Search results for: Symmetric Situation
810 New DES based on Elliptic Curves
Authors: Ghada Abdelmouez M., Fathy S. Helail, Abdellatif A. Elkouny
Abstract:
It is known that symmetric encryption algorithms are fast and easy to implement in hardware. Also elliptic curves have proved to be a good choice for building encryption system. Although most of the symmetric systems have been broken, we can create a hybrid system that has the same properties of the symmetric encryption systems and in the same time, it has the strength of elliptic curves in encryption. As DES algorithm is considered the core of all successive symmetric encryption systems, we modified DES using elliptic curves and built a new DES algorithm that is hard to be broken and will be the core for all other symmetric systems.Keywords: DES, Elliptic Curves, hybrid system, symmetricencryption.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1736809 Bisymmetric, Persymmetric Matrices and Its Applications in Eigen-decomposition of Adjacency and Laplacian Matrices
Authors: Mahdi Nouri
Abstract:
In this paper we introduce an efficient solution method for the Eigen-decomposition of bisymmetric and per symmetric matrices of symmetric structures. Here we decompose adjacency and Laplacian matrices of symmetric structures to submatrices with low dimension for fast and easy calculation of eigenvalues and eigenvectors. Examples are included to show the efficiency of the method.Keywords: Graphs theory, Eigensolution, adjacency and Laplacian matrix, Canonical forms, bisymmetric, per symmetric.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2443808 A Contractor for the Symmetric Solution Set
Authors: Milan Hladik
Abstract:
The symmetric solution set Σ sym is the set of all solutions to the linear systems Ax = b, where A is symmetric and lies between some given bounds A and A, and b lies between b and b. We present a contractor for Σ sym, which is an iterative method that starts with some initial enclosure of Σ sym (by means of a cartesian product of intervals) and sequentially makes the enclosure tighter. Our contractor is based on polyhedral approximation and solving a series of linear programs. Even though it does not converge to the optimal bounds in general, it may significantly reduce the overestimation. The efficiency is discussed by a number of numerical experiments.
Keywords: Linear interval systems, solution set, interval matrix, symmetric matrix.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1284807 Conjugate Gradient Algorithm for the Symmetric Arrowhead Solution of Matrix Equation AXB=C
Authors: Minghui Wang, Luping Xu, Juntao Zhang
Abstract:
Based on the conjugate gradient (CG) algorithm, the constrained matrix equation AXB=C and the associate optimal approximation problem are considered for the symmetric arrowhead matrix solutions in the premise of consistency. The convergence results of the method are presented. At last, a numerical example is given to illustrate the efficiency of this method.Keywords: Iterative method, symmetric arrowhead matrix, conjugate gradient algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1409806 The Partial Non-combinatorially Symmetric N10 -Matrix Completion Problem
Authors: Gu-Fang Mou, Ting-Zhu Huang
Abstract:
An n×n matrix is called an N1 0 -matrix if all principal minors are non-positive and each entry is non-positive. In this paper, we study the partial non-combinatorially symmetric N1 0 -matrix completion problems if the graph of its specified entries is a transitive tournament or a double cycle. In general, these digraphs do not have N1 0 -completion. Therefore, we have given sufficient conditions that guarantee the existence of the N1 0 -completion for these digraphs.
Keywords: Matrix completion, matrix completion, N10 -matrix, non-combinatorially symmetric, cycle, digraph.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1085805 Material Failure Process Simulation by Improve Finite Elements with Embedded Discontinuities
Authors: Juárez-Luna Gelacio, Ayala Gustavo, Retama-Velasco Jaime
Abstract:
This paper shows the advantages of the material failure process simulation by improve finite elements with embedded discontinuities, using a new definition of traction vector, dependent on the discontinuity length and the angle. Particularly, two families of this kind of elements are compared: kinematically optimal symmetric and statically and kinematically optimal non-symmetric. The constitutive model to describe the behavior of the material in the symmetric formulation is a traction-displacement jump relationship equipped with softening after reaching the failure surface.
To show the validity of this symmetric formulation, representative numerical examples illustrating the performance of the proposed formulation are presented. It is shown that the non-symmetric family may over or underestimate the energy required to create a discontinuity, as this effect is related with the total length of the discontinuity, fact that is not noticed when the discontinuity path is a straight line.
