki, A. Okonska, B. Pilarczyk, A. Tomza-Marciniak, H. Budis, N. Lanocha, DI. Kosik-Bogacka, KM. Kavetska, M. Macherzynski, J. Golas, “Mercury and selenium in the muscle of piscivorous common mergansers (\emph{Mergus merganser}) from a selenium-deficient European country”, Ecotoxicology and Environmental vol. 101 pp. 107–115 2014.
[16] Q. Zhou, Y. F. Duan S. L. Zhao, C. Zhu, M. She, J. Zhang, SQ. Wang, “Modeling and experimental studies of in-duct mercury capture by activated carbon injection in an entrained flow reactor” Fuel Processing Technology vol. 140 pp. 304-311 2015.
[17] Yu L. Yin L. Xu Q. Xiong Y. “Effects of different kinds of coal on the speciation and distribution of mercury in flue gas” Journal of the Energy Institute. Vol. 88 pp. 136-142 2015.
[18] A. Fuente-Cuesta, M. Diaz-Somoano, M. A. Lopez-Anton, M. R. Martinez-Tarazona, “Oxidised mercury determination from combustion gas using an ionic exchanger”, Fuel, vol. 122 pp. 218-222 2014.
[19] Online stack GAS/CEM Systems. http://www.psanalytical.com/products/onlinestackgas.html. (accessed 16.09.2017).
[20] GmbH. S. M. MERCEM Mercury Analysis System. file:///C:/Users/DOM/Desktop/Downloads/MERCEM_en.pdf. (accessed 16.09.2017).
[21] Scientific. T. Mercury Freedom System. http://www.thermoscientific.com/content/tfs/en/product/mercury-freedom-system-1.html. (accessed 16.09.2017).
[22] Durag HM 1400 TRX continuous mercury analyser. http://www.directindustry.com/prod/durag-group/product-9067-400797.html. (accessed 02.04.2016).
[23] J. Górecki, A. Łoś, M. Macherzyński, J. Gołaś, P. Burmistrz, K. Borovec, “A portable continuous system for mercury speciation in flue gas and process gases” Fuel Processing Technology vol. 154. pp. 44-51 2016.
[24] J. Gorecki, A. Okonska, “The construction and testing of the portable Hg2+ ultrasonic calibrator for the control of mercury speciation systems” Talanta. Vol. 147 pp. 28-34 2016.