**Commenced**in January 2007

**Frequency:**Monthly

**Edition:**International

**Paper Count:**32912

##### Equatorial Symmetry of Chaotic Solutions in Boussinesq Convection in a Rotating Spherical Shell

**Authors:**
Keiji Kimura,
Shin-ichi Takehiro,
Michio Yamada

**Abstract:**

**Keywords:**
thermal convection,
numerical simulation,
equatorial
symmetry,
quasi-periodic solution,
chaotic solution

**Digital Object Identifier (DOI):**
doi.org/10.5281/zenodo.1335044

**References:**

[1] S. Chandrasekhar, "Hydrodynamic and Hydromagnetic stability," Oxford Univ. Press, pp654 (1961).

[2] M. Ardes, F. H. Busse and J. Wicht, "Thermal convection in rotating spherical shells," Physics of the Earth and Planetary Interiors, 99, 55 (1997).

[3] A. Tilgner and F. H. Busse, "Finite-amplitude convection in rotating spherical fluid shells," J. Fluid Mech., 332, 359 (1997).

[4] E. Grote and F. H. Busse, "Dynamics of convection and dynamos in rotating spherical fluid shells," Fluid Dynamics Research, 28, 349 (2001).

[5] R. Simitev and F. H. Busse, "Patterns of convection in rotating spherical shells," New Journal of Physics, 5, 97.1 (2003).

[6] G.A. Glatzmaier and P.H. Roberts, "A three-dimensional convective dynamo solution with rotating and finitely conducting inner core and mantle," Phys. Earth Planet. Inter., 91, 63 (1995).

[7] U.R. Christensen, J. Aubert, P. Cardin, E. Dormy, S. Gibbons, G.A. Glatzmaier, E. Grote, Y. Honkura, C. Jones, M. Kono, M. Matsushima, A. Sakuraba, F. Takahashi, A. Tilgner, J. Wicht, K. Zhang, "A numerical dynamo benchmark," Phys. Earth Planet. Inter., 128, 25 (2001).

[8] J. Tromp, "Inner-core anisotropy and rotation," Annu. Rev. Earth Planet. Sci, 29, 47 (2001).

[9] J. Zhang, X. Song, Y. Li, P. G. Richards, X. Sun and F. Waldhauser, "Inner core differential motion confirmed by earthquake waveform doublets," Science, 309, 1357 (2005).

[10] K. Kimura, S. Takehiro and M. Yamada, "Stability and a bifurcation diagram of Boussinesq thermal convection in a moderately rotating spherical shell allowing rotation of the inner sphere," (2013, submitted).

[11] L. D. Landau and E. M. Lifshitz, "Fluid Mechanics, Second edition: Volume 6 (Course of Theoretical Physics)," Butterworth-Heinemann (1987).

[12] K. Kimura, S. Takehiro and M. Yamada, "Stability and bifurcation diagram of Boussinesq thermal convection in a moderately rotating spherical shell," Phys. Fluids, 23, 074101 (2011).

[13] K. Ishioka, ispack-0.96, http://www.gfd-dennou.org/arch/ispack/, GFD Dennou Club (2011).

[14] S. Takehiro, Y. Sasaki, Y. Morikawa, K. Ishioka, M. Odaka, Y.O. Takahashi, S. Nishizawa, K. Nakajima, M. Ishiwatari and Y.-Y. Hayashi, SPMODEL Development Group, Hierarchical Spectral Models for GFD (SPMODEL), http://www.gfd-dennou.org/library/spmodel/, GFD Dennou Club (2011).