Keywords: Variational formulation, strong discontinuity, embedded discontinuities, strain localization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1770804 The Symmetric Solutions for Boundary Value Problems of Second-Order Singular Differential Equation
Authors: Li Xiguang
Abstract:
In this paper, by constructing a special operator and using fixed point index theorem of cone, we get the sufficient conditions for symmetric positive solution of a class of nonlinear singular boundary value problems with p-Laplace operator, which improved and generalized the result of related paper.
Keywords: Banach space, cone, fixed point index, singular differential equation, p-Laplace operator, symmetric solutions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1303803 The Symmetric Solutions for Three-Point Singular Boundary Value Problems of Differential Equation
Authors: Li Xiguang
Abstract:
In this paper, by constructing a special operator and using fixed point index theorem of cone, we get the sufficient conditions for symmetric positive solution of a class of nonlinear singular boundary value problems with p-Laplace operator, which improved and generalized the result of related paper.
Keywords: Banach space, cone, fixed point index, singular differential equation, p-Laplace operator, symmetric solutions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1414802 An Iterative Method for the Symmetric Arrowhead Solution of Matrix Equation
Authors: Minghui Wang, Luping Xu, Juntao Zhang
Abstract:
In this paper, according to the classical algorithm LSQR for solving the least-squares problem, an iterative method is proposed for least-squares solution of constrained matrix equation. By using the Kronecker product, the matrix-form LSQR is presented to obtain the like-minimum norm and minimum norm solutions in a constrained matrix set for the symmetric arrowhead matrices. Finally, numerical examples are also given to investigate the performance.Keywords: Symmetric arrowhead matrix, iterative method, like-minimum norm, minimum norm, Algorithm LSQR.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1409801 An Improved Variable Tolerance RSM with a Proportion Threshold
Authors: Chen Wu, Youquan Xu, Dandan Li, Ronghua Yang, Lijuan Wang
Abstract:
In rough set models, tolerance relation, similarity relation and limited tolerance relation solve different situation problems for incomplete information systems in which there exists a phenomenon of missing value. If two objects have the same few known attributes and more unknown attributes, they cannot distinguish them well. In order to solve this problem, we presented two improved limited and variable precision rough set models. One is symmetric, the other one is non-symmetric. They all use more stringent condition to separate two small probability equivalent objects into different classes. The two models are needed to engage further study in detail. In the present paper, we newly form object classes with a different respect comparing to the first suggested model. We overcome disadvantages of non-symmetry regarding to the second suggested model. We discuss relationships between or among several models and also make rule generation. The obtained results by applying the second model are more accurate and reasonable.Keywords: Incomplete information system, rough set, symmetry, variable precision.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 887800 A Novel Approach of Multilevel Inverter with Reduced Power Electronics Devices
Authors: M. Jagabar Sathik, K. Ramani
Abstract:
In this paper family of multilevel inverter topology with reduced number of power switches is presented. The proposed inverter can generate both even and odd level. The proposed topology is suitable for symmetric structure. The proposed symmetric inverter results in reduction of power switches, power diode and gate driver circuits and also it may further minimize the installation area and cost. To prove the superiority of proposed topology is compared with conventional topologies. The performance of this symmetric multilevel inverter has been tested by computer based simulation and prototype based experimental setup for nine-level inverter is developed and results are verified.
Keywords: Cascaded H- Bridge (CHB), Multilevel Inverter (MLI), Nearest Level Modulation (NLM), Total Harmonic Distortion (THD).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3147799 A Watermarking Signature Scheme with Hidden Watermarks and Constraint Functions in the Symmetric Key Setting
Authors: Yanmin Zhao, Siu Ming Yiu
Abstract:
To claim the ownership for an executable program is a non-trivial task. An emerging direction is to add a watermark to the program such that the watermarked program preserves the original program’s functionality and removing the watermark would heavily destroy the functionality of the watermarked program. In this paper, the first watermarking signature scheme with the watermark and the constraint function hidden in the symmetric key setting is constructed. The scheme uses well-known techniques of lattice trapdoors and a lattice evaluation. The watermarking signature scheme is unforgeable under the Short Integer Solution (SIS) assumption and satisfies other security requirements such as the unremovability security property.
Keywords: Short integer solution problem, signatures, the symmetric-key setting, watermarking schemes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 561798 Asymmetric Tukey’s Control Chart Robust to Skew and Non-Skew Process Observation
Authors: S. Sukparungsee
Abstract:
In reality, the process observations are away from the assumption that are normal distributed. The observations could be skew distributions which should use an asymmetric chart rather than symmetric chart. Consequently, this research aim to study the robustness of the asymmetric Tukey’s control chart for skew and non-skew distributions as Lognormal and Laplace distributions. Furthermore, the performances in detecting of a change in parameter of asymmetric and symmetric Tukey’s control charts are compared by Average ARL (AARL). The results found that the asymmetric performs better than symmetric Tukey’s control chart for both cases of skew and non-skew process observation.
Keywords: Asymmetric control limit, average of average run length, Tukey’s control chart and skew distributions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2489797 Low Leakage MUX/XOR Functions Using Symmetric and Asymmetric FinFETs
Authors: Farid Moshgelani, Dhamin Al-Khalili, Côme Rozon
Abstract:
In this paper, FinFET devices are analyzed with emphasis on sub-threshold leakage current control. This is achieved through proper biasing of the back gate, and through the use of asymmetric work functions for the four terminal FinFET devices. We are also examining different configurations of multiplexers and XOR gates using transistors of symmetric and asymmetric work functions. Based on extensive characterization data for MUX circuits, our proposed configuration using symmetric devices lead to leakage current and delay improvements of 65% and 47% respectively compared to results in the literature. For XOR gates, a 90% improvement in the average leakage current is achieved by using asymmetric devices. All simulations are based on a 25nm FinFET technology using the University of Florida UFDG model.Keywords: FinFET, logic functions, asymmetric workfunction devices, back gate biasing, sub-threshold leakage current.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2862796 Study of Anti-Symmetric Flexural Mode Propagation along Wedge Tip with a Crack
Authors: Manikanta Prasad Banda, Che Hua Yang
Abstract:
Anti-symmetric wave propagation along the particle motion of the wedge waves is known as anti-symmetric flexural (ASF) modes which travel along the wedge tips of the mid-plane apex with a small truncation. This paper investigates the characteristics of the ASF modes propagation with the wedge tip crack. The simulation and experimental results obtained by a three-dimensional (3-D) finite element model explained the contact acoustic non-linear (CAN) behavior in explicit dynamics in ABAQUS and the ultrasonic non-destructive testing (NDT) method is used for defect detection. The effect of various parameters on its high and low-level conversion modes are known for complex reflections and transmissions involved with direct reflections and transmissions. The results are used to predict the location of crack through complex transmission and reflection coefficients.
Keywords: ASF mode, crack detection, finite elements method, laser ultrasound technique, wedge waves.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 529795 Some Static Isotropic Perfect Fluid Spheres in General Relativity
Authors: Sachin Kumar, Y. K. Gupta, J. R. Sharma
Abstract:
In the present article, a new class of solutions of Einstein field equations is investigated for a spherically symmetric space-time when the source of gravitation is a perfect fluid. All the solutions have been derived by making some suitable arrangements in the field equations. The solutions so obtained have been seen to describe Schwarzschild interior solutions. Most of the solutions are subjected to the reality conditions. As far as the authors are aware the solutions are new.Keywords: Einstein's equations, General Relativity, PerfectFluid, Spherical symmetric.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1333794 Parallel Branch and Bound Model Using Logarithmic Sampling (PBLS) for Symmetric Traveling Salesman Problem
Authors: Sheikh Muhammad Azam, Masood-ur-Rehman, Adnan Khalid Bhatti, Nadeem Daudpota
Abstract:
Very Large and/or computationally complex optimization problems sometimes require parallel or highperformance computing for achieving a reasonable time for computation. One of the most popular and most complicate problems of this family is “Traveling Salesman Problem". In this paper we have introduced a Branch & Bound based algorithm for the solution of such complicated problems. The main focus of the algorithm is to solve the “symmetric traveling salesman problem". We reviewed some of already available algorithms and felt that there is need of new algorithm which should give optimal solution or near to the optimal solution. On the basis of the use of logarithmic sampling, it was found that the proposed algorithm produced a relatively optimal solution for the problem and results excellent performance as compared with the traditional algorithms of this series.
Keywords: Parallel execution, symmetric traveling salesman problem, branch and bound algorithm, logarithmic sampling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2336793 Equivalent Field Calculation to Irregular Symmetric and Asymmetric Photon Fields
Authors: N. Chegeni, M. J. Tahmasebi Birgani
Abstract:
Equivalent fields are frequently used for central axis depth-dose calculations of rectangular and irregular shaped photon beam. Since most of the proposed models to calculate the equivalent square field, are dosimetry-based, a simple physical-based method to calculate the equivalent square field size was used as the basis of this study. The table of the sides of the equivalent square for rectangular fields was constructed and then compared with the well-known tables of BJR and Venselaar with the average relative error percentage of 2.5±2.5 % and 1.5±1.5 % respectively. To evaluate the accuracy of this method, the PDDs were measured for some special irregular symmetric and asymmetric treatment fields and their equivalent squares for Siemens Primus Plus linear accelerator for both energies 6 and 18MV. The mean relative differences of PDDs measurement for these fields and their equivalent square was approximately 1% or less. As a result, this method can be employed to calculate equivalent field not only for rectangular fields but also for any irregular symmetric or asymmetric field.
Keywords: Equivalent field, asymmetric field, irregular field, multi leaf collimators.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5547792 Equatorial Symmetry of Chaotic Solutions in Boussinesq Convection in a Rotating Spherical Shell
Authors: Keiji Kimura, Shin-ichi Takehiro, Michio Yamada
Abstract:
We investigate properties of convective solutions of the Boussinesq thermal convection in a moderately rotating spherical shell allowing the inner and outer sphere rotation due to the viscous torque of the fluid. The ratio of the inner and outer radii of the spheres, the Prandtl number and the Taylor number are fixed to 0.4, 1 and 5002, respectively. The inertial moments of the inner and outer spheres are fixed to about 0.22 and 100, respectively. The Rayleigh number is varied from 2.6 × 104 to 3.4 × 104. In this parameter range, convective solutions transit from equatorially symmetric quasiperiodic ones to equatorially asymmetric chaotic ones as the Rayleigh number is increased. The transition route in the system allowing rotation of both the spheres is different from that in the co-rotating system, which means the inner and outer spheres rotate with the same constant angular velocity: the convective solutions transit as equatorially symmetric quasi-periodic solution → equatorially symmetric chaotic solution → equatorially asymmetric chaotic solution in the system allowing both the spheres rotation, while equatorially symmetric quasi-periodic solution → equatorially asymmetric quasiperiodic solution → equatorially asymmetric chaotic solution in the co-rotating system.Keywords: thermal convection, numerical simulation, equatorial symmetry, quasi-periodic solution, chaotic solution
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1587791 Magnetoviscous Effects on Axi-Symmetric Ferrofluid Flow over a Porous Rotating Disk with Suction/Injection
Authors: Vikas Kumar
Abstract:
The present study is carried out to investigate the magneto-viscous effects on incompressible ferrofluid flow over a porous rotating disc with suction or injection on the surface of the disc subjected to a magnetic field. The flow under consideration is axi-symmetric steady ferrofluid flow of electrically non-conducting fluid. Karman’s transformation is used to convert the governing boundary layer equations involved in the problem to a system of non linear coupled differential equations. The solution of this system is obtained by using power series approximation. The flow characteristics i.e. radial, tangential, axial velocities and boundary layer displacement thickness are calculated for various values of MFD (magnetic field dependent) viscosity and for different values of suction injection parameter. Besides this, skin friction coefficients are also calculated on the surface of the disk. The results thus obtained are presented numerically and graphically in the paper.
Keywords: Axi-symmetric, ferrofluid, magnetic field, porous rotating disk.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2055790 Two-Dimensional Symmetric Half-Plane Recursive Doubly Complementary Digital Lattice Filters
Authors: Ju-Hong Lee, Chong-Jia Ciou, Yuan-Hau Yang
Abstract:
This paper deals with the problem of two-dimensional (2-D) recursive doubly complementary (DC) digital filter design. We present a structure of 2-D recursive DC filters by using 2-D symmetric half-plane (SHP) recursive digital all-pass lattice filters (DALFs). The novelty of using 2-D SHP recursive DALFs to construct a 2-D recursive DC digital lattice filter is that the resulting 2-D SHP recursive DC digital lattice filter provides better performance than the existing 2-D SHP recursive DC digital filter. Moreover, the proposed structure possesses a favorable 2-D DC half-band (DC-HB) property that allows about half of the 2-D SHP recursive DALF’s coefficients to be zero. This leads to considerable savings in computational burden for implementation. To ensure the stability of a designed 2-D SHP recursive DC digital lattice filter, some necessary constraints on the phase of the 2-D SHP recursive DALF during the design process are presented. Design of a 2-D diamond-shape decimation/interpolation filter is presented for illustration and comparison.
Keywords: All-pass digital filter, doubly complementary, lattice structure, symmetric half-plane digital filter, sampling rate conversion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1268789 Exploring Solutions in Extended Horava-Lifshitz Gravity
Authors: Aziza Altaibayeva, Ertan Gudekli, Ratbay Myrzakulov
Abstract:
In this letter, we explore exact solutions for the Horava-Lifshitz gravity. We use of an extension of this theory with first order dynamical lapse function. The equations of motion have been derived in a fully consistent scenario. We assume that there are some spherically symmetric families of exact solutions of this extended theory of gravity. We obtain exact solutions and investigate the singularity structures of these solutions. Specially, an exact solution with the regular horizon is found.
Keywords: Quantum gravity, Horava-Lifshitz gravity, black hole, spherically symmetric space times.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2246788 The Inverse Eigenvalue Problem via Orthogonal Matrices
Authors: A. M. Nazari, B. Sepehrian, M. Jabari
Abstract:
In this paper we study the inverse eigenvalue problem for symmetric special matrices and introduce sufficient conditions for obtaining nonnegative matrices. We get the HROU algorithm from [1] and introduce some extension of this algorithm. If we have some eigenvectors and associated eigenvalues of a matrix, then by this extension we can find the symmetric matrix that its eigenvalue and eigenvectors are given. At last we study the special cases and get some remarkable results.
Keywords: Householder matrix, nonnegative matrix, Inverse eigenvalue problem.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1582787 An Iterative Method for the Least-squares Symmetric Solution of AXB+CYD=F and its Application
Authors: Minghui Wang
Abstract:
Based on the classical algorithm LSQR for solving (unconstrained) LS problem, an iterative method is proposed for the least-squares like-minimum-norm symmetric solution of AXB+CYD=E. As the application of this algorithm, an iterative method for the least-squares like-minimum-norm biymmetric solution of AXB=E is also obtained. Numerical results are reported that show the efficiency of the proposed methods.
Keywords: Matrix equation, bisymmetric matrix, least squares problem, like-minimum norm, iterative algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1488786 Understanding and Designing Situation-Aware Mobile and Ubiquitous Computing Systems
Authors: Kai Häussermann, Christoph Hubig, Paul Levi, Frank Leymann, Oliver Siemoneit, Matthias Wieland, Oliver Zweigle
Abstract:
Using spatial models as a shared common basis of information about the environment for different kinds of contextaware systems has been a heavily researched topic in the last years. Thereby the research focused on how to create, to update, and to merge spatial models so as to enable highly dynamic, consistent and coherent spatial models at large scale. In this paper however, we want to concentrate on how context-aware applications could use this information so as to adapt their behavior according to the situation they are in. The main idea is to provide the spatial model infrastructure with a situation recognition component based on generic situation templates. A situation template is – as part of a much larger situation template library – an abstract, machinereadable description of a certain basic situation type, which could be used by different applications to evaluate their situation. In this paper, different theoretical and practical issues – technical, ethical and philosophical ones – are discussed important for understanding and developing situation dependent systems based on situation templates. A basic system design is presented which allows for the reasoning with uncertain data using an improved version of a learning algorithm for the automatic adaption of situation templates. Finally, for supporting the development of adaptive applications, we present a new situation-aware adaptation concept based on workflows.Keywords: context-awareness, ethics, facilitation of system use through workflows, situation recognition and learning based on situation templates and situation ontology's, theory of situationaware systems
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1758785 On the Algorithmic Iterative Solutions of Conjugate Gradient, Gauss-Seidel and Jacobi Methods for Solving Systems of Linear Equations
Authors: H. D. Ibrahim, H. C. Chinwenyi, H. N. Ude
Abstract:
In this paper, efforts were made to examine and compare the algorithmic iterative solutions of conjugate gradient method as against other methods such as Gauss-Seidel and Jacobi approaches for solving systems of linear equations of the form Ax = b, where A is a real n x n symmetric and positive definite matrix. We performed algorithmic iterative steps and obtained analytical solutions of a typical 3 x 3 symmetric and positive definite matrix using the three methods described in this paper (Gauss-Seidel, Jacobi and Conjugate Gradient methods) respectively. From the results obtained, we discovered that the Conjugate Gradient method converges faster to exact solutions in fewer iterative steps than the two other methods which took much iteration, much time and kept tending to the exact solutions.
Keywords: conjugate gradient, linear equations, symmetric and positive definite matrix, Gauss-Seidel, Jacobi, algorithm
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 473784 Generalized Inverse Eigenvalue Problems for Symmetric Arrow-head Matrices
Authors: Yongxin Yuan
Abstract:
In this paper, we first give the representation of the general solution of the following inverse eigenvalue problem (IEP): Given X ∈ Rn×p and a diagonal matrix Λ ∈ Rp×p, find nontrivial real-valued symmetric arrow-head matrices A and B such that AXΛ = BX. We then consider an optimal approximation problem: Given real-valued symmetric arrow-head matrices A, ˜ B˜ ∈ Rn×n, find (A, ˆ Bˆ) ∈ SE such that Aˆ − A˜2 + Bˆ − B˜2 = min(A,B)∈SE (A−A˜2 +B −B˜2), where SE is the solution set of IEP. We show that the optimal approximation solution (A, ˆ Bˆ) is unique and derive an explicit formula for it.
Keywords: Partially prescribed spectral information, symmetric arrow-head matrix, inverse problem, optimal approximation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1796783 Reliability-Based Ductility Seismic Spectra of Structures with Tilting
Authors: Federico Valenzuela-Beltran, Sonia E. Ruiz, Alfredo Reyes-Salazar, Juan Bojorquez
Abstract:
A reliability-based methodology which uses structural demand hazard curves to consider the increment of the ductility demands of structures with tilting is proposed. The approach considers the effect of two orthogonal components of the ground motions as well as the influence of soil-structure interaction. The approach involves the calculation of ductility demand hazard curves for symmetric systems and, alternatively, for systems with different degrees of asymmetry. To get this objective, demand hazard curves corresponding to different global ductility demands of the systems are calculated. Next, Uniform Exceedance Rate Spectra (UERS) are developed for a specific mean annual rate of exceedance value. Ratios between UERS corresponding to asymmetric and to symmetric systems located in soft soil of the valley of Mexico are obtained. Results indicate that the ductility demands corresponding to tilted structures may be several times higher than those corresponding to symmetric structures, depending on several factors such as tilting angle and vibration period of structure and soil.
Keywords: Asymmetric yielding, tilted structures, seismic performance, structural reliability
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1805782 A Modified Cross Correlation in the Frequency Domain for Fast Pattern Detection Using Neural Networks
Authors: Hazem M. El-Bakry, Qiangfu Zhao
Abstract:
Recently, neural networks have shown good results for detection of a certain pattern in a given image. In our previous papers [1-5], a fast algorithm for pattern detection using neural networks was presented. Such algorithm was designed based on cross correlation in the frequency domain between the input image and the weights of neural networks. Image conversion into symmetric shape was established so that fast neural networks can give the same results as conventional neural networks. Another configuration of symmetry was suggested in [3,4] to improve the speed up ratio. In this paper, our previous algorithm for fast neural networks is developed. The frequency domain cross correlation is modified in order to compensate for the symmetric condition which is required by the input image. Two new ideas are introduced to modify the cross correlation algorithm. Both methods accelerate the speed of the fast neural networks as there is no need for converting the input image into symmetric one as previous. Theoretical and practical results show that both approaches provide faster speed up ratio than the previous algorithm.Keywords: Fast Pattern Detection, Neural Networks, Modified Cross Correlation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1744781 The Direct Updating of Damping and Gyroscopic Matrices using Incomplete Complex Test Data
Authors: Jiashang Jiang, Yongxin Yuan
Abstract:
In this paper we develop an efficient numerical method for the finite-element model updating of damped gyroscopic systems based on incomplete complex modal measured data. It is assumed that the analytical mass and stiffness matrices are correct and only the damping and gyroscopic matrices need to be updated. By solving a constrained optimization problem, the optimal corrected symmetric damping matrix and skew-symmetric gyroscopic matrix complied with the required eigenvalue equation are found under a weighted Frobenius norm sense.
Keywords: Model updating, damped gyroscopic system, partially prescribed spectral information.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1786